Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = crown-root angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1225 KB  
Article
Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study
by Öznur Eraslan, Mukadder İnci Başer Kolcu, Oğuz Eraslan and Sema Belli
Biomimetics 2025, 10(10), 674; https://doi.org/10.3390/biomimetics10100674 - 7 Oct 2025
Viewed by 782
Abstract
Purpose: This study aimed to evaluate the effect of different coronal restoration methods on stresses in immature central incisors with regenerative endodontic treatment and excessive loss of coronal structure. Methods: A three-dimensional (3D) Finite Element Analysis (FEA) model of a maxillary central incisor [...] Read more.
Purpose: This study aimed to evaluate the effect of different coronal restoration methods on stresses in immature central incisors with regenerative endodontic treatment and excessive loss of coronal structure. Methods: A three-dimensional (3D) Finite Element Analysis (FEA) model of a maxillary central incisor treated with a 3 mm MTA coronal plug after regenerative endodontic treatment was created. Six different models were simulated: (1) intact immature tooth (control), (2) direct composite resin build-up, (3) fibre-reinforced composite build-up, (4) hybrid ceramic endocrown, (5) LiSi ceramic endocrown, and (6) endocore and ceramic crown restoration. Analyses were performed with SolidWorks/CosmosWorks, and a 150 N load was applied at a 135° angle. Results: Maximum tensile stresses were concentrated in the cervical region (4.577 MPa). Direct composite and fibre-reinforced restorations showed high stress in root dentin (3.891 and 3.841 MPa, respectively). The endocore/ceramic crown restoration (1.578 MPa) provided the closest stress distribution to the natural tooth (1.322 MPa). Conclusions: The biomechanical performance of the restoration–tooth complex depends on both the restorative material and the restoration design. In immature teeth undergoing regenerative endodontic treatment, the most biomechanically favourable restoration option was an endocore/ceramic crown. Full article
Show Figures

Figure 1

17 pages, 3474 KB  
Article
Integrating Heterosis for Root Architecture and Nitrogen Use Efficiency of Maize: A Comparison between Hybrids from Different Decades
by Yuanyuan Li, Lanfang Bai, Shuli Wei, Hao Wu, Rongfa Li, Yongqiang Wang and Zhigang Wang
Agronomy 2024, 14(9), 2018; https://doi.org/10.3390/agronomy14092018 - 4 Sep 2024
Cited by 3 | Viewed by 1680
Abstract
Exploring the biological potential of maize root architecture is one of the most important ways to improve nitrogen use efficiency (NUE). The NUE and its heterosis in maize hybrids have improved remarkably over decades. Yet, there is little research on maize hybrid heterosis [...] Read more.
Exploring the biological potential of maize root architecture is one of the most important ways to improve nitrogen use efficiency (NUE). The NUE and its heterosis in maize hybrids have improved remarkably over decades. Yet, there is little research on maize hybrid heterosis for root architecture and its possible physiological relationship to heterosis for NUE. A field study lasting two years was carried out on four typical maize hybrids from old and new eras, including their parental inbred lines with two levels of nitrogen (0, 150 kg N ha−1). Compared to old-era maize hybrids, the brace root angle (BA) and crown root angle (CA) of new-era maize hybrids increased by 19.3% and 8.0% under 0 N, and by 18.8% and 7.9% under 150 N, which exhibited a steeper root architecture; the crown root number (CN) of new-era maize hybrids increased by 30.5% and 21.4% under 0 N and 150 N, respectively, which showed a denser root system; meanwhile, the depth of 95% cumulative root weight (D95) of new-era maize hybrids separately increased by 10.5% and 8.5% under 0 N and 150 N, which exhibited a deeper root distribution. This steeper-denser-deeper root architecture enhanced pre-anthesis N uptake and provided a premise of greater post-anthesis N remobilization. All maize hybrids displayed significant heterosis for root architecture compared to their parental inbred lines. The brace root branching (BB) and crown root branching (CB) of new-era maize hybrids and D95 have positive heterosis, while the BA, CA, and CB of old-era maize hybrids, brace root number (BN), and CN have negative heterosis. Regardless of whether root architecture heterosis was positive or negative, new-era maize hybrids showed an overall elevated trend compared to old-era maize hybrids. Structural equation modeling (SEM) showed that heterosis for nitrogen internal efficiency (NIE) was the primary reason for NUE heterosis in maize, influenced by heterosis for root architecture, which was steeper, denser, and deeper. Our results indicated that, compared with old-era maize hybrids, new-era maize hybrids had stronger heterosis for root architecture, which was beneficial to pre-silking nitrogen absorption and is an important physiological basis for the higher NIE heterosis and NUE heterosis in new-era maize hybrids. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

