Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (512)

Search Parameters:
Keywords = critical-size defect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9220 KiB  
Article
Investigation of Stress Intensity Factors in Welds of Steel Girders Within Steel–Concrete Composite Structures
by Da Wang, Pengxin Zhao, Yuxin Shao, Wenping Peng, Junxin Yang, Chenggong Zhao and Benkun Tan
Buildings 2025, 15(15), 2653; https://doi.org/10.3390/buildings15152653 - 27 Jul 2025
Abstract
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A [...] Read more.
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A finite element model was developed and validated against experimental data, followed by the insertion of cracks at both the weld root and weld toe. The influences of stud spacing, initial crack size, crack shape, and lack-of-penetration defects on Mode I SIFs were systematically analyzed. Results show that both weld root and weld toe cracks are predominantly Mode I in nature, with the toe cracks exhibiting higher SIF values. Increasing the stud spacing, crack depth, or crack aspect ratio significantly raises the SIFs. Lack of penetration defects further amplifies the SIFs, especially at the weld root. Based on the computed SIFs, fatigue life predictions were conducted using a crack propagation approach. These findings highlight the critical roles of crack geometry and welding quality in fatigue performance, providing a numerical foundation for optimizing welded joint design in composite structures. Full article
Show Figures

Figure 1

17 pages, 2508 KiB  
Article
Transfer Learning-Based Detection of Pile Defects in Low-Strain Pile Integrity Testing
by Övünç Öztürk, Tuğba Özacar and Bora Canbula
Appl. Sci. 2025, 15(15), 8278; https://doi.org/10.3390/app15158278 - 25 Jul 2025
Viewed by 83
Abstract
Pile foundations are critical structural elements, and their integrity is essential for ensuring the stability and safety of construction projects. Low-strain pile integrity testing (LSPIT) is widely used for defect detection; however, conventional manual interpretation of reflectograms is both time-consuming and susceptible to [...] Read more.
Pile foundations are critical structural elements, and their integrity is essential for ensuring the stability and safety of construction projects. Low-strain pile integrity testing (LSPIT) is widely used for defect detection; however, conventional manual interpretation of reflectograms is both time-consuming and susceptible to human error. This study presents a deep learning-driven approach utilizing transfer learning with convolutional neural networks (CNNs) to automate pile defect detection. A dataset of 328 reflectograms collected from real construction sites, including 246 intact and 82 defective samples, was used to train and evaluate the model. To address class imbalance, oversampling techniques were applied. Several state-of-the-art pretrained CNN architectures were compared, with ConvNeXtLarge achieving the highest accuracy of 98.2%. The accuracy reported was achieved on a dedicated test set using real reflectogram data from actual construction sites, distinguishing this study from prior work relying primarily on synthetic data. The proposed novelty includes adapting pre-trained CNN architectures specifically for real-world pile integrity testing, addressing practical challenges such as data imbalance and limited dataset size through targeted oversampling techniques. The proposed approach demonstrates significant improvements in accuracy and efficiency compared to manual interpretation methods, making it a promising solution for practical applications in the construction industry. The proposed method demonstrates potential for generalization across varying pile lengths and geological conditions, though further validation with broader datasets is recommended. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 7670 KiB  
Article
Atomic-Scale Mechanisms of Stacking Fault Tetrahedra Formation, Growth, and Transformation in Aluminum via Vacancy Aggregation
by Xiang-Shan Kong, Zi-Yang Cao, Zhi-Yong Zhang and Tian-Li Su
Metals 2025, 15(8), 829; https://doi.org/10.3390/met15080829 - 24 Jul 2025
Viewed by 161
Abstract
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized [...] Read more.
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized by their structure, formation energy, and binding energy across a range of vacancy cluster sizes. Formation energies of perfect and truncated SFTs follow a scaling relation; beyond a critical size, truncated SFTs become thermodynamically favored, indicating a size-dependent transformation pathway. Binding energy and structure evolution exhibit quasi-periodic behavior, where vacancies initially adsorb at the vertices or the midpoints of the edges of a perfect SFT, then aggregate along one facet, triggering fault nucleation and a binding energy jump as the system reconstructs into a new perfect SFT. Molecular dynamics simulations further confirm the SFT nucleation and growth via vacancy aggregation, consistent with thermodynamic predictions. SFTs exhibit notable thermal mobility, enabling coalescence and evolution into vacancy-type dislocation loops. BCC-like V5 clusters are identified as potential nucleation precursors. These findings explain the nanoscale, low-temperature nature of SFTs in aluminum and offer new insights into defect evolution and control in FCC metals. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Graphical abstract

