Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (703)

Search Parameters:
Keywords = crosslinked polymer networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 254 KiB  
Editorial
Novel Polymer Gels: Synthesis, Properties, and Applications
by Amin Babaei-Ghazvini
Gels 2025, 11(8), 598; https://doi.org/10.3390/gels11080598 - 1 Aug 2025
Viewed by 131
Abstract
Polymer gels are a versatile class of soft, semi-solid materials characterized by a three-dimensional cross-linked network that can absorb significant amounts of solvent [...] Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
20 pages, 2027 KiB  
Article
Metal-Ion-Free Preparation of κ-Carrageenan/Cellulose Hydrogel Beads Using an Ionic Liquid Mixture for Effective Cationic Dye Removal
by Dojin Kim, Dong Han Kim, Jeong Eun Cha, Saerom Park and Sang Hyun Lee
Gels 2025, 11(8), 596; https://doi.org/10.3390/gels11080596 - 1 Aug 2025
Viewed by 150
Abstract
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for [...] Read more.
A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for metal-ion crosslinkers, which typically neutralize anionic sulfate groups in κ-carrageenan, thereby preserving a high density of accessible binding sites. The resulting beads formed robust interpenetrating polymer networks. The initial swelling ratio reached up to 28.3 g/g, and even after drying, the adsorption capacity remained over 50% of the original. The maximum adsorption capacity for crystal violet was 241 mg/g, increasing proportionally with κ-carrageenan content due to the higher surface concentration of anionic sulfate groups. Kinetic and isotherm analyses revealed pseudo-second-order and Langmuir-type monolayer adsorption, respectively, while thermodynamic parameters indicated that the process was spontaneous and exothermic. The beads retained structural integrity and adsorption performance across pH 3–9 and maintained over 90% of their capacity after five reuse cycles. These findings demonstrate that κ-carrageenan/cellulose hydrogel beads prepared via a metal-ion-free strategy offer a sustainable and effective platform for cationic dye removal from wastewater, with potential for heavy metal ion adsorption. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

12 pages, 4279 KiB  
Article
Dynamic Ester-Linked Vitrimers for Reprocessable and Recyclable Solid Electrolytes
by Xiaojuan Shi, Hui Zhang and Hongjiu Hu
Polymers 2025, 17(14), 1991; https://doi.org/10.3390/polym17141991 - 21 Jul 2025
Viewed by 320
Abstract
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer [...] Read more.
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer electrolyte based on a dynamic ester bond network, synthesized from commercially available materials. Polyethylene glycol diglycidyl ether (PEGDE) and glutaric anhydride (GA) were cross-linked and cured in the presence of benzyl dimethylamine (BDMA), forming an ester-rich polymer backbone. Subsequently, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was introduced as a transesterification catalyst to facilitate network rearrangement. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated to establish efficient ion transport pathways. By tuning the cross-linking density and catalyst ratio, the electrolyte achieved an ionic conductivity of 1.89 × 10−5 S/cm at room temperature along with excellent reprocessability. Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Graphical abstract