22 pages, 6790 KB  
Systematic Review
Molar Distalization by Clear Aligners with Sequential Distalization Protocol: A Systematic Review and Meta-Analysis
by Christie Shen, Tiffany H. Park, Chun-Hsi Chung and Chenshuang Li
J. Funct. Biomater. 2024, 15(6), 137; https://doi.org/10.3390/jfb15060137 - 21 May 2024
Cited by 12 | Viewed by 6549
Abstract
Introduction: With the popularity of clear aligners, the sequential distalization protocol has been more commonly used for molar distalization. However, the amount of molar distalization that can be achieved, as well as the accompanying side effects on the sagittal dimension, are unclear. Methods: [...] Read more.
Introduction: With the popularity of clear aligners, the sequential distalization protocol has been more commonly used for molar distalization. However, the amount of molar distalization that can be achieved, as well as the accompanying side effects on the sagittal dimension, are unclear. Methods: Registered with PROSPERO (CRD42023447211), relevant original studies were screened from seven databases (MEDLINE [PubMed], EBSCOhost, Web of Science, Elsevier [SCOPUS], Cochrane, LILACS [Latin American and Caribbean Health Sciences Literature], and Google Scholar) supplemented by a manual search of the references of the full-reading manuscripts by two investigators independently. A risk of bias assessment was conducted, relevant data were extracted, and meta-analysis was performed using RStudio. Results: After the screening, 13 articles (11 involving maxillary distalization, two involving mandibular distalization) met the inclusion criteria. All studies had a high or medium risk of bias. The meta-analysis revealed that the maxillary first molar (U6) mesiobuccal cusp was distalized 2.07 mm [1.38 mm, 2.77 mm] based on the post-distalization dental model superimposition, and the U6 crown was distalized 2.00 mm [0.77 mm, 3.24 mm] based on the post-treatment lateral cephalometric evaluation. However, the U6 mesiobuccal root showed less distalization of 1.13 mm [−1.34 mm, 3.60 mm], indicating crown distal tipping, which was validated by meta-analysis (U6-PP angle: 2.19° [1.06°, 3.33°]). In addition, intra-arch anchorage loss was observed at the post-distalization time point (U1 protrusion: 0.39 mm [0.27 mm, 0.51 mm]), which was corrected at the post-treatment time point (incisal edge-PTV distance: −1.50 mm [−2.61 mm, −0.39 mm]). Conclusion: About 2 mm maxillary molar distalization can be achieved with the sequential distalization protocol, accompanied by slight molar crown distal tipping. Additional studies on this topic are needed due to the high risk of bias in currently available studies. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies in Orthodontics)
Show Figures

