Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cvek, M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha: A retrospective clinical study. Endod. Dent. Traumatol. 1992, 8, 45–55. [Google Scholar] [CrossRef]
- Murray, P.E.; Garcia-Godoy, F.; Hargreaves, K.M. Regenerative endodontics: A review of current status and a call for action. J. Endod. 2007, 33, 377–390. [Google Scholar] [CrossRef]
- AAE. AAE Clinical Considerations for a Regenerative Procedure Revised 5/18/2021.pdf. 2021. Available online: https://www.aae.org/specialty/wp-content/uploads/sites/2/2021/08/ClinicalConsiderationsApprovedByREC062921.pdf (accessed on 13 September 2025).
- Balkaya, H.; Topçuoğlu, H.S.; Demirbuga, S.; Kafdağ, Ö.; Topçuoğlu, G. Effect of different coronal restorations on the fracture resistance of teeth with simulated regenerative endodontic treatment: An in vitro study. Aust. Endod. J. 2022, 48, 331–337. [Google Scholar] [CrossRef]
- Belli, S.; Erdemir, A.; Yildirim, C. Reinforcement effect of polyethylene fibre in root-filled teeth: Comparison of two restoration techniques. Int. Endod. J. 2006, 39, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Meng, X.; Feng, R.; Hong, S.; Hu, C.; Yang, M.; Jiang, Y. Stress Distribution and Fracture Resistance of repairing Cracked Tooth with Fiber-reinforced Composites and Onlay. Aust. Endod. J. 2022, 48, 458–464. [Google Scholar] [CrossRef]
- Dietschi, D.; Duc, O.; Krejci, I.; Sadan, A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008, 39, 117–129. [Google Scholar]
- Vitale, M.C.; Caprioglio, C.; Martignone, A.; Marchesi, U.; Botticelli, A.R. Combined technique with polyethylene fibers and composite resins in restoration of traumatized anterior teeth. Dent. Traumatol. 2004, 20, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Dotto, L.; Girotto, L.P.S.; Sousa, Y.T.C.S.; Pereira, G.K.R.; Bacchi, A.; Sarkis-Onofre, R. Factors influencing the clinical performance of the restoration of endodontically treated teeth: An assessment of systematic reviews of clinical studies. J. Prosthet. Dent. 2024, 131, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Biacchi, G.R.; Mello, B.; Basting, R.T. The endocrown: An alternative approach for restoring extensively damaged molars. J. Esthet. Restor. Dent. 2013, 25, 383–390. [Google Scholar] [CrossRef]
- Fehrenbach, J.; de Soares, J.L.S.; Foly, J.C.S.D.N.; Miotti, L.L.; Münchow, E.A. Mechanical performance of endocrown restorations in anterior teeth: A systematic review and network meta-analysis. Dent. Mater. 2025, 41, 28–41. [Google Scholar] [CrossRef]
- Sedrez-Porto, J.A.; de Oliveira da Rosa, W.L.; da Silva, A.F.; Münchow, E.A.; Pereira-Cenci, T. Endocrown restorations: A systematic review and meta-analysis. J. Dent. 2016, 52, 8–14. [Google Scholar] [CrossRef]
- Qasim, S.S.B.; Zafar, M.S.; Niazi, F.H.; Alshahwan, M.; Omar, H.; Daood, U. Functionally graded biomimetic biomaterials in dentistry: An evidence-based update. J. Biomater. Sci. Polym. Ed. 2020, 31, 1144–1162. [Google Scholar] [CrossRef]
- Costa, A.; Xavier, T.; Noritomi, P.; Saavedra, G.; Borges, A. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars. Oper. Dent. 2014, 39, E160–E170. [Google Scholar] [CrossRef]
- Ruse, N.; Sadoun, M. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Eskitaşçioğlu, M.; Küçük, O.; Eskitaşçioğlu, G.; Eraslan, O.; Belli, S. The Effect of Different Materials and Techniques on Stress Distribution in CAD/CAM Endocrowns. Strength. Mater. 2020, 52, 812–819. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L. A finite element analysis of the human temporomandibular joint. J. Biomech. Eng. 1994, 116, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Peutzfeldt, A.; Sahafi, A. Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J. Prosthet. Dent. 2005, 94, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Brito-Júnior, M.; Pereira, R.D.; Veríssimo, C.; Soares, C.J.; Faria-E-Silva, A.L.; Camilo, C.C.; Sousa-Neto, M.D. Fracture resistance and stress distribution of simulated immature teeth after apexification with mineral trioxide aggregate. Int. Endod. J. 2014, 47, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Bucchi, C.; Marcé-Nogué, J.; Galler, K.M.; Widbiller, M. Biomechanical performance of an immature maxillary central incisor after revitalization: A finite element analysis. Int. Endod. J. 2019, 52, 1508–1518. [Google Scholar] [CrossRef]