18 pages, 46227 KiB  
Article
Hydroxyapatite Scaffold and Bioactive Factor Combination as a Tool to Improve Osteogenesis, In Vitro and In Vivo Experiments Using Phage Display Technology
by Debora Lo Furno, Ivana R. Romano, Vincenzo Russo, Maria G. Rizzo, Giuliana Mannino, Giovanna Calabrese, Rosario Giuffrida, Simona D’Aprile, Lucia Salvatorelli, Gaetano Magro, Riccardo Bendoni, Laura Dolcini, Agata Zappalà, Salvatore P. P. Guglielmino, Sabrina Conoci and Rosalba Parenti
Int. J. Mol. Sci. 2025, 26(15), 7040; https://doi.org/10.3390/ijms26157040 - 22 Jul 2025
Viewed by 140
Abstract
Mesenchymal stem cells have been widely investigated in the field of regenerative medicine and also used as a model to study the differentiation-induction properties of a variety of biomaterials. This study evaluates the osteoinductive potential of novel hydroxyapatite scaffolds functionalized with a phage-displayed [...] Read more.
Mesenchymal stem cells have been widely investigated in the field of regenerative medicine and also used as a model to study the differentiation-induction properties of a variety of biomaterials. This study evaluates the osteoinductive potential of novel hydroxyapatite scaffolds functionalized with a phage-displayed peptide (SC1) selected via biopanning for its similarity to bone matrix proteins. The peptide, identified through sequence alignment as a mimotope of osteonectin (SPARC), was used to functionalize scaffolds. Results from SC1 were gathered at different time points (14, 28 and 46 days) and compared with those from nonfunctionalized hydroxyapatite (HA) scaffolds. In vitro experiments, by seeding human adipose-derived stem cells (hASCs), indicated satisfactory biocompatibility for both types of scaffolds. Histochemical observations showed that SC1, better than HA scaffolds, was able to improve hASC osteogenic differentiation, as evaluated through Alizarin Red staining (showing on average a darker staining of 100%). An increase was also observed, especially at early stages (14 days), for osterix (up to 60% increase) and osteonectin immunoexpression (up to 50% increase). In in vivo experiments, cell-free scaffolds of both types were subcutaneously implanted into the backs of mice and analyzed after 2, 4, 8 and 16 weeks. Also, in this case, SC1 more effectively promoted the osteogenic differentiation of infiltrated resident cells. In particular, increased immunoexpression of osterix and osteonectin (+30% and 35%, respectively) was found already at 2 weeks. It can be concluded that SC1 scaffolds may represent a valuable tool to address critical-sized bone defects. Full article
(This article belongs to the Special Issue Biomedical Applications of Mesenchymal Stem Cells)
Show Figures

Figure 1

15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 470
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

14 pages, 3338 KiB  
Article
Monolithically Integrated GaAs Nanoislands on CMOS-Compatible Si Nanotips Using GS-MBE
by Adriana Rodrigues, Anagha Kamath, Hannah-Sophie Illner, Navid Kafi, Oliver Skibitzki, Martin Schmidbauer and Fariba Hatami
Nanomaterials 2025, 15(14), 1083; https://doi.org/10.3390/nano15141083 - 12 Jul 2025
Viewed by 247
Abstract
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully [...] Read more.
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully relaxed GaAs nanoislands on complementary metal oxide semiconductor (CMOS)-compatible Si(001) nanotip wafers. Nanotip wafers were fabricated using a state-of-the-art 0.13 μm SiGe Bipolar CMOS pilot line on 200 mm wafers. Our investigation focuses on understanding the influence of the growth conditions on the morphology, crystalline structure, and defect formation of the GaAs islands. The morphological, structural, and optical properties of the GaAs islands were characterized using scanning electron microscopy, high-resolution X-ray diffraction, and photoluminescence spectroscopy. For samples with less deposition, the GaAs islands exhibit a monomodal size distribution, with an average effective diameter ranging between 100 and 280 nm. These islands display four distinct facet orientations corresponding to the {001} planes. As the deposition increases, larger islands with multiple crystallographic facets emerge, accompanied by a transition from a monomodal to a bimodal growth mode. Single twinning is observed in all samples. However, with increasing deposition, not only a bimodal size distribution occurs, but also the volume fraction of the twinned material increases significantly. These findings shed light on the growth dynamics of nanoheteroepitaxial GaAs and contribute to ongoing efforts toward CMOS-compatible Si-based nanophotonic technologies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

