Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = crop disease classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 677 KiB  
Review
Advances of Peptides for Plant Immunity
by Minghao Liu, Guangzhong Zhang, Suikang Wang and Quan Wang
Plants 2025, 14(15), 2452; https://doi.org/10.3390/plants14152452 (registering DOI) - 7 Aug 2025
Abstract
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich [...] Read more.
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich peptides, and non-cysteine-rich peptides. It discusses the mechanisms by which plant polypeptides confer disease resistance, such as their involvement in pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and regulation of hormone-mediated defense pathways. Furthermore, it explores potential agricultural applications of plant polypeptides, including the development of novel biopesticides and enhancement of crop disease resistance via genetic engineering. By summarizing current research, this review aims to provide a theoretical basis for in-depth studies on peptide-mediated disease resistance and offer innovative insights for plant disease control. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 1909 KiB  
Review
Cassava (Manihot esculenta Crantz): Evolution and Perspectives in Genetic Studies
by Vinicius Campos Silva, Gustavo Reis de Brito, Wellington Ferreira do Nascimento, Eduardo Alano Vieira, Felipe Machado Navaes and Marcos Vinícius Bohrer Monteiro Siqueira
Agronomy 2025, 15(8), 1897; https://doi.org/10.3390/agronomy15081897 - 7 Aug 2025
Abstract
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively [...] Read more.
Cassava (Manihot esculenta Crantz) is essential for global food security, especially in tropical regions. As an important genetic resource, its genetics plays a key role in crop breeding, enabling the development of more productive and pest- and disease-resistant varieties. Scientometrics, which quantitatively analyzes the production and impact of scientific research, is crucial for understanding trends in cassava genetics. This study aimed to apply bibliometric methods to conduct a scientific mapping analysis based on yearly publication trends, paper classification, author productivity, journal impact factor, keywords occurrences, and omic approaches to investigate the application of genetics to the species from 1960 to 2022. From the quantitative data analyzed, 3246 articles were retrieved from the Web of Science platform, of which 654 met the inclusion criteria. A significant increase in scientific production was observed from 1993, peaking in 2018. The first article focused on genetics was published in 1969. Among the most relevant journals, Euphytica stood out with 36 articles, followed by Genetics and Molecular Research (n = 30) and Frontiers in Plant Science (n = 25). Brazil leads in the number of papers on cassava genetics (n = 143), followed by China (n = 110) and the United States (n = 75). The analysis of major methodologies (n = 185) reveals a diversified panorama during the study period. Morpho-agronomic descriptors persisted from 1978 to 2022; however, microsatellite markers were the most widely used, with 102 records. Genomics was addressed in 87 articles, and transcriptomics in 65. By clarifying the current landscape, this study supports cassava conservation and breeding, assists in public policy formulation, and guides future research in the field. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 54671 KiB  
Article
Pep-VGGNet: A Novel Transfer Learning Method for Pepper Leaf Disease Diagnosis
by Süleyman Çetinkaya and Amira Tandirovic Gursel
Appl. Sci. 2025, 15(15), 8690; https://doi.org/10.3390/app15158690 - 6 Aug 2025
Abstract
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to [...] Read more.
The health of crops is a major challenge for productivity growth in agriculture, with plant diseases playing a key role in limiting crop yield. Identifying and understanding these diseases is crucial to preventing their spread. In particular, greenhouse pepper leaves are susceptible to diseases such as mildew, mites, caterpillars, aphids, and blight, which leave distinctive marks that can be used for disease classification. The study proposes a seven-class classifier for the rapid and accurate diagnosis of pepper diseases, with a primary focus on pre-processing techniques to enhance colour differentiation between green and yellow shades, thereby facilitating easier classification among the classes. A novel algorithm is introduced to improve image vibrancy, contrast, and colour properties. The diagnosis is performed using a modified VGG16Net model, which includes three additional layers for fine-tuning. After initialising on the ImageNet dataset, some layers are frozen to prevent redundant learning. The classification is additionally accelerated by introducing flattened, dense, and dropout layers. The proposed model is tested on a private dataset collected specifically for this study. Notably, this work is the first to focus on diagnosing aphid and caterpillar diseases in peppers. The model achieves an average accuracy of 92.00%, showing promising potential for seven-class deep learning-based disease diagnostics. Misclassifications in the aphid class are primarily due to the limited number of samples available. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 1644 KiB  
Article
A Symmetric Multi-Scale Convolutional Transformer Network for Plant Disease Image Classification
by Chuncheng Xu and Tianjin Yang
Symmetry 2025, 17(8), 1232; https://doi.org/10.3390/sym17081232 - 4 Aug 2025
Viewed by 130
Abstract
Plant disease classification is critical for effective crop management. Recent advances in deep learning, especially Vision Transformers (ViTs), have shown promise due to their strong global feature modeling capabilities. However, ViTs often overlook local features and suffer from feature extraction degradation during patch [...] Read more.
Plant disease classification is critical for effective crop management. Recent advances in deep learning, especially Vision Transformers (ViTs), have shown promise due to their strong global feature modeling capabilities. However, ViTs often overlook local features and suffer from feature extraction degradation during patch merging as channels increase. To address these issues, we propose PLTransformer, a hybrid model designed to symmetrically capture both global and local features. We design a symmetric multi-scale convolutional module that combines two different-scale receptive fields to simultaneously extract global and local features so that the model can better perceive multi-scale disease morphologies. Additionally, we propose an overlap-attentive channel downsampler that utilizes inter-channel attention mechanisms during spatial downsampling, effectively preserving local structural information and mitigating semantic loss caused by feature compression. On the PlantVillage dataset, PLTransformer achieves 99.95% accuracy, outperforming DeiT (96.33%), Twins (98.92%), and DilateFormer (98.84%). These results demonstrate its superiority in handling multi-scale disease features. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 7677 KiB  
Article
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao and Tongyu Xu
Agriculture 2025, 15(15), 1673; https://doi.org/10.3390/agriculture15151673 - 2 Aug 2025
Viewed by 260
Abstract
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to [...] Read more.
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to achieve effective identification of rice blast. The DCFM model extracted spectral features using successive projection algorithm (SPA), random frog (RFrog), and competitive adaptive reweighted sampling (CARS), and extracted spatial features from spectral images using MobileNetV2 combined with the convolutional block attention module (CBAM). Then, these features were fused using the feature fusion adaptive conditioning module in DCFM and input into the fully connected layer for disease identification. The results show that the model combining spectral and spatial features was superior to the classification models based on single features for rice blast detection, with OA and Kappa higher than 90% and 88%, respectively. The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. Overall, this study enables the early and accurate identification of rice blast, providing a rapid and reliable method for rice disease monitoring and management. It also offers a valuable reference for the detection of other crop diseases. Full article
Show Figures