Figure 1

15 pages, 2863 KB  
Article
Genome-Wide Association Studies of Three-Dimensional (3D) Cassava Root Crowns and Agronomic Traits Using Partially Inbred Populations
by Pongsakorn Sunvittayakul, Passorn Wonnapinij, Pornchanan Chanchay, Pitchaporn Wannitikul, Sukhita Sathitnaitham, Phongnapha Phanthanong, Kanokpoo Changwitchukarn, Anongpat Suttangkakul, Hernan Ceballos, Leonardo D. Gomez, Piya Kittipadakul and Supachai Vuttipongchaikij
Agronomy 2024, 14(3), 591; https://doi.org/10.3390/agronomy14030591 - 15 Mar 2024
Cited by 2 | Viewed by 2732
Abstract
Cassava (Manihot esculenta Crantz) is a key industrial crop in Southeast Asia and a staple for food security in Africa, owing to its resilience and efficiency in starch production. This study aims to unravel the genetic determinants of specific cassava root crown [...] Read more.
Cassava (Manihot esculenta Crantz) is a key industrial crop in Southeast Asia and a staple for food security in Africa, owing to its resilience and efficiency in starch production. This study aims to unravel the genetic determinants of specific cassava root crown traits, utilizing 3D modeling for yield-related attributes and root crown morphology. Phenotypic analysis of 130 partially inbred lines and their six parental lines from Thai commercial varieties revealed a range of root traits within populations showcasing robust correlations among various traits, particularly root size parameters and root weight. Genotyping-by-sequencing yielded a total of 29,361 SNP markers identified within the nuclear genome of cassava and shared across all genotypes. Genome-Wide Association Studies (GWAS) of these 136 genotypes identified 23 significant SNPs for six out of 11 root crown traits, including 3D root angle, 3D surface area, root number, 3D crown diameter, root weight, and 3D volume. We found one shared significant SNP between 3D crown diameter and root weight, and another shared SNP between root weight and 3D volume. Two closely linked SNPs were identified for 3D volume, root weight, and 3D surface area. Linkage disequilibrium (LD) analysis for each pair of SNP markers indicated the linkage decay point at approximately 60 kb. Based on LD decay and available transcriptome data, candidate gene identification highlighted 29 genes associated with five traits, providing an understanding of the genetic basis of cassava root crown traits. Our findings offer novel insights into cassava storage root traits as well as data for marker development and candidate gene identification. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 10910 KB  
Article
3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization
by Wenxuan Gu, Weiliang Wen, Sheng Wu, Chenxi Zheng, Xianju Lu, Wushuai Chang, Pengliang Xiao and Xinyu Guo
Agriculture 2024, 14(3), 391; https://doi.org/10.3390/agriculture14030391 - 29 Feb 2024
Cited by 30 | Viewed by 3936
Abstract
The morphology and structure of wheat plants are intricate, containing numerous tillers, rich details, and significant cross-obscuration. Methods of effectively reconstructing three-dimensional (3D) models of wheat plants that reflects the varietal architectural differences using measured data is challenging in plant phenomics and functional–structural [...] Read more.
The morphology and structure of wheat plants are intricate, containing numerous tillers, rich details, and significant cross-obscuration. Methods of effectively reconstructing three-dimensional (3D) models of wheat plants that reflects the varietal architectural differences using measured data is challenging in plant phenomics and functional–structural plant models. This paper proposes a 3D reconstruction technique for wheat plants that integrates point cloud data and virtual design optimization. The approach extracted single stem number, growth position, length, and inclination angle from the point cloud data of a wheat plant. It then built an initial 3D mesh model of the plant by integrating a wheat 3D phytomer template database with variety resolution. Diverse 3D wheat plant models were subsequently virtually designed by iteratively modifying the leaf azimuth, based on the initial model. Using the 3D point cloud of the plant as the overall constraint and setting the minimum Chamfer distance between the point cloud and the mesh model as the optimization objective, we obtained the optimal 3D model as the reconstruction result of the plant through continuous iterative calculation. The method was validated using 27 winter wheat plants, with nine varieties and three replicates each. The R2 values between the measured data and the reconstructed plants were 0.80, 0.73, 0.90, and 0.69 for plant height, crown width, plant leaf area, and coverage, respectively. Additionally, the Normalized Root Mean Squared Errors (NRMSEs) were 0.10, 0.12, 0.08, and 0.17, respectively. The Mean Absolute Percentage Errors (MAPEs) used to investigate the vertical spatial distribution between the reconstructed 3D models and the point clouds of the plants ranged from 4.95% to 17.90%. These results demonstrate that the reconstructed 3D model exhibits satisfactory consistency with the measured data, including plant phenotype and vertical spatial distribution, and accurately reflects the characteristics of plant architecture and spatial distribution for the utilized wheat cultivars. This method provides technical support for research on wheat plant phenotyping and functional–structural analysis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

12 pages, 3243 KB  
Article
The Influence of Dental Virtualization, Restoration Types, and Placement Angles on the Trueness and Contact Space in 3D-Printed Crowns: A Comprehensive Exploration
by Tsung-Yueh Lu, Wei-Chun Lin, Tzu-Hsuan Yang, Citra Dewi Sahrir, Yung-Kang Shen and Sheng-Wei Feng
Dent. J. 2024, 12(1), 2; https://doi.org/10.3390/dj12010002 - 19 Dec 2023
Cited by 7 | Viewed by 2978
Abstract
The current digital dentistry workflow has streamlined dental restoration production, but the effectiveness of digital virtual design and 3D printing for restorations still needs evaluation. This study explores the impact of model-free digital design and 3D-printing placement angles on restorations, including single crowns [...] Read more.
The current digital dentistry workflow has streamlined dental restoration production, but the effectiveness of digital virtual design and 3D printing for restorations still needs evaluation. This study explores the impact of model-free digital design and 3D-printing placement angles on restorations, including single crowns and long bridges produced with and without casts. The restorations are 3D printed using resin at placement angles of 0°, 60°, and 90°. Each group of samples was replicated ten times, resulting in a total of 120 restorations. The Root Mean Square Error (RMSE) value was used to evaluate the surface integrity of the restoration. In addition, the contact space, edge gap, and occlusal space of restorations produced by different processes were recorded. The results indicate that there was no significant difference in the RMSE value of the crown group (p > 0.05). Changing the bridge restoration angle from 0° to 90° resulted in RMSE values increasing by 2.02 times (without casts) and 2.39 times (with casts). Furthermore, the marginal gaps in the crown group were all less than 60 μm, indicating good adaptation. In contrast, the bridge group showed a significant increase in marginal gaps at higher placement angles (p > 0.05). Based on the findings, virtual fabrication without casts does not compromise the accuracy of dental restorations. When the position of the long bridge exceeds 60 degrees, the error will increase. Therefore, designs without casts and parallel placement result in higher accuracy for dental restorations. Full article
(This article belongs to the Special Issue 3D Printing and Restorative Dentistry)
Show Figures

