Bark Inclusions in Canes of Southern Highbush Blueberry and Their Impact on Cane Union Strength and Association with Botryosphaeria Stem Blight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites
2.2. Characterization of Bark Inclusions
2.3. Correlation between External and Internal Assessment of Bark Inclusions
2.4. Effect of Bark Inclusions on Cane Strength
2.5. Associations between Bark Inclusions and Botryosphaeria Stem Blight
3. Results
3.1. Occurrence of Bark Inclusions
3.2. Correlation between External and Internal Assessment of Bark Inclusions
3.3. Effect of Bark Inclusions on Cane Strength
3.4. Association between Bark Inclusions and Botryosphaeria Stem Blight
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyrene, P.M. Southern Highbush Blueberry Plant Named ‘Farthing’. U.S. Patent PP19,341, 14 October 2008. [Google Scholar]
- Lyrene, P.M. MeadowlarkTM ‘FL01-173’. U.S. Patent PP21,553, 7 December 2010. [Google Scholar]
- Tallent, W.H.; Sharp, W.R. Notice of Release of Legacy Highbush Blueberry. 1993. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/genetic-improvement-for-fruits-vegetables-laboratory/docs/legacy/ (accessed on 8 October 2020).
- Mehra, L.K.; MacLean, D.D.; Savelle, A.T.; Scherm, H. Postharvest disease development on southern highbush blueberry fruit in relation to berry flesh type and harvest method. Plant Dis. 2013, 97, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, J.W.; Finn, C.E. Breeding highbush blueberry cultivars adapted to machine harvest for the fresh market. HortTechnology 2014, 24, 290–294. [Google Scholar] [CrossRef]
- Slater, D. Current opinion within the UK arboricultural industry on the management of bark-included junctions in trees. Aboric. J. 2019, 41, 10–34. [Google Scholar] [CrossRef]
- Slater, D.; Ennos, R. The level of occlusion of included bark affects the strength of bifurcations in hazel (Corylus avellana L.). Arboric. Urban For. 2015, 41, 194–207. [Google Scholar] [CrossRef]
- Bester, W.; Crous, P.W.; Fourie, P.H. Evaluation of fungicides as potential grapevine pruning wound protectants against Botryosphaeria species. Australas. Plant Pathol. 2007, 36, 73–77. [Google Scholar] [CrossRef]
- Ferreira, J.H.S.; Matthee, F.N.; Thomas, A.C. Fungi associated with dieback and pruning wounds of grapevines in South Africa. S. Afr. J. Enol. Vitic. 1989, 10, 62–66. [Google Scholar] [CrossRef]
- Mainland, C.M.; Kushman, L.J.; Ballinger, W.E. The effect of mechanical harvesting on yield, quality of fruit and bush damage of highbush blueberry. J. Am. Soc. Hortic. Sci. 1975, 100, 129–134. [Google Scholar]
- Sosnowski, M.R.; Mundy, D.C. Pruning wound protection strategies for simultaneous control of Eutypa and Botryosphaeria Dieback in New Zealand. Plant Dis. 2019, 103, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Urbez-Torres, J.R. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 2011, 50, S5–S45. [Google Scholar]
- Smiley, E.T. Does included bark reduce the strength of co-dominant stems? J. Arboric. 2003, 29, 104–106. [Google Scholar]
- Williamson, J.G.; Phillips, D.A.; Lyrene, P.M.; Munoz, P.R. Southern Highbush Blueberry Cultivars from the University of Florida; Publication HS1245, UF/IFAS Extension; University of Florida: Gainesville, FL, USA, 2019. [Google Scholar]
- Peterson, C.J.; Claasen, V. An evaluation of the stability of Quercus lobata and Populus fremontii on river levees assessed using static winching tests. Forestry 2013, 86, 201–209. [Google Scholar] [CrossRef]