Figure 1

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 329
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

46 pages, 1120 KiB  
Review
From Morphology to Multi-Omics: A New Age of Fusarium Research
by Collins Bugingo, Alessandro Infantino, Paul Okello, Oscar Perez-Hernandez, Kristina Petrović, Andéole Niyongabo Turatsinze and Swarnalatha Moparthi
Pathogens 2025, 14(8), 762; https://doi.org/10.3390/pathogens14080762 - 1 Aug 2025
Viewed by 411
Abstract
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, [...] Read more.
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, mycotoxin biosynthesis, and disease management. This review synthesizes key developments in these areas, focusing on agriculturally important Fusarium species complexes such as the Fusarium oxysporum species complex (FOSC), Fusarium graminearum species complex (FGSC), and a discussion on emerging lineages such as Neocosmospora. We explore recent shifts in species delimitation, functional genomics, and the molecular architecture of pathogenicity. In addition, we examine the global burden of Fusarium-induced mycotoxins by examining their prevalence in three of the world’s most widely consumed staple crops: maize, wheat, and rice. Last, we also evaluate contemporary management strategies, including molecular diagnostics, host resistance, and integrated disease control, positioning this review as a roadmap for future research and practical solutions in Fusarium-related disease and mycotoxin management. By weaving together morphological insights and cutting-edge multi-omics tools, this review captures the transition into a new era of Fusarium research where integrated, high-resolution approaches are transforming diagnosis, classification, and management. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