Graphical abstract

13 pages, 7705 KB  
Article
Effect of Ferrule Design on Stress Distribution of Maxillary Incisor Rehabilitated with Ceramic Crown and PEEK Post–Core Material: A 3D Finite Element Analysis
by Laura H. J. Alberto, Zhaoxu Zhang and Yuanyuan Duan
Ceramics 2023, 6(4), 2256-2268; https://doi.org/10.3390/ceramics6040137 - 20 Nov 2023
Cited by 5 | Viewed by 4992
Abstract
Endodontic-treated teeth with massive degrees of coronal tissue loss usually require rehabilitation with post-retained unitary crowns. This study aimed to evaluate the effect of ferrule design on the stress distribution of maxillary incisors rehabilitated with zirconia crowns using finite element analysis. Six three-dimensional [...] Read more.
Endodontic-treated teeth with massive degrees of coronal tissue loss usually require rehabilitation with post-retained unitary crowns. This study aimed to evaluate the effect of ferrule design on the stress distribution of maxillary incisors rehabilitated with zirconia crowns using finite element analysis. Six three-dimensional models were generated according to the presence and location of ferrule (No Ferrule, Buccal Ferrule, Lingual Ferrule, Buccolingual Ferrule, and Full Ferrule). The post–core materials tested were Nickel–chromium (NiCr) and Polyetheretherketone (PEEK). A static load of 100 N at a 45-degree angle on the Lingual surface, in a region 2 mm below the incisive ridge, was applied. Von Mises stresses and contour plots of all of the models were collected and analyzed. A lower and more uniform stress distribution was observed in the Full Ferrule model compared with the remaining models. A reduction of 72% in the von Mises peak stresses was observed in the root when comparing the Full Ferrule and No Ferrule models, both with PEEK post–core material. In conclusion, the presence of an incomplete ferrule is beneficial to the stress distribution in restored post-retained crowns. The use of PEEK for post–core structures reduces the stress concentration on the posts, reducing the predisposition to irreparable root fracture. Full article
(This article belongs to the Special Issue Ceramic Materials in Oral Applications)
Show Figures

Graphical abstract

19 pages, 2603 KB  
Article
Assessing Combining Abilities of Popcorn Inbred Lines for Agronomic and Root Traits under Contrasting Water Conditions: Towards Developing Drought-Tolerant Genotypes
by Rosimeire Barboza Bispo, Antônio Teixeira do Amaral Junior, Samuel Henrique Kamphorst, Valter Jário de Lima, Guilherme Ferreira Pena, Talles de Oliveira Santos, Jhean Torres Leite, Flávia Nicácio Viana, Divino Rosa dos Santos Júnior, Danielle Leal Lamêgo, Uéliton Alves de Oliveira, Rodrigo Moreira Ribeiro, Telma Nair Santana Pereira and Shahid Khan
Stresses 2023, 3(3), 586-604; https://doi.org/10.3390/stresses3030041 - 10 Aug 2023
Cited by 3 | Viewed by 2414
Abstract
Developing popcorn genotypes that are adapted to water-deficit conditions is crucial due to the significant impact of this abiotic stress on grain yield. This study aimed to assess the combining abilities of preselected popcorn lines for agronomic and root traits under well-watered and [...] Read more.
Developing popcorn genotypes that are adapted to water-deficit conditions is crucial due to the significant impact of this abiotic stress on grain yield. This study aimed to assess the combining abilities of preselected popcorn lines for agronomic and root traits under well-watered and water-stressed conditions. A circulating diallel analysis was conducted to investigate the effects of the general and specific combining abilities of 10 lines and their respective hybrids for various traits, including productivity, popping expansion, expanded popcorn volume, 100-grain weight, ear length, ear width, support root angle, crown root angle, number of support roots, number of crown roots, density of support roots, and density of crown roots. Non-additive action genes predominantly influenced the agronomic traits under both water conditions. In contrast, the root traits displayed a greater proportion of additive action gene expression under both conditions, despite being significantly affected by the environment. Lines L61, L71, and L76 demonstrated positive and high effects for general combining ability. The hybrids L65/L76, L71/L76, and L61/L75, in addition to exhibiting satisfactory effects of their specific combining ability, also displayed the most favorable phenotypic responses for most agronomic and root traits, making them ideal candidates for inclusion in popcorn breeding programs aiming to develop drought-tolerant genotypes. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