11 pages, 2537 KiB  
Article
Hydrosilylation vs. Piers–Rubinsztajn: Synthetic Routes to Chemically Cross-Linked Hybrid Phosphazene-Siloxane 3D-Structures
by Andrey S. Esin, Anna I. Chernysheva, Ekaterina A. Yurasova, Ekaterina A. Karpova, Vyacheslav V. Shutov, Igor S. Sirotin, Mikhail A. Soldatov, Mikhail V. Gorlov and Oleg A. Raitman
Polymers 2025, 17(14), 1967; https://doi.org/10.3390/polym17141967 - 17 Jul 2025
Viewed by 335
Abstract
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn [...] Read more.
Exploration of new ways for the direct preparation of cross-linked structures is a significant problem in terms of materials for biomedical applications, lithium batteries electrolytes, toughening of thermosets (epoxy, benzoxazine, etc.) with interpenetrating polymer network, etc. The possibility to utilize hydrosilylation and Piers–Rubinsztajn reactions to obtain cross-linked model phosphazene compounds containing eugenoxy and guaiacoxy groups has been studied. It was shown that Piers–Rubinsztajn reaction cannot be used to prepare phosphazene-based tailored polymer matrix due to the catalyst deactivation by nitrogen atoms of main chain units. Utilizing the hydrosilylation reaction, a series of cross-linked materials were obtained, and their properties were studied by NMR spectroscopy, FTIR, DSC, and TGA. Rheological characterizations of the prepared tailored matrices were conducted. This work showed a perspective of using eugenoxy functional groups for the preparation of three-dimensional hybrid phosphazene/siloxane-based materials for various applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 2695 KiB  
Article
Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
by Pei-Wen Long, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin and Jing-Kun Yan
Foods 2025, 14(14), 2484; https://doi.org/10.3390/foods14142484 - 16 Jul 2025
Viewed by 235
Abstract
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), [...] Read more.
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), gel strength (7.01–240.51% enhancement), textural properties, viscoelasticity, and thermal stability. The incorporation of CUR facilitated the unfolding and cross-linking of SPI molecules, leading to enhanced network formation. Notably, SPI composite gels containing CUR with an ordered triple-helix bundled structure exhibited superior gelling performance compared to other helical conformations, characterized by a more compact and uniform microstructure. This improvement was attributed to stronger hydrogen bonding interactions between the triple-helix CUR and SPI molecules. Furthermore, the entanglement of triple-helix CUR with SPI promoted the formation of a denser and more homogeneous interpenetrating polymer network. These findings indicate that triple-helix CUR is highly effective in optimizing the gelling characteristics of heat-induced SPI gels. This study provides new insights into the structure–function relationship of CUR in SPI-based gel systems, offering potential strategies for designing high-performance protein–polysaccharide composite gels. The findings establish a theoretical foundation for applications in the food industry. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

14 pages, 1518 KiB  
Article
Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes
by Nhat Hong Nguyen, Chih-Feng Huang and Tongsai Jamnongkan
Polymers 2025, 17(14), 1930; https://doi.org/10.3390/polym17141930 - 13 Jul 2025
Viewed by 408
Abstract
Anion exchange membranes (AEMs) are vital for electrochemical energy devices such as alkaline fuel cells and water electrolyzers, enabling the use of non-precious metal catalysts despite challenges from alkaline degradation. Hyperbranched polymers (hbPs) with their globular structure, high functional group density, and simple [...] Read more.
Anion exchange membranes (AEMs) are vital for electrochemical energy devices such as alkaline fuel cells and water electrolyzers, enabling the use of non-precious metal catalysts despite challenges from alkaline degradation. Hyperbranched polymers (hbPs) with their globular structure, high functional group density, and simple synthesis, offer a promising platform for enhancing transport and stability. In this study, multifunctional hbPs were synthesized from 4-vinylbenzyl chloride (VBC) and 2-hydroxyethyl methacrylate (HEMA) via atom transfer radical self-condensing vinyl polymerization (ATR-SCVP) and crosslinked into polyurethane-based AEMs. Characterization confirmed successful copolymerization and crosslinking, with excellent alkaline stability. Membranes crosslinked with higher molecular weight (MW) and VBC-richer hbPs (e.g., OH-hbP1-PU) exhibited high water uptake (75%) but low ion-exchange capacity (1.54 mmol/g) and conductivity (186 µS/cm), attributed to steric hindrance and insufficient ionic network connectivity. In contrast, OH-hbP2-PU exhibited optimal properties, with the highest OH conductivity (338 µS/cm) and IEC (2.64 mmol/g), highlighting a balanced structure for efficient ion transport. This work offers a tunable strategy for high-performance AEM development through tailored hbP architecture. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Graphical abstract