12 pages, 13899 KiB  
Article
The Role of Pores in the Cavitation Erosion of Additively Manufactured Metal: An In Situ Study
by Yuan Song, Zhenhua Wang and Bingyang Ma
Metals 2025, 15(7), 787; https://doi.org/10.3390/met15070787 - 11 Jul 2025
Viewed by 244
Abstract
Additively manufactured (AM) parts have been applied in many areas with the risk of cavitation erosion (CE), and pores are common defects in AM metals. However, the role of pores in CE is still unclear, and a systematic investigation is needed. In this [...] Read more.
Additively manufactured (AM) parts have been applied in many areas with the risk of cavitation erosion (CE), and pores are common defects in AM metals. However, the role of pores in CE is still unclear, and a systematic investigation is needed. In this study, 316L stainless steel was selected as a model material and produced using laser powder bed fusion; the porosity was 6.4%. The morphological evolution of various pores during CE was investigated via electron backscatter diffraction and scanning electron microscopy. It was found that material removal easily occurred around large polygonal pores. The critical size for large polygonal pores was estimated to be between 13 and 20 μm. For narrow pores, concavity first appeared around the pores during CE, and then the narrow pores closed. Small spherical pores with sizes of 3–9 μm showed strong resistance to CE, and no damage occurred within the 60 min CE period. The main reason that different pores played different roles in CE was analyzed. Finally, factors for improving the CE resistance of AM metals were suggested. The research results are helpful for understanding the CE behaviors of AM metals and porous materials. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

21 pages, 3738 KiB  
Article
Morphologic Pattern Differences in Reconstructive Tissue Repair of Bone Defects Mediated by Bioactive Ceramics and Hydrogels: A Microscopic Follow-Up Evaluation of Re-Ossification
by Róbert Boda, Viktória Hegedűs, Sándor Manó, Andrea Keczánné-Üveges, Balázs Dezső and Csaba Hegedűs
Gels 2025, 11(7), 529; https://doi.org/10.3390/gels11070529 - 9 Jul 2025
Viewed by 257
Abstract
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated [...] Read more.
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated by silica aerogels and methacrylate hydrogels over a 6-month period, which is the widely accepted time course for complete resolution. Time-dependent microscopic analysis was conducted using the “critical size model”. In untreated rat calvaria bone defects (control), re-ossification exclusively started at the lateral regions from the edges of the remaining bone. At the 6th month, only a few new bones were formed, which were independent of the lateral ossification. The overall ossification resulted in a 57% osseous encroachment of the defect. In contrast, aerogels (AE), hydrogels (H), and their β-tricalcium-phosphate (βTCP)-containing counterparts, which were used to fill the bone defects, characteristically induced rapid early ossification starting from the 1st month. This was accompanied by fibrous granulomatous inflammation with multinucleated giant macrophages, which persisted in decreasing intensity throughout the observational time. In addition to lateral ossification, multiple and intense intralesional osseous foci developed as early as the 1st month, and grew progressively thereafter, reflecting the osteo-inductive effects of all compounds. However, both βTCP-containing bone substituents generated larger amounts and more mature new bones inside the defects. Nevertheless, only 72.8–76.9% of the bone defects treated with AE and H and 80.5–82.9% of those treated with βTCP-containing counterparts were re-ossified by the 6th month. Remarkably, by this time, some intra-osseous hydrogels were found, and traces of silica from AE were still detectable, indicating these as the causative agents for the persistent osseous–fibrous granulomatous inflammation. When silica or methacrylate-based bone substituents are used, chronic ossifying fibrous granulomatous inflammation develops. Although 100% re-ossification takes more than 6 months, by this time, the degree of osteo-fibrous solidification provides functionally well-suited bone repair. Full article
Show Figures