9 pages, 683 KB  
Article
Comparison of Root Parallelism in Extraction Cases Treated with Clear Aligners vs. Fixed Appliances
by Tianjin Tao, Hengyan Liang, Xinyu Yan, Qi Fan, Qingsong Jiang, Fan Jian, Hu Long and Wenli Lai
Appl. Sci. 2022, 12(22), 11756; https://doi.org/10.3390/app122211756 - 18 Nov 2022
Cited by 17 | Viewed by 6918
Abstract
In the process of orthodontic treatment, root parallelism is related to the relapse of extraction spaces, black triangles, and periodontal health. However, there are few studies on root parallelism in extraction cases with different types of appliances. The objective was to compare the [...] Read more.
In the process of orthodontic treatment, root parallelism is related to the relapse of extraction spaces, black triangles, and periodontal health. However, there are few studies on root parallelism in extraction cases with different types of appliances. The objective was to compare the root parallelism in extraction cases treated with clear aligners vs. those treated with fixed appliances by measuring the differences per extraction site and to access the root-movement control capacity of both orthodontic appliances. A retrospective study was conducted on cases in which the first premolars were extracted, treated by clear aligner appliance (“Invisalign” system, 28 patients) or fixed appliance (30 patients). The angulations of the tooth axis (canines, the second premolars, the first molars, and the second molars) were measured to analyze and compare the difference in root parallelism between the two orthodontic appliances. The percentage of root parallelism between the canine and second premolar in both groups had no significant difference. However, judging from the average angle difference value, the fixed appliance might have a greater range in root angulation adjustment than the aligner. In the angulation categories, the aligner mainly showed root apical divergence, while the fixed appliance mainly showed root apical convergence. The dental crown of the molars was mainly non-tipping in both groups, but it could be observed that the dental crown of the maxillary molars had a tendency toward mesial inclination. In conclusion, the same root parallelism and root inclination were obtained in tooth extraction cases whether treated by clear aligners or fixed appliances. This study provides clinicians with more information on the performance of clear aligners and fixed appliances. Full article
Show Figures

Figure 1

13 pages, 3347 KB  
Article
Bismuth Quantum Dot (Bi QD)/Polydimethylsiloxane (PDMS) Nanocomposites with Self-Cleaning and Antibacterial Activity for Dental Applications
by Yingzi Hu, Zhiliang Xu, Yi Hu, Lanping Hu, You Zi, Mengke Wang, Xingmei Feng and Weichun Huang
Nanomaterials 2022, 12(21), 3911; https://doi.org/10.3390/nano12213911 - 5 Nov 2022
Cited by 16 | Viewed by 3492
Abstract
In the oral microenvironment, bacteria colonies are easily aggregated on the tooth-restoration surface, in the manner of a biofilm, which usually consists of heterogeneous structures containing clusters of a variety of bacteria embedded in an extracellular matrix, leading to serious recurrent caries. In [...] Read more.
In the oral microenvironment, bacteria colonies are easily aggregated on the tooth-restoration surface, in the manner of a biofilm, which usually consists of heterogeneous structures containing clusters of a variety of bacteria embedded in an extracellular matrix, leading to serious recurrent caries. In this contribution, zero-dimensional (0D) bismuth (Bi) quantum dots (QDs) synthesized by a facile solvothermal method were directly employed to fabricate a Bi QD/polydimethylsiloxane (PDMS)-modified tooth by simple curing treatment. The result demonstrates that the as-fabricated Bi QD/PDMS-modified tooth at 37 °C for 120 min not only showed significantly improved hydrophobic performance with a water contact angle of 103° and 115° on the tooth root and tooth crown, respectively, compared to that (~20° on the tooth root, and ~5° on the tooth crown) of the pristine tooth, but also exhibited excellent antibacterial activity against S. mutans, superior biocompatibility, and biosafety. In addition, due to the highly photothermal effect of Bi QDs, the antibacterial activity of the as-fabricated Bi QD/PDMS-modified tooth could be further enhanced under illumination, even at a very low power density (12 mW cm−2). Due to the facile fabrication, excellent hydrophobicity, superior antibacterial activity, and biocompatibility and biosafety of the Bi QD/PDMS-modified tooth, it is envisioned that the Bi QD/PDMS-modified tooth with a fascinating self-cleaning and antibacterial performance can pave the way to new designs of versatile multifunctional nanocomposites to prevent secondary caries in the application of dental restoration. Full article
(This article belongs to the Special Issue Xene-Related Nanostructures for Versatile Applications)
Show Figures