25 pages, 4145 KiB  
Article
Advancing Early Blight Detection in Potato Leaves Through ZeroShot Learning
by Muhammad Shoaib Farooq, Ayesha Kamran, Syed Atir Raza, Muhammad Farooq Wasiq, Bilal Hassan and Nitsa J. Herzog
J. Imaging 2025, 11(8), 256; https://doi.org/10.3390/jimaging11080256 - 31 Jul 2025
Viewed by 264
Abstract
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. [...] Read more.
Potatoes are one of the world’s most widely cultivated crops, but their yield is coming under mounting pressure from early blight, a fungal disease caused by Alternaria solani. Early detection and accurate identification are key to effective disease management and yield protection. This paper introduces a novel deep learning framework called ZeroShot CNN, which integrates convolutional neural networks (CNNs) and ZeroShot Learning (ZSL) for the efficient classification of seen and unseen disease classes. The model utilizes convolutional layers for feature extraction and employs semantic embedding techniques to identify previously untrained classes. Implemented on the Kaggle potato disease dataset, ZeroShot CNN achieved 98.50% accuracy for seen categories and 99.91% accuracy for unseen categories, outperforming conventional methods. The hybrid approach demonstrated superior generalization, providing a scalable, real-time solution for detecting agricultural diseases. The success of this solution validates the potential in harnessing deep learning and ZeroShot inference to transform plant pathology and crop protection practices. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

27 pages, 4228 KiB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 265
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

28 pages, 2789 KiB  
Review
A Review of Computer Vision and Deep Learning Applications in Crop Growth Management
by Zhijie Cao, Shantong Sun and Xu Bao
Appl. Sci. 2025, 15(15), 8438; https://doi.org/10.3390/app15158438 - 30 Jul 2025
Viewed by 477
Abstract
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly [...] Read more.
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly critical. In recent years, deep learning and computer vision have developed rapidly. Key areas in computer vision—such as deep learning-based image processing, object detection, and multimodal fusion—are rapidly transforming traditional agricultural practices. Processes in agriculture, including planting planning, growth management, harvesting, and post-harvest handling, are shifting from experience-driven methods to digital and intelligent approaches. This paper systematically reviews applications of deep learning and computer vision in agricultural growth management over the past decade, categorizing them into four key areas: crop identification, grading and classification, disease monitoring, and weed detection. Additionally, we introduce classic methods and models in computer vision and deep learning, discussing approaches that utilize different types of visual information. Finally, we summarize current challenges and limitations of existing methods, providing insights for future research and promoting technological innovation in agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 218
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

