Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = critical micellar concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7777 KiB  
Article
Physicochemical and Computational Study of the Encapsulation of Resv-4′-LA and Resv-4′-DHA Lipophenols by Natural and HP-β-CDs
by Ana Belén Hernández-Heredia, Dennis Alexander Silva-Cullishpuma, José Pedro Cerón-Carrasco, Ángel Gil-Izquierdo, Jordan Lehoux, Léo Faion, Céline Crauste, Thierry Durand, José Antonio Gabaldón and Estrella Núñez-Delicado
Int. J. Mol. Sci. 2025, 26(15), 7454; https://doi.org/10.3390/ijms26157454 (registering DOI) - 1 Aug 2025
Viewed by 197
Abstract
This study investigates the self-assembly and host–guest complexation behaviour of novel resveratrol-based lipophenols (LipoResv)—resveratrol-4′-linoleate (Resv-4′-LA) and resveratrol-4′-docosahexaenoate (Resv-4′-DHA)—with hydroxypropyl-β-cyclodextrins (HP-β-CDs). These amphiphilic molecules display surfactant-like properties, forming micellar aggregates in aqueous media. Fluorescence spectroscopy was used to determine the critical micelle concentration (CMC), [...] Read more.
This study investigates the self-assembly and host–guest complexation behaviour of novel resveratrol-based lipophenols (LipoResv)—resveratrol-4′-linoleate (Resv-4′-LA) and resveratrol-4′-docosahexaenoate (Resv-4′-DHA)—with hydroxypropyl-β-cyclodextrins (HP-β-CDs). These amphiphilic molecules display surfactant-like properties, forming micellar aggregates in aqueous media. Fluorescence spectroscopy was used to determine the critical micelle concentration (CMC), revealing that LipoResv exhibit significantly lower CMC values than their free fatty acids, indicating higher hydrophobicity. The formation of inclusion complexes with HP-β-CDs was evaluated based on changes in CMC values and further confirmed by dynamic light scattering (DLS) and molecular modelling analyses. Resv-4′-LA formed 1:1 complexes (Kc = 720 M−1), while Resv-4′-DHA demonstrated a 1:2 stoichiometry with lower affinity constants (K1 = 17 M−1, K2 = 0.18 M−1). Environmental parameters (pH, temperature, and ionic strength) significantly modulated CMC and binding constants. Computational docking and molecular dynamics simulations supported the experimental findings by revealing the key structural determinants of the host–guest affinity and micelle stabilization. Ligand efficiency (LE) analysis further aligned with the experimental data, favouring the unmodified fatty acids. These results highlight the versatile encapsulation capacity of HP-β-CDs for bioactive amphiphile molecules and support their potential applications in drug delivery and functional food systems. Full article
Show Figures

Graphical abstract

29 pages, 2413 KiB  
Article
Effect of PPO/PEO Ratio on the Phase Behavior of Reverse Pluronics
by Alejandro Aguilar-Ramírez, César Alexsander Machado-Cervantes, Raúl Ortega-Córdova, Víctor Vladimir Amílcar Fernández-Escamilla, Yahya Rharbi, Gabriel Landázuri-Gómez, Emma Rebeca Macías-Balleza and J. Félix Armando Soltero-Martínez
Polymers 2025, 17(15), 2061; https://doi.org/10.3390/polym17152061 - 28 Jul 2025
Viewed by 350
Abstract
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved [...] Read more.
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved by varying the PPO/PEO ratio and the molecular weight, on the phase behavior of three reverse Pluronics: 10R5 [(PPO)8–(PEO)22–(PPO)8], 17R4 [(PPO)14–(PEO)24–(PPO)14] and 31R1 [(PPO)26–(PEO)7–(PPO)26]. A broad set of physical measurements, including density, sound velocity, viscosity, and surface tension, was used to characterize the physical properties of the solutions. These data were complemented by additional techniques such as direct observation, dynamic light scattering, and rheological measurements. Based on the primary measurements, molar volume, apparent adiabatic compressibility, and hydration profiles were subsequently derived. Phase diagrams were constructed for each system over concentration ranges of 0.1–90 wt.% and temperatures between 6 and 70 °C, identifying distinct regions corresponding to random networks, flower-like micelles, and micellar networks. Notably, the 31R1/water system does not form flower-like micelles, whereas both the 17R4/water and 10R5/water systems display such structures, albeit in a narrow interval, that shift toward higher concentrations and temperatures with increasing PPO/PEO ratio. Altogether, the present study provides new insights into the physicochemical behavior of reverse Pluronic systems, offering a foundation for their rational design as hydrophobic nanocarriers, either as standalone entities or in conjunction with other copolymers. Full article
(This article belongs to the Special Issue Self-Assembly of Block Copolymers and Nanoparticles)
Show Figures