Figure 1

12 pages, 2397 KiB  
Review
Plastic Reconstruction of Upper Extremity Defects in Necrotizing Soft Tissue Infections
by Karren M. Takamura and Jason J. Yoo
Bioengineering 2025, 12(7), 718; https://doi.org/10.3390/bioengineering12070718 - 30 Jun 2025
Viewed by 250
Abstract
Soft tissue reconstruction in patients with upper extremity necrotizing soft tissue infections (NSTIs) can be challenging; these defects can be large with exposed critical structures. Following appropriate source control and debridement, soft tissue reconstruction is based on size, exposed structures, medical co-morbidities and [...] Read more.
Soft tissue reconstruction in patients with upper extremity necrotizing soft tissue infections (NSTIs) can be challenging; these defects can be large with exposed critical structures. Following appropriate source control and debridement, soft tissue reconstruction is based on size, exposed structures, medical co-morbidities and the physiologic status of the patient. There are multiple options for soft tissue coverage from local wound care to free tissue transfer. Dermal substitutes can help prepare a healthy wound bed that can later accept a skin graft. Local rotational flaps, distant pedicled flaps and free flaps are also options depending on the patient and the defect. Patients can have good functional outcomes after soft tissue reconstruction after upper extremity NSTI. Full article
(This article belongs to the Special Issue Surgical Wound Infections and Management)
Show Figures

Figure 1

26 pages, 8949 KiB  
Article
Real-Time Detection of Hole-Type Defects on Industrial Components Using Raspberry Pi 5
by Mehmet Deniz, Ismail Bogrekci and Pinar Demircioglu
Appl. Syst. Innov. 2025, 8(4), 89; https://doi.org/10.3390/asi8040089 - 27 Jun 2025
Viewed by 542
Abstract
In modern manufacturing, ensuring quality control for geometric features is critical, yet detecting anomalies in circular components remains underexplored. This study proposes a real-time defect detection framework for metal parts with holes, optimized for deployment on a Raspberry Pi 5 edge device. We [...] Read more.
In modern manufacturing, ensuring quality control for geometric features is critical, yet detecting anomalies in circular components remains underexplored. This study proposes a real-time defect detection framework for metal parts with holes, optimized for deployment on a Raspberry Pi 5 edge device. We fine-tuned and evaluated three deep learning models ResNet50, EfficientNet-B3, and MobileNetV3-Large on a grayscale image dataset (43,482 samples) containing various hole defects and imbalances. Through extensive data augmentation and class-weighting, the models achieved near-perfect binary classification of defective vs. non-defective parts. Notably, ResNet50 attained 99.98% accuracy (precision 0.9994, recall 1.0000), correctly identifying all defects with only one false alarm. MobileNetV3-Large and EfficientNet-B3 likewise exceeded 99.9% accuracy, with slightly more false positives, but offered advantages in model size or interpretability. Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations confirmed that each network focuses on meaningful geometric features (misaligned or irregular holes) when predicting defects, enhancing explainability. These results demonstrate that lightweight CNNs can reliably detect geometric deviations (e.g., mispositioned or missing holes) in real time. The proposed system significantly improves inline quality assurance by enabling timely, accurate, and interpretable defect detection on low-cost hardware, paving the way for smarter manufacturing inspection. Full article
Show Figures