26 pages, 3391 KiB  
Article
Poly(hydromethylsiloxane) Networks Functionalized by N-allylaniline
by Anita Wysopal, Maria Owińska, Ewa Stodolak-Zych, Mariusz Gackowski and Magdalena Hasik
Int. J. Mol. Sci. 2025, 26(14), 6700; https://doi.org/10.3390/ijms26146700 - 12 Jul 2025
Viewed by 197
Abstract
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and [...] Read more.
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and post-functionalized by N-allylaniline (Naa). Non-porous networks were obtained by cross-linking PHMS in the bulk and porous—in W/O high-internal-phase emulsion (HIPE). Linear divinyldisiloxane (M2Vi) or cyclic tetravinyltetrasiloxane (D4Vi) were used as cross-linkers. Studies confirmed the expected non-porous and open macroporous microstructure of the initial networks. They also showed that functionalization by Naa was more efficient for the non-porous networks that swelled to lower extents in toluene and contained higher amounts of Si-H groups than the porous ones. In the reactions with benzyl chloride or 1-bromoctane, some amino groups present in these materials were transformed to ammonium groups. It was found that activity against Gram-positive S. aureus and Gram-negative E. coli bacteria depended on the functionalization degree, cross-linking level and the microstructure of the modified materials. Full article
Show Figures

Figure 1

10 pages, 1819 KiB  
Article
Design and Synthesis of Fe3O4-Loaded Polymer Microspheres with Controlled Morphology: Section II Fabrication of Walnut-like Superparamagnetic Polymer Microspheres
by Florence Acha, Talya Scheff, Nathalia DiazArmas and Jinde Zhang
Polymers 2025, 17(13), 1876; https://doi.org/10.3390/polym17131876 - 5 Jul 2025
Viewed by 394
Abstract
A simple and innovative synthesis strategy was established to produce polymer microspheres with a distinctive walnut-like morphology, incorporating Fe3O4 nanoparticles within their structure. This was achieved through γ-ray-initiated mini-emulsion polymerization. To ensure high encapsulation efficiency, the surface of the Fe [...] Read more.
A simple and innovative synthesis strategy was established to produce polymer microspheres with a distinctive walnut-like morphology, incorporating Fe3O4 nanoparticles within their structure. This was achieved through γ-ray-initiated mini-emulsion polymerization. To ensure high encapsulation efficiency, the surface of the Fe3O4 nanoparticles was chemically altered to shift their wettability from hydrophilic to hydrophobic, enabling uniform dispersion within the monomer phase before polymerization. The formation of the walnut-like architecture was found to be significantly influenced by both the polymerization dynamics and phase separation, as well as the shrinkage of the crosslinked polymer network formed between the monomer and the resulting polymer. Divinylbenzene (DVB) was chosen as the monomer due to its ability to generate a mechanically stable polymer framework. The γ-ray irradiation effectively initiated polymerization while preserving structural coherence. A detailed analysis using FTIR, SEM, and TEM confirmed the successful fabrication of the Fe3O4-loaded polymer microspheres with their characteristic textured surface. Moreover, magnetic characterization via vibrating sample magnetometry (VSM) indicated pronounced superparamagnetic behavior and strong magnetic responsiveness, highlighting the potential of these microspheres for advanced biomedical applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