Graphical abstract

13 pages, 1922 KiB  
Article
On an Ambrosetti-Prodi Type Problem with Applications in Modeling Real Phenomena
by Irina Meghea
Mathematics 2025, 13(14), 2308; https://doi.org/10.3390/math13142308 - 19 Jul 2025
Viewed by 153
Abstract
This work presents a solving method for problems of Ambrosetti-Prodi type involving p-Laplacian and p-pseudo-Laplacian operators by using adequate variational methods. A variant of the mountain pass theorem, together with a kind of Palais-Smale condition, is involved in order to obtain [...] Read more.
This work presents a solving method for problems of Ambrosetti-Prodi type involving p-Laplacian and p-pseudo-Laplacian operators by using adequate variational methods. A variant of the mountain pass theorem, together with a kind of Palais-Smale condition, is involved in order to obtain and characterize solutions for some mathematical physics issues. Applications of these results for solving some physical chemical problems evolved from the need to model real phenomena are displayed. Solutions for Dirichlet problems containing these two operators applied for modeling critical micellar concentration, as well as the volume fraction of liquid mixtures, have been drawn. Full article
Show Figures

Figure 1

14 pages, 1354 KiB  
Article
Assessment of the Interactions Between Hemicellulose Xylan and Kaolinite Clay: Structural Characterization and Adsorptive Behavior
by Enzo Díaz, Leopoldo Gutiérrez, Elizabeth Elgueta, Dariela Núñez, Isabel Carrillo-Varela and Vicente A. Hernández
Polymers 2025, 17(14), 1958; https://doi.org/10.3390/polym17141958 - 17 Jul 2025
Viewed by 305
Abstract
In this study, a methacrylic derivative of xylan (XYLMA) was synthesized through transesterification reactions, with the aim of evaluating its physicochemical behavior and its interaction with kaolinite particles. Structural characterization by FT-IR and NMR spectroscopy confirmed the incorporation of methacrylic groups into the [...] Read more.
In this study, a methacrylic derivative of xylan (XYLMA) was synthesized through transesterification reactions, with the aim of evaluating its physicochemical behavior and its interaction with kaolinite particles. Structural characterization by FT-IR and NMR spectroscopy confirmed the incorporation of methacrylic groups into the xylan (XYL) structure, with a degree of substitution of 0.67. Thermal analyses (TGA and DSC) showed a decrease in melting temperature and enthalpy in XYLMA compared to XYL, attributed to a loss of structural rigidity. Thermal analyses (TGA and DSC) revealed a decrease in the melting temperature and enthalpy of XYLMA compared to XYL, which is attributed to a loss of structural rigidity and a reduction in the crystalline order of the biopolymer. Aggregation tests in solution revealed that XYLMA exhibits amphiphilic behavior, forming micellar structures at a critical aggregation concentration (CAC) of 62 mg L−1. In adsorption studies on kaolinite, XYL showed greater affinity than XYLMA, especially at acidic pH, due to reduced electrostatic forces and a greater number of hydroxyl groups capable of forming hydrogen bonds with the mineral surface. In contrast, modification with methacrylic groups in XYLMA reduced its adsorption capacity, probably due to the formation of supramolecular aggregates. These results suggest that interactions between xylan and kaolinite clay are key to understanding the role that hemicelluloses play in increasing copper recovery when added to flotation cells during the processing of copper sulfide ores with high clay content. Full article
Show Figures