25 pages, 5142 KiB  
Article
Wheat Powdery Mildew Severity Classification Based on an Improved ResNet34 Model
by Meilin Li, Yufeng Guo, Wei Guo, Hongbo Qiao, Lei Shi, Yang Liu, Guang Zheng, Hui Zhang and Qiang Wang
Agriculture 2025, 15(15), 1580; https://doi.org/10.3390/agriculture15151580 - 23 Jul 2025
Viewed by 282
Abstract
Crop disease identification is a pivotal research area in smart agriculture, forming the foundation for disease mapping and targeted prevention strategies. Among the most prevalent global wheat diseases, powdery mildew—caused by fungal infection—poses a significant threat to crop yield and quality, making early [...] Read more.
Crop disease identification is a pivotal research area in smart agriculture, forming the foundation for disease mapping and targeted prevention strategies. Among the most prevalent global wheat diseases, powdery mildew—caused by fungal infection—poses a significant threat to crop yield and quality, making early and accurate detection crucial for effective management. In this study, we present QY-SE-MResNet34, a deep learning-based classification model that builds upon ResNet34 to perform multi-class classification of wheat leaf images and assess powdery mildew severity at the single-leaf level. The proposed methodology begins with dataset construction following the GBT 17980.22-2000 national standard for powdery mildew severity grading, resulting in a curated collection of 4248 wheat leaf images at the grain-filling stage across six severity levels. To enhance model performance, we integrated transfer learning with ResNet34, leveraging pretrained weights to improve feature extraction and accelerate convergence. Further refinements included embedding a Squeeze-and-Excitation (SE) block to strengthen feature representation while maintaining computational efficiency. The model architecture was also optimized by modifying the first convolutional layer (conv1)—replacing the original 7 × 7 kernel with a 3 × 3 kernel, adjusting the stride to 1, and setting padding to 1—to better capture fine-grained leaf textures and edge features. Subsequently, the optimal training strategy was determined through hyperparameter tuning experiments, and GrabCut-based background processing along with data augmentation were introduced to enhance model robustness. In addition, interpretability techniques such as channel masking and Grad-CAM were employed to visualize the model’s decision-making process. Experimental validation demonstrated that QY-SE-MResNet34 achieved an 89% classification accuracy, outperforming established models such as ResNet50, VGG16, and MobileNetV2 and surpassing the original ResNet34 by 11%. This study delivers a high-performance solution for single-leaf wheat powdery mildew severity assessment, offering practical value for intelligent disease monitoring and early warning systems in precision agriculture. Full article
Show Figures

Figure 1

27 pages, 2123 KiB  
Article
Exploring Cloned Disease Resistance Gene Homologues and Resistance Gene Analogues in Brassica nigra, Sinapis arvensis, and Sinapis alba: Identification, Characterisation, Distribution, and Evolution
by Aria Dolatabadian, Junrey C. Amas, William J. W. Thomas, Mohammad Sayari, Hawlader Abdullah Al-Mamun, David Edwards and Jacqueline Batley
Genes 2025, 16(8), 849; https://doi.org/10.3390/genes16080849 - 22 Jul 2025
Viewed by 271
Abstract
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins [...] Read more.
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins and transmembrane-coiled-coil (TM-CC) genes. A total of 4499 candidate RGAs were detected, with species-specific proportions. RLKs were the most abundant across all genomes, followed by TM-CCs and RLPs. The sub-classification of RLKs and RLPs identified LRR-RLKs, LRR-RLPs, LysM-RLKs, and LysM-RLPs. Atypical NLRs were more frequent than typical ones in all species. Atypical NLRs were more frequent than typical ones in all species. We explored the relationship between chromosome size and RGA count using regression analysis. In B. nigra and S. arvensis, larger chromosomes generally harboured more RGAs, while S. alba displayed the opposite trend. Exceptions were observed in all species, where some larger chromosomes contained fewer RGAs in B. nigra and S. arvensis, or more RGAs in S. alba. The distribution and density of RGAs across chromosomes were examined. RGA distribution was skewed towards chromosomal ends, with patterns differing across RGA types. Sequence hierarchical pairwise similarity analysis revealed distinct gene clusters, suggesting evolutionary relationships. The study also identified homologous genes among RGAs and non-RGAs in each species, providing insights into disease resistance mechanisms. Finally, RLKs and RLPs were co-localised with reported disease resistance loci in Brassica, indicating significant associations. Phylogenetic analysis of cloned RGAs and QTL-mapped RLKs and RLPs identified distinct clusters, enhancing our understanding of their evolutionary trajectories. These findings provide a comprehensive view of RGA diversity and genomics in these Brassicaceae species, providing valuable insights for future research in plant disease resistance and crop improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3263 KiB  
Article
Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
by Tallal Abdel Karim Bouzir, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli and Mohammed M. Gomaa
Urban Sci. 2025, 9(7), 282; https://doi.org/10.3390/urbansci9070282 - 18 Jul 2025
Viewed by 316
Abstract
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), [...] Read more.
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), Nefta (Tunisia), Ghadames (Libya), and Siwa (Egypt) over the period 2000–2023, using Landsat satellite imagery. A three-step analysis was employed: calculation of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST, followed by supervised land cover classification and statistical tests to examine the relationships between the studied variables. The results reveal substantial reductions in bare soil (e.g., 48.10% in Siwa) and notable urban expansion (e.g., 136.01% in Siwa and 48.46% in Ghadames). Vegetation exhibited varied trends, with a slight decline in Tolga (0.26%) and a significant increase in Siwa (+27.17%). LST trends strongly correlated with land cover changes, demonstrating increased temperatures in urbanized areas and moderated temperatures in vegetated zones. Notably, this study highlights that traditional urban designs integrated with dense palm groves significantly mitigate thermal stress, achieving lower LST compared to modern urban expansions characterized by sparse, heat-absorbing surfaces. In contrast, areas dominated by fragmented vegetation or seasonal crops exhibited reduced cooling capacity, underscoring the critical role of vegetation type, spatial arrangement, and urban morphology in regulating oasis microclimates. Preserving palm groves, which are increasingly vulnerable to heat-driven pests, diseases and the introduction of exotic species grown for profit, together with a revival of the traditional compact urban fabric that provides shade and has been empirically confirmed by other oasis studies to moderate the microclimate more effectively than recent low-density extensions, will maintain the crucial synergy between buildings and vegetation, enhance the cooling capacity of these settlements, and safeguard their tangible and intangible cultural heritage. Full article
(This article belongs to the Special Issue Geotechnology in Urban Landscape Studies)
Show Figures