13 pages, 3705 KiB  
Article
Molecular Simulations of Interface-Driven Crosslinked Network Formation and Mechanical Response in Composite Propellants
by Chen Ling, Xinke Zhang, Xin Li, Guozhu Mou, Xiang Guo, Bing Yuan and Kai Yang
Polymers 2025, 17(13), 1863; https://doi.org/10.3390/polym17131863 - 3 Jul 2025
Viewed by 441
Abstract
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 [...] Read more.
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 components, including the polymer binder HTPB, curing agent IPDI, oxidizer particles AP/Al, bonding agents MAPO/T313, plasticizer DOS, etc.) and their influence on crosslinked network formation. In this study, we propose an integrated computational framework that combines coarse-grained simulations with reactive force fields to investigate these complex interactions at the molecular level. Our approach successfully elucidates the two-step reaction mechanism propagating along the AP interface in multicomponent propellants, comprising interfacial self-polymerization of bonding agents followed by the participation of curing agents in crosslinked network formation. Furthermore, we assess the mechanical performance through tensile simulations, systematically investigating both defect formation near the interface and the influence of key parameters, including the self-polymerization time, HTPB chain length, and IPDI content. Our results indicate that the rational selection of parameters enables the optimization of mechanical properties (e.g., ~20% synchronous improvement in tensile modulus and strength, achieved by selecting a side-chain ratio of 20%, a DOS molar ratio of 2.5%, a MAPO:T313 ratio of 1:2, a self-polymerization MAPO time of 260 ns, etc.). Overall, this study provides molecular-level insights into the structure–property relationships of composite propellants and offers a valuable computational framework for guided formulation optimization in propellant manufacturing. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 460
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 432
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

17 pages, 4084 KiB  
Article
Biomass-Based Nanocomposites of Polydithioacetals Derived from Vanillin with Cellulose Nanocrystals: Synthesis, Thermomechanical and Reprocessing Properties
by Lei Li, Xibin Shen, Jianglu Teng, Bo Zhao and Sixun Zheng
Polymers 2025, 17(13), 1764; https://doi.org/10.3390/polym17131764 - 26 Jun 2025
Viewed by 352
Abstract
Bio-based polydithioacetal nanocomposites were synthesized to address the critical need for materials that simultaneously achieve enhanced thermomechanical properties and excellent reprocessing capabilities. Using vanillin and cellulose nanocrystals (CNCs) as starting materials, linear polydithioacetals (PDTAs) were prepared via acid-catalyzed polycondensation of vanillin with various [...] Read more.
Bio-based polydithioacetal nanocomposites were synthesized to address the critical need for materials that simultaneously achieve enhanced thermomechanical properties and excellent reprocessing capabilities. Using vanillin and cellulose nanocrystals (CNCs) as starting materials, linear polydithioacetals (PDTAs) were prepared via acid-catalyzed polycondensation of vanillin with various dithiols including 1,6-hexanedithiol, 1,10-decanedithiol, 3,6-dioxa-1,8-octanedithiol and 2,2′-thiodiethanethiol. These PDTAs were then crosslinked with a diepoxide (i.e., diglycidyl ether of bisphenol A, DGEBA) via the reaction of phenolic hydroxyl groups of PDTAs with epoxide groups of DGEBA. To create the nanocomposites, cellulose nanocrystals (CNCs) were surface-functionalized with thiol groups and then incorporated as the reinforcing nanofillers of the networks. The results of morphological observation showed that the fine dispersion of CNCs in the polymer matrix was attained. Owing to the incorporation of CNCs, the nanocomposites displayed improved thermomechanical properties. Compared to the network without CNCs, the nanocomposite containing 20 wt% CNCs exhibited an increase of more than tenfold in modulus and threefold in tensile strength. In addition, the nanocomposites exhibited excellent reprocessing properties, attributable to the dynamic exchange of dithioacetal bonds. This work presents a promising strategy for developing bio-based nanocomposites that have not only improved thermomechanical properties but also excellent reprocessing (or recycling) properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 4602 KiB  
Article
Construction of Symmetric Flexible Electrochromic and Rechargeable Supercapacitors Based on a 1,3,6,8-Pyrenetetrasulfonic Acid Tetrasodium Salt-Loaded Polyaniline Nanostructured Film
by Yi Wang, Ze Wang, Zilong Zhang, Yujie Yan, An Xie, Tong Feng and Chunyang Jia
Materials 2025, 18(12), 2836; https://doi.org/10.3390/ma18122836 - 16 Jun 2025
Cited by 1 | Viewed by 429
Abstract
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage [...] Read more.
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage capabilities. In this work, a microsphere-like structured PANI-based composite film was fabricated on a porous Au/nylon 66 electrode via a one-step electrochemical copolymerization process, using 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) as both the dopant and cross-linking agent for the PANI backbone, serving as the ECSC electrode. Compared to the pristine PANI electrode, the PANI-PTSA composite film exhibits lower intrinsic resistance and higher electrical conductivity, delivering a higher specific capacitance of 310.0 F g⁻1@1 A g⁻1 and an areal capacitance of 340.0 mF cm⁻2@1 mA cm⁻2, respectively. The dopant facilitates enhanced electrochemical performance by promoting charge transport within the PANI polymer network. Meanwhile, as a counter anion to the PANI backbone, PTSA regulates the growth of PANI chains and acts as a morphological controller. Furthermore, a symmetric ECSC based on the PANI-PTSA8:1 electrode was assembled, and its electrochemical properties were thoroughly investigated. The device demonstrated a high specific capacitance of 169.2 mF cm⁻2 at 1 mA cm⁻2, a notable energy density of 23.5 μWh cm⁻2 at a power density of 0.5 mW cm⁻2, and excellent cycling stability with 79% capacitance retention after 3000 cycles at a current density of 5 mA cm⁻2, alongside remarkable mechanical flexibility. Additionally, the working status of the ECSCs can be directly monitored through reversible color changes from yellow-green to deep blue during charge–discharge processes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