Figure 1

20 pages, 2974 KiB  
Article
The Application of a New Microbial Biosurfactant to Remove Residual Oil from Electric Power Plant and to Inhibit Metal Corrosion in a Salty Environment
by Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Attilio Converti, Alessandro Alberto Casazza, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Energies 2025, 18(13), 3359; https://doi.org/10.3390/en18133359 - 26 Jun 2025
Viewed by 432
Abstract
Human development has led to increased production of oil and gas, mainly as energy sources, which, however, are responsible for contamination and metal corrosion in industrial, marine, and terrestrial environments. Lubricating oil, in particular, is widely used in generators and industrial machines in [...] Read more.
Human development has led to increased production of oil and gas, mainly as energy sources, which, however, are responsible for contamination and metal corrosion in industrial, marine, and terrestrial environments. Lubricating oil, in particular, is widely used in generators and industrial machines in the electric sector and is responsible for contamination not only in industrial environments but also in many terrestrial and aquatic ecosystems. In this context, this study aimed to apply the Starmerella bombicola ATCC 222214 biosurfactant to inhibit metal corrosion in seawater and in an Accelerated Corrosion Chamber (ACC). For this purpose, its toxicity against the microcrustacean Artemia salina, its dispersion capacity, and its ability to promote oil biodegradation in a saline environment were investigated. The biosurfactant, when applied at twice its Critical Micellar Concentration (CMC), caused low mortality (30.0%) of microcrustaceans in a saline environment, and, in its crude form, the biosurfactant ensured the dispersion of no less than 77.56% of residual engine oil in seawater. Oil biodegradation by autochthonous microorganisms reached 94.39% in the presence of the biosurfactant in seawater. Furthermore, the biosurfactant, when used at twice its CMC, acted satisfactorily as a corrosion inhibitor by reducing the mass loss of galvanized iron specimens (plates) in seawater in a static system to only 0.36%. On the other hand, when the biosurfactant was added at the CMC as an atmospheric corrosion inhibitor, the reduction in mass loss of carbon steel plates treated in the ACC was 17.38% compared to the control containing only a biodegradable matrix based on vegetable resin. When the biosurfactant was incorporated into different paints applied to galvanized iron plates placed in contact with the salt spray produced in the ACC, the best result was obtained using the biomolecule at a concentration of 3% in the satin paint, ensuring a plate mass loss (29.236 g/m2) that was almost half that obtained without surfactant (52.967 g/m2). The study indicated the use of yeast biosurfactant as a sustainable alternative in combating the contamination of marine environments and metal corrosion, with the aim of preserving the environment and improving the quality of life in aquatic and terrestrial ecosystems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 3006 KiB  
Article
Self-Assembling Amphiphilic ABA Triblock Copolymers of Hyperbranched Polyglycerol with Poly(tetrahydrofuran) and Their Nanomicelles as Highly Efficient Solubilization and Delivery Systems of Curcumin
by Dóra Fecske, György Kasza, Gergő Gyulai, Kata Horváti, Márk Szabó, András Wacha, Zoltán Varga, Györgyi Szarka, Yi Thomann, Ralf Thomann, Rolf Mülhaupt, Éva Kiss, Attila Domján, Szilvia Bősze, Laura Bereczki and Béla Iván
Int. J. Mol. Sci. 2025, 26(12), 5866; https://doi.org/10.3390/ijms26125866 - 19 Jun 2025
Viewed by 615
Abstract
Delivering of hydrophobic drugs by polymeric nanoparticles is an intensively investigated research and development field worldwide due to the insufficient solubility of many existing and potential new drugs in aqueous media. Among polymeric nanoparticles, micelles of biocompatible amphiphilic block copolymers are among the [...] Read more.
Delivering of hydrophobic drugs by polymeric nanoparticles is an intensively investigated research and development field worldwide due to the insufficient solubility of many existing and potential new drugs in aqueous media. Among polymeric nanoparticles, micelles of biocompatible amphiphilic block copolymers are among the most promising candidates for solubilization, encapsulation, and delivery of hydrophobic drugs to improve the water solubility and thus the bioavailability of such drugs. In this study, amphiphilic ABA triblock copolymers containing biocompatible hydrophilic hyperbranched (dendritic) polyglycerol (HbPG) outer and hydrophobic poly(tetrahydrofuran) (PTHF) inner segments were synthesized using amine-telechelic PTHF as a macroinitiator for glycidol polymerization. These hyperbranched–linear–hyperbranched block copolymers form nanosized micelles with 15–20 nm diameter above the critical micelle concentration. Coagulation experiments proved high colloidal stability of the aqueous micellar solutions of these block copolymers against temperature changes. The applicability of block copolymers as drug delivery systems was investigated using curcumin, a highly hydrophobic, water-insoluble, natural anti-cancer agent. High and efficient drug solubilization up to more than 3 orders of magnitude to that of the water solubility of curcumin (>1500-fold) is achieved with the HbPG-PTHF-HbPG block copolymer nanomicelles, locating the drug in amorphous form in the inner PTHF core. Outstanding stability of and sustained curcumin release from the drug-loaded block copolymer micelles were observed. The in vitro bioactivity of the curcumin-loaded nanomicelles was investigated on U-87 glioblastoma cell line, and an optimal triblock copolymer composition was found, which showed highly effective cellular uptake and no toxicity. These findings indicate that the HbPG-PTHF-HbPG triblock copolymers are promising candidates for advanced drug solubilization and delivery systems. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Dendrimer Materials)
Show Figures