- Scherm, H.; Ojiambo, P.S. Applications of survival analysis in botanical epidemiology. Phytopathology 2004, 94, 1022–1026. [Google Scholar] [CrossRef]
- Slippers, B.; Crous, P.W.; Jami, F.; Groenewald, J.Z.; Wingfield, M.J. Diversity in the Botryosphaeriales: Looking back, looking forward. Fungal Biol. 2017, 121, 307–321. [Google Scholar] [CrossRef]
- Wright, A.F. Fungi in the Botryosphaeriaceae Causing Stem Blight on Vaccinium spp. in the Southeastern United States and Stem Blight Disease Management on Southern Highbush Blueberries in Florida. Ph.D. Dissertation, University of Florida, Gainesville, FL, USA, 2011. [Google Scholar]
- Rodriguez-Galvez, E.; Hilario, S.; Lopes, A.; Alves, A. Diversity and pathogenicity of Lasiodiplodia and Neopestalotiopsis species associated with stem blight and dieback of blueberry plants in Peru. Eur. J. Plant Pathol. 2020, 157, 89–102. [Google Scholar] [CrossRef]
- Prasannath, K.; Shivas, R.G.; Galea, V.J.; Akinsanmi, O.A. Neopestalotiopsis species associated with flower diseases of Macadamia integrifolia in Australia. J. Fungi 2021, 7, 771. [Google Scholar] [CrossRef]
- Hao, Y.; Aluthmuhandiram, J.V.S.; Chethana, K.W.T.; Manawasinghe, I.S.; Li, X.; Liu, M.; Hyde, K.D.; Phillips, A.J.L.; Zhang, W. Nigrospora species associated with various hosts from Shandong peninsula, China. Mycobiology 2020, 48, 169–183. [Google Scholar] [CrossRef]
- Slater, D.; Bradley, R.S.; Withers, P.J.; Ennos, A.R. The anatomy and grain pattern in forks of hazel (Corylus avellana) and other tree species. Trees 2014, 28, 1437–1448. [Google Scholar] [CrossRef]
- Richter, C. Wood characteristics inherent in a tree’s natural growth. In Wood Characteristics; Richter, C., Ed.; Springer: Cham, Switzerland, 2015; pp. 35–124. [Google Scholar]
- Harris, J.R.; Day, S.D. Planting depth at onset of container production and subsequent root ball remediation at transplanting affects pin oak and littleleaf linden. HortScience 2010, 45, 1793–1797. [Google Scholar] [CrossRef]
- Day, S.D.; Watson, G.; Wiseman, P.E.; Harris, J.R. Causes and consequences of deep structural roots in urban trees: From nursery production to landscape establishment. Arboric. Urban For. 2009, 35, 182–191. [Google Scholar] [CrossRef]
- Eck, P. Chapter 8—Cultural Practices. In Blueberry Science; Rutgers University Press: New Brunswick, NJ, USA, 1931; p. 141. [Google Scholar]
- Hrycan, W. How to: Plant a root-bound tree or shrub. Gardener 2020, 26, 22–23. [Google Scholar]
- De Silva, A.; Patterson, K.; Rothrock, C.; McNew, R. Phytophthora root rot of blueberry increases with frequency of flooding. HortScience 1999, 34, 693–695. [Google Scholar] [CrossRef]
- Vargas, O.L.; Bryla, D.R.; Weiland, J.E.; Strik, B.C.; Sun, L. Irrigation and fertigation with drip and alternative micro irrigation systems in northern highbush blueberry. HortScience 2015, 50, 897–903. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef]
- Duryea, M.; Kampf, E. Wind and Trees: Lessons Learned from Hurricanes; Publication FOR-118; University of Florida: Gainesville, FL, USA, 2007. [Google Scholar]
- Reighard, G.L.; Parker, M.L.; Krewer, G.W.; Beckman, T.G.; Wood, B.W.; Smith, J.E.; Whiddon, J. Impact of hurricanes on peach and pecan orchards in the southeastern United States. HortScience 2001, 36, 250–252. [Google Scholar] [CrossRef]
- Barney, D. Eight ways to minimize winter injury. J. Am. Rhododendr. Soc. 1991, 45. Available online: https://scholar.lib.vt.edu/ejournals/JARS/v45n2/v45n2-barney.html (accessed on 4 August 2022).