Figure 1

13 pages, 1590 KB  
Article
Comparison of Wear of Interim Crowns in Accordance with the Build Angle of Digital Light Processing 3D Printing: A Preliminary In Vivo Study
by Hakjun Lee, Keunbada Son, Du-Hyeong Lee, So-Yeun Kim and Kyu-Bok Lee
Bioengineering 2022, 9(9), 417; https://doi.org/10.3390/bioengineering9090417 - 25 Aug 2022
Cited by 17 | Viewed by 3197
Abstract
The aim of this study is to evaluate the wear volume of interim crowns fabricated using digital light processing 3D printing according to the printing angle. A total of five patients undergoing the placement of a single crown on the mandibular molar were [...] Read more.
The aim of this study is to evaluate the wear volume of interim crowns fabricated using digital light processing 3D printing according to the printing angle. A total of five patients undergoing the placement of a single crown on the mandibular molar were included. Interim crowns were fabricated directly in the oral cavity using the conventional method. A digital light processing 3D printer was then used to fabricate crowns with build angles of 0, 45, and 90 degrees. Therefore, four fabricated interim crowns were randomly delivered to the patients, and each was used for one week. Before and after use, the intaglio surfaces of the interim crowns were scanned using a 3D scanner. The volume changes before and after use were measured, and changes in the height of the occlusal surface were evaluated using the root mean square value. Data normality was verified by statistical analysis, and the wear volume in each group was evaluated using a one-way analysis of variance and Tukey’s honestly significant difference test (α = 0.05). Compared with the RMS values of the conventional method (11.88 ± 2.69 µm) and the 3D-printing method at 0 degrees (12.14 ± 2.38 µm), the RMS values were significantly high at 90 degrees (16.46 ± 2.39 µm) (p < 0.05). Likewise, there was a significant difference in the change in volume between the groups (p = 0.002), with a significantly higher volume change value at 90 degrees (1.74 ± 0.41 mm3) than in the conventional method (0.70 ± 0.15 mm3) (p < 0.05). A printing angle of 90 degrees is not recommended when interim crowns are fabricated using digital light processing 3D printing. Full article
(This article belongs to the Special Issue Recent Advances in Biomaterials and Dental Disease)
Show Figures

Figure 1

12 pages, 2010 KB  
Article
Bark Inclusions in Canes of Southern Highbush Blueberry and Their Impact on Cane Union Strength and Association with Botryosphaeria Stem Blight
by Renee M. Holland, Chris J. Peterson, Philip F. Harmon, Phillip M. Brannen and Harald Scherm
Horticulturae 2022, 8(8), 733; https://doi.org/10.3390/horticulturae8080733 - 15 Aug 2022
Viewed by 2699
Abstract
Bark inclusions are an understudied structural defect in trees and shrubs. They consist of areas of bark on adjacent parts of stems or scaffolds, typically on the inner faces of a narrow fork, which become overgrown and internalized to occupy part of the [...] Read more.
Bark inclusions are an understudied structural defect in trees and shrubs. They consist of areas of bark on adjacent parts of stems or scaffolds, typically on the inner faces of a narrow fork, which become overgrown and internalized to occupy part of the wood between the stems. Here, bark inclusions are described for the first time to occur in cane unions at the crown of southern highbush blueberry (Vaccinium corymbosum interspecific hybrids) cultivars ‘Farthing’ and ‘Meadowlark’, both of which are characterized by a narrow, vase-shaped architecture at the base of the plant, leading to crowding of the canes. When affected canes were dissected at their bases, bark inclusions were visible internally as a line of compressed bark within the wood of adjoining canes, or as bark invaginations and fissures across part of or the entire cross-section of the cane. Externally, blueberry crowns with included bark were characterized by either an inward ridgeline of bark between canes of similar diameters emerging from the crown at a narrow angle from each other, or by the presence of girdling roots. Bark inclusions were observed in plants of all ages, from the nursery to mature production fields. The internal length of the bark inclusion correlated strongly with the external length of the inward stem bark ridgeline symptom as measured by destructive sampling in the field (r = 0.916, p < 0.0001, n = 20). When plants with and without bark inclusions were subjected to a winch test in the field, the probability of breakage for canes without included bark was significantly lower (p < 0.0002) than for those with included bark, and at the maximum applied force of 972.4 N, 95.2% of the canes with bark inclusions failed (i.e., broke at the crown), compared with only 52.6% for canes without included bark. In a survey across three fields, the number of bark inclusions per plant was significantly associated with an index of cane crowding (r = 0.286. p = 0.0267, n = 60), suggesting that plants with tight, crowded bases had more bark inclusions. In addition, there was a significant association (p < 0.0001) between the presence or length of bark inclusions and the intensity of Botryosphaeria stem blight in these fields. This study showed that bark inclusions occur commonly in certain southern highbush blueberry cultivars in the production conditions of Georgia and Florida, with negative implications for cane integrity and plant health. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