Figure 1

19 pages, 2246 KiB  
Article
Ammonium-Containing Methacrylic Polymer Brushes with Adjustable Hydrophilicity: Synthesis and Properties in Aqueous Solutions
by Denis Kamorin, Alexander Simagin, Oleg Kazantsev, Maria Savinova, Maria Simonova, Denis Sadkov, Ildar Arifullin and Yaroslav Dolinov
Polymers 2025, 17(9), 1200; https://doi.org/10.3390/polym17091200 - 27 Apr 2025
Viewed by 489
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization was used to synthesize novel thermoresponsive cationic molecular brushes with high yields—namely of copolymers of methoxyoligo(ethylene glycol) methacrylate, alkoxyoligo(ethylene glycol) methacrylate, and N-methacryloylaminopropyl-N,N-dimethyl-N-propylammonium bromide. Controlled polymerization yielded polymers with a molecular weight dispersity of ≤1.3 and conversions exceeding [...] Read more.
Reversible addition–fragmentation chain-transfer (RAFT) polymerization was used to synthesize novel thermoresponsive cationic molecular brushes with high yields—namely of copolymers of methoxyoligo(ethylene glycol) methacrylate, alkoxyoligo(ethylene glycol) methacrylate, and N-methacryloylaminopropyl-N,N-dimethyl-N-propylammonium bromide. Controlled polymerization yielded polymers with a molecular weight dispersity of ≤1.3 and conversions exceeding 80%. The influence of the cationic molecular brushes’ composition on their solubility in water and organic solvents, interfacial tension at the water–oil interface, and aggregation behavior in aqueous solutions was investigated. For the first time, we report the design of thermoresponsive cationic molecular brushes combining an antibacterial potential and tunable hydrophilic–hydrophobic properties, enabling highly precise control over their LCST behavior (17–68 °C) through composition tuning. The solubilization capacity of the hydrophobic compounds of brush micelles in water increased with the hydrophobic comonomer content. These polymers exhibited interfacial activity, significantly reducing the water–oil interfacial tension, with critical micelle concentrations (CMCs) of 3–10 mg/L. It was shown that the amphiphilic properties of the copolymers in aqueous solutions can be easily tuned in a desired direction by varying the content of the comonomer units. The obtained data indicate the potential of the polymers as micellar nanocarriers for controlled drug delivery. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