- Wright, A.F.; Harmon, P.F. Identification of species in the Botryosphaeriaceae family causing stem blight on southern highbush blueberry in Florida. Plant Dis. 2010, 94, 966–971. [Google Scholar] [CrossRef]
Study No. | Activity | Location and Year | Number of Fields | Cultivar |
---|---|---|---|---|
1 | Initial characterization of bark inclusions | Gainesville, FL, USA (2017) | 3 | ‘Farthing’, ‘Meadowlark’ |
2 | External versus internal assessment of bark inclusions | Alma, GA, USA (2017) | 1 | ‘Farthing’ |
3 | Stem blight survey in relation to bark inclusions | Homerville, GA, USA (2018) | 3 | ‘Farthing’ |
4 | Examination of bark inclusions in a blueberry nursery | Alma, GA, USA (2019) | 1 | ‘Farthing’ |
5 | Effect of bark inclusion on cane strength | Alma, GA, USA (2020) | 2 | ‘Farthing’ |
Number of Bark Inclusions/Plant | Length of Bark Inclusions/Plant (cm) | Stem Blight Severity (%) | Cane Crowding Index (cm−2) a | |
---|---|---|---|---|
Number of bark inclusions/plant | 1.000 | 0.886 (<0.0001) | 0.488 (<0.0001) | 0.286 (0.026) |
Length of bark inclusions/plant (cm) | 1.000 | 0.515 (<0.0001) | 0.209 (0.107) | |
Stem blight severity (%) | 1.000 | 0.103 (0.433) | ||
Cane crowding index (cm−2) a | 1.000 |
Site | Isolate | Best Matches (Percent Identity) a | Query Coverage (%) a |
---|---|---|---|
1 | 1 | Neopestalotiopsis clavispora KR052094.1 (100), N. rosae (99.8), Pestalotiopsis microspora (99.8) | 100 |
1 | 2 | Lasiodiplodia mediterranea KU578251.1 (100), L. viticola (100), L. theobromae (99.7) | 100 |
1 | 4 | Neofusicoccum parvum KU997486.1 (100), N. kwambonambiense (99.8) | 96 |
1 | 8 | Neopestalotiopsis clavispora MT240541.1 (100), Pestalotiopsis clavispora (100), N. rosae (99.8) | 100 |
1 | 16 | Neofusicoccum parvum MW532988.1 (100), N. kwambonambiense (100), N. umdonicola (99.8) | 99 |
1 | 18 | Neofusicoccum parvum MH779823.1 (100), N. kwambonambiense (99.8), N. umdonicola (99.8) | 100 |
2 | 3 | Neopestalotiopsis clavispora MH429984.1 (100), Pestalotiopsis microspora (100), P. clavispora (100) | 100 |
2 | 6 | Pestalotiopsis sp. KM520039.1 (100), P. microspora (99.8), Neopestalotiopsis clavispora (99.8) | 100 |
2 | 11 | Pestalotiopsis microspora KM438014.1 (100), P. clavispora (100), Neopestalotiopsis saprophytica (99.8), N. clavispora (99.8) | 100 |
2 | 17 | Pestalotiopsis sp. JN418796.1 (100), P. microspora (99.8), Neopestalotiopsis clavispora (99.6) | 100 |
2 | 20 | Lasiodiplodia theobromae MT302844.1 (100), L. citricola (100) | 100 |
2 | 22 | Nigrospora sphaerica KJ767121.1 (100), N. oryzae (99.4) | 99 |
3 | 5 | Neofusicoccum parvum MF449509.1 (100), N. kwambonambiense (100), N. umdonicola (100), N. ribis (100) | 100 |
3 | 13 | Neofusicoccum parvum KX648507.1 (100), Lasiodiplodia theobromae (99.6) | 100 |
3 | 14 | Neofusicoccum parvum JQ647908.1 (100), N. kwambonambiense (100), N. umdonicola (99.8) | 99 |
3 | 15 | Pestalotiopsis microspora MT071251.1 (100), Neopestalotiopsis clavispora (100) | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland, R.M.; Peterson, C.J.; Harmon, P.F.; Brannen, P.M.; Scherm, H. Bark Inclusions in Canes of Southern Highbush Blueberry and Their Impact on Cane Union Strength and Association with Botryosphaeria Stem Blight. Horticulturae 2022, 8, 733. https://doi.org/10.3390/horticulturae8080733
Holland RM, Peterson CJ, Harmon PF, Brannen PM, Scherm H. Bark Inclusions in Canes of Southern Highbush Blueberry and Their Impact on Cane Union Strength and Association with Botryosphaeria Stem Blight. Horticulturae. 2022; 8(8):733. https://doi.org/10.3390/horticulturae8080733
Chicago/Turabian StyleHolland, Renee M., Chris J. Peterson, Philip F. Harmon, Phillip M. Brannen, and Harald Scherm. 2022. "Bark Inclusions in Canes of Southern Highbush Blueberry and Their Impact on Cane Union Strength and Association with Botryosphaeria Stem Blight" Horticulturae 8, no. 8: 733. https://doi.org/10.3390/horticulturae8080733
APA StyleHolland, R. M., Peterson, C. J., Harmon, P. F., Brannen, P. M., & Scherm, H. (2022). Bark Inclusions in Canes of Southern Highbush Blueberry and Their Impact on Cane Union Strength and Association with Botryosphaeria Stem Blight. Horticulturae, 8(8), 733. https://doi.org/10.3390/horticulturae8080733