Figure 1

11 pages, 2021 KiB  
Case Report
Microsurgical Reconstruction of Extensive Lower Limb Defects: Latissimus Dorsi Free Flap for Circumferential Soft Tissue Loss Following High-Energy Trauma
by Edoardo Filigheddu, Federico Ziani, Giovanni Arrica, Sofia De Riso, Anna Manconi, Corrado Rubino and Emilio Trignano
J. Clin. Med. 2025, 14(13), 4424; https://doi.org/10.3390/jcm14134424 - 21 Jun 2025
Viewed by 514
Abstract
Background/Objectives: High-energy trauma to the lower limb often results in extensive soft tissue loss with exposure of critical structures, posing a serious threat to limb viability. Early and effective coverage is crucial to prevent infection, promote bone healing, and preserve function. This report [...] Read more.
Background/Objectives: High-energy trauma to the lower limb often results in extensive soft tissue loss with exposure of critical structures, posing a serious threat to limb viability. Early and effective coverage is crucial to prevent infection, promote bone healing, and preserve function. This report presents the use of a latissimus dorsi free flap for circumferential soft tissue reconstruction following a severe crush injury. Methods: We describe the case of a young female patient who sustained a high-energy crush trauma with a comminuted, displaced fracture of the middle and distal third of the tibia and complete circumferential soft tissue loss. Due to the extent and location of the defect, a latissimus dorsi free flap was selected for reconstruction. The surgical technique, microsurgical anastomosis, postoperative care, and rehabilitation protocol are detailed. Results: The latissimus dorsi flap provided reliable coverage of the entire defect, protected the underlying bone and hardware, and promoted wound healing. No major complications were observed. Functional recovery was satisfactory, with progressive weight-bearing and joint mobility achieved during follow-up. Conclusions: In complex lower limb injuries with extensive soft tissue damage, free flap transfer remains a key strategy for limb salvage. The latissimus dorsi flap, due to its size, reliability, and versatility, represents a valuable option for circumferential coverage and restoration of limb function following high-energy trauma. Full article
Show Figures

Figure 1

30 pages, 1299 KiB  
Systematic Review
How Does Ceramic-Based Scaffold Microarchitecture Impact Maxillofacial Bone Regeneration? A Systematic Review of Large Animal Models
by Ana M. P. Baggio, Yannick M. Sillmann, Pascal Eber, Felicia R. S. Michallek, Joao L. G. C. Monteiro, Ana P. F. Bassi and Fernando P. S. Guastaldi
Appl. Sci. 2025, 15(12), 6899; https://doi.org/10.3390/app15126899 - 19 Jun 2025
Viewed by 424
Abstract
Critical-sized bone defects (CSBDs) are injuries that exceed the body’s natural capacity for repair and require external intervention. These defects are particularly challenging in the mandible, often resulting from trauma, tumor resection, or implant-related complications. Effective treatment involves scaffold designs that support vascularization, [...] Read more.
Critical-sized bone defects (CSBDs) are injuries that exceed the body’s natural capacity for repair and require external intervention. These defects are particularly challenging in the mandible, often resulting from trauma, tumor resection, or implant-related complications. Effective treatment involves scaffold designs that support vascularization, bone formation, and sufficient mechanical strength. This systematic review aims to assess whether ceramic-based scaffold properties, including porosity, pore size, and macroscopic characteristics, improve vascularization, bone formation, and the mechanical properties in the treatment of CSBDs in large animal models. A search of databases (PubMed, Embase, and Web of Science) identified 11 in vivo studies involving CSBDs (>2 cm), ceramic scaffolds, and histological analysis. Findings indicate that scaffolds with porosity exceeding 50% yield optimal outcomes by striking a balance between cell infiltration and mechanical stability. Pore sizes ranging from 300 μm to 700 μm are ideal for vascularization and bone ingrowth. Three-dimensional (3D) printing shows promise in creating scaffolds with precise and reproducible features. However, the studies varied significantly in their methodologies and outcomes, with no consensus on the optimal scaffold properties for mandibular CSBDs. Scaffold porosity and pore size play key roles in promoting vascularization and bone regeneration. Various animal models reinforce this finding, suggesting that scaffold architecture is crucial for biological integration and functional outcomes. This review highlights the importance of standardized research protocols and clear design criteria in enhancing the success of bone regeneration. Future research should investigate emerging biomaterials and new scaffold technologies to overcome current limitations in clinical applications. Full article
Show Figures