16 pages, 3612 KB  
Article
Constructal Optimizations of Line-to-Line Vascular Channels with Turbulent Convection Heat Transfer
by Daoguang Lin, Zhihui Xie, Gang Nan, Pan Jiang and Yanlin Ge
Entropy 2022, 24(7), 999; https://doi.org/10.3390/e24070999 - 19 Jul 2022
Cited by 1 | Viewed by 2227
Abstract
The multi-scale line-to-line vascular channels (LVCs) widely exist in nature because of their excellent transmission characteristics. In this paper, models of LVCs with turbulent convection heat transfer are established. Based on constructal theory and the entropy generation minimization principle, the constructal optimizations of [...] Read more.
The multi-scale line-to-line vascular channels (LVCs) widely exist in nature because of their excellent transmission characteristics. In this paper, models of LVCs with turbulent convection heat transfer are established. Based on constructal theory and the entropy generation minimization principle, the constructal optimizations of LVCs with any order are conducted by taking the angles at bifurcations as the optimization variables. The heat flux on the channel wall per unit length is fixed and uniform. The areas occupied by vasculature and the total volumes of channels are fixed. The analytical expressions of the optimal angles, dimensionless total entropy generation rate and entropy generation number (EGN) of LVCs with any order versus dimensionless mass flow rate are obtained, respectively. The results indicate that the dimensionless total entropy generation rate of LVCs with any order can be significantly decreased by optimizing the angles of LVCs, which is significantly more when the order of LVCs is higher. As the dimensionless mass flow rate increases, the optimal angles of LVCs with any order remain unchanged first, then the optimal angles at the entrance (root) increase, and the other optimal angles decrease continuously and finally tend to the respective stable values. The optimal angles of LVCs continue to increase from the entrance to the outlet (crown), i.e., the LVCs with a certain order gradually spread out from the root to the crown. The dimensionless total entropy generation rate and EGN of LVCs first decrease and then increase with the growth of the dimensionless mass flow rate. There is optimal dimensionless mass flow rate, making the dimensionless total entropy generation rate and the EGN reach their respective minimums. The results obtained herein can provide some new theoretical guidelines of thermal design and management for the practical applications of LVCs. Full article
(This article belongs to the Topic Heat Exchanger Design and Heat Pump Efficiency)
Show Figures