- Anthrayose, P.; Nawal, R.R.; Yadav, S.; Talwar, S.; Yadav, S. Effect of revascularisation and apexification procedures on biomechanical behaviour of immature maxillary central incisor teeth: A three-dimensional finite element analysis study. Clin. Oral. Investig. 2021, 25, 6671–6679. [Google Scholar] [CrossRef] [PubMed]
- Belli, S.; Eraslan, O.; Eskitaşcıoğlu, G. Effect of Different Treatment Options on Biomechanics of Immature Teeth: A Finite Element Stress Analysis Study. J. Endod. 2018, 44, 475–479. [Google Scholar] [CrossRef]
- Demirel, A.; Bezgin, T.; Sarı, Ş. Effects of Root Maturation and Thickness Variation in Coronal Mineral Trioxide Aggregate Plugs Under Traumatic Load on Stress Distribution in Regenerative Endodontic Procedures: A 3-dimensional Finite Element Analysis Study. J. Endod. 2021, 47, 492–499. [Google Scholar] [CrossRef]
- Eram, A.; Zuber, M.; Keni, L.G.; Kalburgi, S.; Naik, R.; Bhandary, S.; Amin, S.; Badruddin, I.A. Finite element analysis of immature teeth filled with MTA, Biodentine and Bioaggregate. Comput. Methods Programs Biomed. 2020, 190, 105356. [Google Scholar] [CrossRef]
- Jorquera, G.; Mahn, E.; Sanchez, J.P.; Berrera, S.; Prado, M.J.; Stange, V.B. Hybrid ceramics in dentistry: A literature review. J. Clin. Res. Dent. 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Nelson, S.J.; Ash, M.M. Wheeler’s Dental Anatomy, Physiology and Occlusion, 10th ed.Elsevier Saunders: St. Louis, Missouri, USA, 1992. [Google Scholar]
- Tada, S.; Stegaroiu, R.; Kitamura, E.; Miyakawa, O.; Kusakari, H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: A 3-dimensional finite element analysis. Int. J. Oral. Maxillofac. Implant. 2003, 18, 357–368. [Google Scholar]
- Desai, S.; Chandler, N. The restoration of permanent immature anterior teeth, root filled using MTA: A review. J. Dent. 2009, 37, 652–657. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Martinoff, J.T. Intracoronal reinforcement and coronal coverage: A study of endodontically treated teeth. J. Prosthet. Dent. 1984, 51, 780–784. [Google Scholar] [CrossRef]
- Cramer, N.; Stansbury, J.; Bowman, C. Recent advances and developments in composite dental restorative materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Eskitascioglu, G.; Belli, S.; Kalkan, M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis). J. Endod. 2002, 28, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Sun, J.; Jiang, L.; Wu, Y.; He, J.; Ruan, W.; Yan, W. Influence of margin design and restorative material on the stress distribution of endocrowns: A 3D finite element analysis. BMC Oral. Health 2022, 22, 30. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Deng, X.; Wang, X. A novel computer-aided method to fabricate a custom one-piece glass fiber dowel-and-core based on digitized impression and crown preparation data. J. Prosthodont. 2014, 23, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Gulec, L.; Ulusoy, N. Effect of endocrown restorations with different CAD/CAM materials: 3D finite element and weibull analyses. BioMed Res. Int. 2017, 2017, 5638683. [Google Scholar] [CrossRef] [PubMed]
- Vervack, V.; Johansson, C.; De Coster, P.; Fokkinga, W.; Papia, E.; Vandeweghe, S. The fracture strength and the failure mode of lithium disilicate or resin nano ceramics as a crown, overlay, or endocrown restoration on endodontically treated teeth. J. Esthet. Restor. Dent. 2024, 36, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Shams, A.; Elsherbini, M.; Elsherbiny, A.A.; Özcan, M.; Sakrana, A.A. Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J. Mech. Behav. Biomed. Mater. 2022, 126, 105031. [Google Scholar] [CrossRef]