Figure 1

21 pages, 4147 KiB  
Article
AgriFusionNet: A Lightweight Deep Learning Model for Multisource Plant Disease Diagnosis
by Saleh Albahli
Agriculture 2025, 15(14), 1523; https://doi.org/10.3390/agriculture15141523 - 15 Jul 2025
Viewed by 495
Abstract
Timely and accurate identification of plant diseases is critical to mitigating crop losses and enhancing yield in precision agriculture. This paper proposes AgriFusionNet, a lightweight and efficient deep learning model designed to diagnose plant diseases using multimodal data sources. The framework integrates RGB [...] Read more.
Timely and accurate identification of plant diseases is critical to mitigating crop losses and enhancing yield in precision agriculture. This paper proposes AgriFusionNet, a lightweight and efficient deep learning model designed to diagnose plant diseases using multimodal data sources. The framework integrates RGB and multispectral drone imagery with IoT-based environmental sensor data (e.g., temperature, humidity, soil moisture), recorded over six months across multiple agricultural zones. Built on the EfficientNetV2-B4 backbone, AgriFusionNet incorporates Fused-MBConv blocks and Swish activation to improve gradient flow, capture fine-grained disease patterns, and reduce inference latency. The model was evaluated using a comprehensive dataset composed of real-world and benchmarked samples, showing superior performance with 94.3% classification accuracy, 28.5 ms inference time, and a 30% reduction in model parameters compared to state-of-the-art models such as Vision Transformers and InceptionV4. Extensive comparisons with both traditional machine learning and advanced deep learning methods underscore its robustness, generalization, and suitability for deployment on edge devices. Ablation studies and confusion matrix analyses further confirm its diagnostic precision, even in visually ambiguous cases. The proposed framework offers a scalable, practical solution for real-time crop health monitoring, contributing toward smart and sustainable agricultural ecosystems. Full article
(This article belongs to the Special Issue Computational, AI and IT Solutions Helping Agriculture)
Show Figures

Figure 1

Back to TopTop