Figure 1

10 pages, 431 KB  
Article
Cone Beam Computerized Tomographic Analysis of Collum Angle of the Maxillary Central Incisors in Different Types of Malocclusion: Comparative Assessment in Saudi, Jordan and Egypt Subpopulation
by Rakhi Issrani, Namdeo Prabhu, Sunitha Siddanna, Sarah Hatab Alanazi, Mohammad Khursheed Alam, Manay Srinivas Munisekhar, May Othman Hamza, Reham Fawzi Dawood Shabanah and Rasha Saleh Ali Gadh
Diagnostics 2022, 12(6), 1506; https://doi.org/10.3390/diagnostics12061506 - 20 Jun 2022
Cited by 3 | Viewed by 2808
Abstract
Background: The collum angle (CA) is an extremely significant for patients who are undergoing orthodontic, dental implant restoration, prosthodontic and periodontic treatments. Aim and Objectives: To determine and compare the mean CA for maxillary central incisor in different types of malocclusion utilizing 3D [...] Read more.
Background: The collum angle (CA) is an extremely significant for patients who are undergoing orthodontic, dental implant restoration, prosthodontic and periodontic treatments. Aim and Objectives: To determine and compare the mean CA for maxillary central incisor in different types of malocclusion utilizing 3D Cone Beam Computerized Tomography (CBCT) images. The additional objectives were to determine and compare the mean CA for maxillary central incisor based upon the demographic characteristics among Saudi, Jordan and Egypt subpopulation and to test for significant differences in the CA of maxillary central incisor with different molar malocclusions. Methodology: A total of 400 CBCT images were included from the radiology archive at the College of Dentistry, Jouf University (Sakaka, Saudi Arabia). The CBCT images were divided into four groups based upon molar classifications. The selected records were used for the measurement of CA of maxillary central incisor using the measurement tool built into 3D:OnDemand software. Statistical analysis was done using independent t test and ANOVA to examine the differences between gender and races. Results: The mean CA for Class II div 2 exhibited significantly higher crown-root variation as compared other groups (p < 0.0001). Males sample showed greater value of CA for each group as compared to the females and this difference was statistically significant for all the groups other than for Class I (p < 0.05). The post hoc pairwise comparisons between the races showed statistically insignificant findings (p > 0.05). Significant difference was found on pairwise comparisons among different malocclusion groups other than for group Class I/Class II div 1 (p < 0.05). Conclusion: The CA of Class II div 2 group was the greatest as compared to other malocclusion groups. Males sample showed greater value of CA for each group as compared to the females and this difference was statistically significant for all the groups other than for Class I. Statistically insignificant difference was noted for the mean CA among different races whereas significant difference was found on pairwise comparisons among different malocclusion groups other than for group Class I/Class II div 1. Full article
(This article belongs to the Special Issue Advances in Orthodontic Diagnosis and Treatment)
Show Figures

Figure 1

15 pages, 4496 KB  
Article
Influence of Mean Leaf Angles and Irrigation Volumes on Water Capture, Leaching, and Growth of Tropical Tree Seedlings
by Richardson Barbosa Gomes da Silva, Mônica Moreno Gabira, Débora Zanoni do Prado, Gláucia Uesugi, Danilo Simões and Magali Ribeiro da Silva
Forests 2020, 11(11), 1198; https://doi.org/10.3390/f11111198 - 13 Nov 2020
Cited by 8 | Viewed by 3004
Abstract
Research Highlights: The mean leaf angle and crown projection area can be used as criteria for grouping tree seedling species in different irrigation zones in tree nurseries with overhead microsprinkler systems, preventing water and fertilizer waste, and increasing growth. Background and Objectives: [...] Read more.
Research Highlights: The mean leaf angle and crown projection area can be used as criteria for grouping tree seedling species in different irrigation zones in tree nurseries with overhead microsprinkler systems, preventing water and fertilizer waste, and increasing growth. Background and Objectives: There are important gaps in current functional knowledge about how plant architecture, especially the mean leaf angles of tree seedlings, affect water and nutrient solution capture in overhead microsprinkler systems. These gaps contribute to water and fertilizer waste in tree nurseries. This research aimed to ascertain how mean leaf angles affect irrigation water capture, leaching, and the growth of tree seedlings given different volumes of irrigation. Materials and Methods: Nine species of tree seedlings with different mean leaf angles were submitted to four irrigation volumes (8, 10, 12, and 14 mm) applied daily by overhead microsprinklers in a split-plot design completely randomized. The variables leaching fraction, height, stem diameter, shoot, root, and total dry mass, Dickson quality index, crown projection area, root system quality, and leachate electrical conductivity were evaluated. Results: For species with mean leaf angles of −54, 31, 38, 42, 55, 57, and 58°, the 8 mm irrigation volume was sufficient to produce greater growth and less leaching. For species with angles of −56 and −14°, the 14 mm irrigation volume was required to produce greater growth. Conclusions: The tree seedling species with positive mean leaf angles facilitate irrigation water and nutrient solution capture, allowing the application of lower irrigation volume. On the other hand, some tree seedling species with negative mean leaf angles hinder irrigation water and nutrient solution capture, requiring the application of higher irrigation volume. When the tree seedling species have a negative mean leaf angle, but the crown projection area is small, the difficulty of water and nutrient solution reaches directly the substrate is attenuated. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

Back to TopTop