- Lin, J.; Zeng, Q.; Wei, X.; Zhao, W.; Cui, M.; Gu, J.; Lu, J.; Yang, M.; Ling, J. Regenerative Endodontics Versus Apexification in Immature Permanent Teeth with Apical Periodontitis: A Prospective Randomized Controlled Study. J. Endod. 2017, 43, 1821–1827. [Google Scholar] [CrossRef]
- Iosif, L.; Dimitriu, B.; Niţoi, D.F.; Amza, O. Endodontic Dentistry: Analysis of Dentinal Stress and Strain Development during Shaping of Curved Root Canals. Healthcare 2023, 11, 2918. [Google Scholar] [CrossRef]
- Ural, Ç.; Çağlayan, E. A 3-dimensional finite element and in vitro analysis of endocrown restorations fabricated with different preparation designs and various restorative materials. J. Prosthet. Dent. 2021, 126, 586.e1–586.e9. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, H.; Meng, Q.; Gong, Q.; Tong, Z. The synergetic effect of pulp chamber extension depth and occlusal thickness on stress distribution of molar endocrowns: A 3-dimensional finite element analysis. J. Mater. Sci. Mater. Med. 2022, 33, 56. [Google Scholar] [CrossRef]
- Huang, Y.; Fokkinga, W.A.; Zhang, Q.; Creugers, N.H.; Jiang, Q. Biomechanical properties of different endocrown designs on endodontically treated teeth. J. Mech. Behav. Biomed. Mater. 2023, 140, 105691. [Google Scholar] [CrossRef]
- Belli, S.; Eraslan, O.; Eskitascioglu, G. Effect of Root Filling on Stress Distribution in Premolars with Endodontic-Periodontal Lesion: A Finite Elemental Analysis Study. J. Endod. 2016, 42, 150–155. [Google Scholar] [CrossRef] [PubMed]
Model No | Nodes | Elements | |
---|---|---|---|
Intact immature tooth | Model 1 | 233,311 | 162,214 |
Coronal composite restoration | Model 2 | 232,196 | 156,705 |
Coronal composite restoration with fiber reinforcement | Model 3 | 232,202 | 156,712 |
Hybrid ceramic endocrown | Model 4 | 232,945 | 157,257 |
LiSi endocrown | Model 5 | 232,945 | 157,257 |
Endocore and ceramic crown | Model 6 | 235,127 | 159,112 |
Materials/Structure | Elastic Modulus E; MPa | Poisson’s Ratio |
---|---|---|
Enamel | 84,100 | 0.33 |
Dentin | 18,600 | 0.31 |
Pulp Tissue | 3 | 0.45 |
Periodontal ligament | 0.07 | 0.45 |
Composite Resin | 16,400 | 0.28 |
Gutta-Percha | 140 | 0.45 |
Cortical Bone | 13,700 | 0.3 |
Trabecular Bone | 1370 | 0.3 |
Mta | 11,760 | 0.314 |
Ribbond + Composite | 23,600 | 0.32 |
Vita Enamic | 30,000 | 0.23 |
IPS e-max ceramic | 95,000 | 0.24 |
Enamel | Dentin | Coronal Restoration | Core Structure | MTA | Cortical Bone | Spongy Bone | |
---|---|---|---|---|---|---|---|
Sound Tooth | 2.606 | 1.322 | 0.904 | 0.692 | |||
Composite Resin | 4.130 | 3.891 | 2.330 | 0.412 | 2.151 | 0.995 | |
Fibre-Reinforced Composite | 4.577 | 3.841 | 2.686 | 0.951 (Fibre-Reinf. Core) | 0.403 | 1.190 | 0.997 |
Hybrid Ceramic Endocrown | 3.735 | 1.939 | 3.246 | 0.474 | 1.155 | 0.935 | |
LiSi Ceramic Endocrown | 3.675 | 1.763 | 3.300 | 0.404 | 1.105 | 0.909 | |
Endocore and Ceramic Crown | 3.621 | 1.578 | 3.478 | 1.475 (Endocore) | 0.401 | 1.102 | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eraslan, Ö.; Kolcu, M.İ.B.; Eraslan, O.; Belli, S. Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study. Biomimetics 2025, 10, 674. https://doi.org/10.3390/biomimetics10100674
Eraslan Ö, Kolcu MİB, Eraslan O, Belli S. Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study. Biomimetics. 2025; 10(10):674. https://doi.org/10.3390/biomimetics10100674
Chicago/Turabian StyleEraslan, Öznur, Mukadder İnci Başer Kolcu, Oğuz Eraslan, and Sema Belli. 2025. "Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study" Biomimetics 10, no. 10: 674. https://doi.org/10.3390/biomimetics10100674
APA StyleEraslan, Ö., Kolcu, M. İ. B., Eraslan, O., & Belli, S. (2025). Stress Distribution in Immature Incisors with Regenerative Endodontic Treatment: Which Coronal Restoration Performs Best? An FEA Study. Biomimetics, 10(10), 674. https://doi.org/10.3390/biomimetics10100674