5 pages, 931 KiB  
Editorial
Recent Progress in Hydrogel Synthesis and Biomedical Applications
by Luxing Wei and Jun Huang
Gels 2025, 11(6), 456; https://doi.org/10.3390/gels11060456 - 14 Jun 2025
Viewed by 618
Abstract
Hydrogels are three-dimensional network structures formed by hydrophilic polymer chains through chemical or physical cross-linking [...] Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Figure 1

14 pages, 4709 KiB  
Article
Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries
by Xulong Jing, Shuyu Liu, Jiapei Wang, Chao Wan, Juan Zhu, Xiaojun He and Biyu Jin
Sustainability 2025, 17(12), 5240; https://doi.org/10.3390/su17125240 - 6 Jun 2025
Viewed by 560
Abstract
The development of polymer binders with tailored functionalities and green manufacturing processes is highly needed for high-performance lithium–sulfur batteries. In this study, a readily hydrolyzable 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5.5]-undecane is utilized to prepare a water-based binder. Specifically, the acrolein produced by hydrolysis undergoes in situ polymerization [...] Read more.
The development of polymer binders with tailored functionalities and green manufacturing processes is highly needed for high-performance lithium–sulfur batteries. In this study, a readily hydrolyzable 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5.5]-undecane is utilized to prepare a water-based binder. Specifically, the acrolein produced by hydrolysis undergoes in situ polymerization to form a linear polymer, while the other hydrolyzed product, pentaerythritol, physically crosslinks these polymer chains via hydrogen bonding, generating a network polymer (BTU). Additionally, gallic acid (GA), a substance derived from waste wood, is further introduced into BTU during slurry preparation, forming a biphenol-containing binder (BG) with a multi-hydrogen-bonded structure. This resilience and robust cathode framework effectively accommodate volumetric changes during cycling while maintaining efficient ion and electron transport pathways. Furthermore, the abundant polar groups in BG enable strong polysulfide adsorption. As a result, sulfur cathode with a high mass loading of 5.3 mg cm−2 employing the BG (7:3) binder still retains an areal capacity of 4.7 mA h cm−2 after 50 cycles at 0.1 C. This work presents a sustainable strategy for battery manufacturing by integrating renewable biomass-derived materials and eco-friendly aqueous processing to develop polymer binders, offering a green pathway to high-performance lithium–sulfur batteries. Full article
(This article belongs to the Special Issue Sustainable Materials and Technologies for Battery Manufacturing)
Show Figures

Figure 1

Back to TopTop