20 pages, 3259 KiB  
Article
The Rheological Enhancement of an Internal Olefin Sulphonate Surfactant upon Interactions with Cationic Surfactants by Micellization Changes
by Ana María Lozada, María Isabel Sandoval and Ronald Mercado
Materials 2025, 18(6), 1270; https://doi.org/10.3390/ma18061270 - 13 Mar 2025
Viewed by 572
Abstract
Enhanced oil recovery (EOR) methods traditionally rely on polymer solutions to improve viscosity and elasticity; however, their effectiveness is limited under high-temperature, high-salinity, and high-shear conditions, leading to elevated operational costs. Anionic/cationic formulations have been studied in terms of interfacial tension reduction for [...] Read more.
Enhanced oil recovery (EOR) methods traditionally rely on polymer solutions to improve viscosity and elasticity; however, their effectiveness is limited under high-temperature, high-salinity, and high-shear conditions, leading to elevated operational costs. Anionic/cationic formulations have been studied in terms of interfacial tension reduction for EOR applications. This study presents a novel approach to EOR by enhancing the rheological properties of an anionic internal olefin sulfonate surfactant through interactions with cationic surfactants, eliminating the need for polymer molecules. This research demonstrates that cationic surfactants can induce micellization changes, resulting in substantial viscosity enhancement and viscoelasticity development. The effect is found to depend on the hydrocarbon chain length and concentration of the cationic surfactants, with longer chains yielding higher viscosity and more pronounced non-Newtonian behavior. Additionally, this study reveals that the addition of NaCl alters micellar organization, with the order of component additions playing a critical role in rheological performance. This kinetic-dependent micellization behavior, rarely explored in EOR applications, highlights the potential of counterion surfactants as viscosity enhancers in surfactant-based flooding processes. Oscillatory rheology confirms that cationic/anionic surfactant systems in this study exhibit stable viscoelastic behavior, making them potentially more suitable for harsh reservoir environments than polymer-based EOR fluids. These findings open new avenues for the development of cost-effective and tailored surfactant formulations, offering an alternative to polymer solutions under challenging reservoir conditions. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 3501 KiB  
Article
CO2-Responsive Worm-like Micelle Based on Double-Tailed Surfactant
by Fanghui Liu, Huiyu Huang, Mingmin Zhang, Meng Mu, Rui Chen and Xin Su
Materials 2025, 18(4), 902; https://doi.org/10.3390/ma18040902 - 19 Feb 2025
Cited by 1 | Viewed by 599
Abstract
CO2-responsive worm-like micelles (WLMs) are considered promising for applications in smart materials, enhanced oil recovery, and drug delivery because of their reversible and tunable properties. This study presents a novel system of CO2-responsive WLMs, which is constructed using a [...] Read more.
CO2-responsive worm-like micelles (WLMs) are considered promising for applications in smart materials, enhanced oil recovery, and drug delivery because of their reversible and tunable properties. This study presents a novel system of CO2-responsive WLMs, which is constructed using a double-tailed surfactant (DTS). When exposed to CO2, the DTS molecules undergo protonation, resulting in the formation of ultra-long-chain cationic surfactants that self-assemble into worm-like micelles. The zero-shear viscosity of the DTS–CO2 solution achieves approximately 300,000 mPa·s, which is 300,000 times higher than that of pure water. In contrast, the DTS–air solution exhibits a viscosity of only 2 mPa·s. The system retains a viscosity above 100,000 mPa·s across a temperature range of 25–120 °C under a CO2 atmosphere. Moreover, it demonstrates reversible transitions between high- and low-viscosity states without any loss of responsiveness, even after multiple cycles. The critical overlap concentration of the DTS–CO2 micellar system is determined to be 80 mM. This research offers valuable insights into the development of CO2-responsive surfactants, highlighting their potential for designing advanced functional materials. Full article
Show Figures

Figure 1

13 pages, 5858 KiB  
Article
Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation
by Maria Micheva, Stanislav Baluschev and Katharina Landfester
Nanomaterials 2025, 15(2), 123; https://doi.org/10.3390/nano15020123 - 16 Jan 2025
Viewed by 3376
Abstract
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of [...] Read more.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge. The process of triplet–triplet annihilation upconversion (TTA-UC), performed in a nanoconfined environment with a continuous aqueous phase, appears to be a possible solution to these severe sensing problems. This process generates two optical signals (delayed emitter fluorescence (dF) and residual sensitizer phosphorescence (rPh)) in response to a single external stimulus (local temperature), allowing the application of the ratiometric-type sensing procedure. The ability to incorporate large amounts of sacrificial singlet oxygen scavenging materials, without altering the temperature sensitivity, allows long-term protection against photo-oxidative damage to the sensing moieties. Translucent agarose/silk fibroin hydrogels embedding non-ionic micellar systems containing energetically optimized annihilation couples simultaneously fulfill two critical functions: first, to serve as mechanical support (for further application as a cell culture scaffold); second, to allow tuning of the material response window to achieve a maximum temperature sensitivity better than 0.5 K for the physiologically important region around 36 °C. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