Figure 1

24 pages, 9633 KiB  
Article
Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss
by Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani and Donato Abruzzese
Buildings 2025, 15(12), 2058; https://doi.org/10.3390/buildings15122058 - 15 Jun 2025
Viewed by 337
Abstract
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing [...] Read more.
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 4332 KiB  
Article
Development of a Computer Vision-Based Method for Sizing and Boat Error Assessment in Olive Pitting Machines
by Luis Villanueva Gandul, Antonio Madueño-Luna, José Miguel Madueño-Luna, Miguel Calixto López-Gordillo and Manuel Jesús González-Ortega
Appl. Sci. 2025, 15(12), 6648; https://doi.org/10.3390/app15126648 - 13 Jun 2025
Cited by 1 | Viewed by 498
Abstract
Table olive pitting machines (DRRs) are essential in the agri-food industry but face significant limitations that constrain their performance and compromise process reliability. The main defect, known as the “boat error”, results from improper olive orientation during pitting, leading to bone fragmentation, pulp [...] Read more.
Table olive pitting machines (DRRs) are essential in the agri-food industry but face significant limitations that constrain their performance and compromise process reliability. The main defect, known as the “boat error”, results from improper olive orientation during pitting, leading to bone fragmentation, pulp damage, and potential risks to consumer safety. Traditional quality control methods, such as the use of flotation tanks and expert sensory evaluation, rely on destructive sampling, are time-consuming, and reduce overall productivity. To address these challenges, this study presents a novel computer vision (CV) system integrated into a commercial DRR machine. The system captures high-speed images of Gordal olives (Olea europaea regalis) just before pitting; these are later analyzed offline using a custom MATLAB application that applies HSV-based segmentation and morphological analysis to quantify the olive size and orientation. The method accurately identifies boat error cases based on angular thresholds, without interrupting the production flow or damaging the product. The results show that 97% of olives were correctly aligned, with only 1.1% presenting critical misorientation. Additionally, for the first time, the system allowed a detailed evaluation of the olive size distribution at the machine inlet, revealing an unexpected proportion of off-caliber olives. This contamination in sizing suggests a possible link between calibration deviations and the occurrence of boat errors, introducing a new hypothesis for future investigation. While the current implementation is limited to offline analysis, it represents a non-destructive, low-cost, and highly precise diagnostic tool. This work lays the foundation for a deeper understanding of DRR machine behavior and provides a framework for future developments aimed at optimizing their performance through targeted correction strategies. Full article
Show Figures

Figure 1

18 pages, 2053 KiB  
Article
Optimization of Hybrid Machining of Nomex Honeycomb Structures: Effect of the CZ10 Tool and Ultrasonic Vibrations on the Cutting Process
by Oussama Beldi, Tarik Zarrouk, Ahmed Abbadi, Mohammed Nouari, Jamal-Eddine Salhi, Mohammed Abbadi and Mohamed Barboucha
Machines 2025, 13(6), 515; https://doi.org/10.3390/machines13060515 - 13 Jun 2025
Viewed by 382
Abstract
Machining Nomex honeycomb composite structures is crucial for manufacturing components that meet stringent industry requirements. However, the complex characteristics of this material require specialized machining techniques to avoid defects, ensure optimal surface quality, and preserve the integrity of the cutting tool. Thus, hybrid [...] Read more.
Machining Nomex honeycomb composite structures is crucial for manufacturing components that meet stringent industry requirements. However, the complex characteristics of this material require specialized machining techniques to avoid defects, ensure optimal surface quality, and preserve the integrity of the cutting tool. Thus, hybrid ultrasonic-vibration-assisted machining (HUSVAM) technology, using a CZ10 combined cutting tool, was introduced to overcome these limitations. To this end, a 3D numerical model based on the finite element method, developed using Abaqus/Explicit 2017 software, allows us to simulate the interaction between the cutting tool and the thin walls of the structure to be machined. The objective of this study was to validate a numerical model through experimental tests while quantifying the impact of critical machining parameters, including the rotation speed and tilt angle, on process performance, in terms of surface finish, tool wear, cutting force components and chip size. The numerical results demonstrated that HUSVAM technology allows for a significant reduction in the cutting force components, with a decrease of between 12% and 35%. Furthermore, this technology improves cutting quality by limiting the deformation and tearing of cell walls, while extending tool life through a significant reduction in wear. These improvements thus contribute to a substantial optimization of the overall efficiency of the machining process. Full article
Show Figures

Figure 1

Back to TopTop