8 pages, 1246 KiB  
Short Note
3-(4-Ferrocenyl-1H-1,2,3-triazol-1-yl)cholic Acid
by Valeria D’Annibale, Venanzio Raglione, Francesco Lisi, Elisa Verdirosi, Lorenza Romagnoli, Danilo Dini, Luciano Galantini and Andrea D’Annibale
Molbank 2024, 2024(4), M1940; https://doi.org/10.3390/M1940 - 19 Dec 2024
Viewed by 852
Abstract
Surfactants are very important compounds that are ubiquitous in biological systems and detergents. Among them, ferrocene surfactants are a very valuable class of stimuli-responsive materials since the presence of ferrocene moiety discloses the chance to control and even modify their amphiphilic properties via [...] Read more.
Surfactants are very important compounds that are ubiquitous in biological systems and detergents. Among them, ferrocene surfactants are a very valuable class of stimuli-responsive materials since the presence of ferrocene moiety discloses the chance to control and even modify their amphiphilic properties via a redox-induced change in the surfactant charge. In this paper, we report a new ferrocene-based surfactant: a ferrocene C-3 derivative of cholic acid, a non-classical surfactant. The title compound of this work was meant to show the significant self-assembly behaviour typical of bile salts, improved by the presence of the aromatic ferrocene subunit. We intended to demonstrate that the presence of the redox mediator should provide the derivative with sensitivity to an oxidative stimulus and control over the aggregation properties. The title compound was prepared in two steps from easily accessible precursors, and its optical properties were investigated through UV-Vis absorption spectroscopy. The determination of its critical micellar concentration and redox potential confirmed this derivative’s amphiphilic nature and its tendency to be reversibly oxidized. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

21 pages, 8325 KiB  
Article
Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation
by Dileep Kumar and Mihalj Poša
Int. J. Mol. Sci. 2024, 25(23), 13055; https://doi.org/10.3390/ijms252313055 - 4 Dec 2024
Cited by 5 | Viewed by 1088
Abstract
Bile acid salts are steroid biosurfactants that build relatively small micelles compared to surfactants with an alkyl chain due to the rigid conformation of the steroid skeleton. In order to increase the capacity of micellar solubilization of the hydrophobic molecular guest, certain C7 [...] Read more.
Bile acid salts are steroid biosurfactants that build relatively small micelles compared to surfactants with an alkyl chain due to the rigid conformation of the steroid skeleton. In order to increase the capacity of micellar solubilization of the hydrophobic molecular guest, certain C7 alkyl derivatives were synthesized. Namely, introducing an alkyl group in the C7 position of the steroid skeleton results in a more effective increase in the micelle’s hydrophobic domain (core) than the introduction in the C3 position. In comparison, fewer synthetic steps are required than if alkyl groups are introduced into the C12 position of cholic acid in the Grignard reaction. Here, the thermodynamic parameters of micellization (demicellization) of C7 alkyl (number of C atoms in the alkyl group: 2, 3, 4, and 8) derivatives of cholic acid anion in an aqueous solution without additives are examined (which have not yet been determined) in the temperature interval T (10–40) °C. The critical micellar concentration and the change in the standard molar enthalpy of demicellization (hdemic0) are determined by isothermal calorimetric titration (ICT). From the temperature dependence of hdemic0, the change in the standard molar heat capacity of demicellization is obtained (Cdemic0), the value of which is proportional to the hydrophobic surface of the monomer, which in the micellar state is protected from hydrophobic hydration. The values of Cdemic0 indicate that in the case of C7-alkyl derivatives of cholic acid anion with butyl and octyl chains, parts of the steroid skeleton and alkyl chain remain shielded from hydration after disintegration of the micelle. Conformational analysis can show that starting from the C7 butyl chain in the alkyl chain, sequences with gauche conformation are also possible without the formation of steric repulsive strain between the alkyl chain and the steroid skeleton so that the C7 alkyl chain takes an orientation above the convex surface of the steroid skeleton instead of an elongated conformation toward the aqueous solution. This is a significant observation, namely, if the micelle is used as a carrier of a hydrophobic drug and after the breakdown of the micelle in the biological system, the released drug has a lower tendency to associate with the monomer if its hydrophobic surface is smaller, i.e., the alkyl chain is oriented towards the angular methyl groups of the steroid skeleton (the ideal monomer increases the hydrophobic domain of the micelle, but in aqueous solution, it adopts a conformation with the as small hydrophobic surface as possible oriented towards the aqueous solution)—which then does not disturb the passage of the drug through the cell membrane. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

18 pages, 4915 KiB  
Article
Application of Pseudomonas cepacia CCT 6659 Biosurfactant as a Metal Corrosion Inhibitor in a Constructed Accelerated Corrosion Chamber (ACC)
by Rita de Cássia F. Soares da Silva, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Yasmim K. Silva, Kaio W. Oliveira, Gleice Paula Araujo, Nathália Maria P. Rocha e Silva, Attilio Converti and Leonie A. Sarubbo
Fermentation 2024, 10(12), 602; https://doi.org/10.3390/fermentation10120602 - 25 Nov 2024
Cited by 2 | Viewed by 1284
Abstract
Corrosion is the deterioration of metals due to environmental exposure. Commercial inhibitors used to control corrosion often contain heavy metal salts, which are highly toxic to both the environment and human health. A biosurfactant produced by the bacterium Pseudomonas cepacia CCT 6659 was [...] Read more.
Corrosion is the deterioration of metals due to environmental exposure. Commercial inhibitors used to control corrosion often contain heavy metal salts, which are highly toxic to both the environment and human health. A biosurfactant produced by the bacterium Pseudomonas cepacia CCT 6659 was tested as a corrosion inhibitor on carbon steel and galvanized iron surfaces. Matrices based on plant ingredients with different compositions were tested in a laboratory-constructed accelerated corrosion chamber (ACC) simulating a critical maritime atmosphere in conditions of 40 °C, 5% NaCl, and 100% humidity. The most stable matrix was selected for biosurfactant incorporation in different concentrations, expressed as critical micellar concentration (CMC), and was applied to metal surfaces to evaluate its ability to inhibit corrosion. Additionally, to evaluate the potential of the biosurfactant as a low-toxicity corrosion inhibitor additive in paint systems, iron and carbon steel samples were coated with three biosurfactant-containing commercial paints and subjected to critical atmospheric conditions for testing coating effectiveness. The formulation containing vegetable resin as a plasticizer, oleic acid, ethanol, and CaCO3 was chosen to incorporate the biosurfactant. The addition of the biosurfactant at twice its CMC led to a reduction in carbon steel sample mass loss from 123.6 to 82.2 g/m2, while in the galvanized iron plates, the mass loss decreased from 285.9 to 226.7 g/m2 at the same biosurfactant concentration. When supplemented with the biosurfactant, the alkyd resin-based paint (A) ensured less mass loss in samples (46.0 g/m2) compared to the control without biosurfactant (58.0 g/m2). Using the paint formulated with oil-based resin (B), the mass loss decreased from 53.0 to 24.1 g/m2, while with that based on petroleum derivatives (C), it decreased from 82.2 to 27.6 g/m2. These results confirm the feasibility of using biosurfactants in biodegradable coatings, reducing the need for commercial corrosion inhibitors. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

18 pages, 3239 KiB  
Article
Adsorption, Adhesion, and Wettability of Commercially Available Cleansers at Dental Polymer (PMMA) Surfaces
by Stanisław Pogorzelski, Paulina Janowicz, Krzysztof Dorywalski, Katarzyna Boniewicz-Szmyt and Paweł Rochowski
Materials 2024, 17(19), 4755; https://doi.org/10.3390/ma17194755 - 27 Sep 2024
Cited by 1 | Viewed by 921
Abstract
This study aims to evaluate the adsorptive, adhesive, and wetting energetic properties of five commercially available cleansers in contact with model dental polymer (PMMA). It was assumed that the selected parameters allow for determining the optimal concentration and place of key component accumulation [...] Read more.
This study aims to evaluate the adsorptive, adhesive, and wetting energetic properties of five commercially available cleansers in contact with model dental polymer (PMMA). It was assumed that the selected parameters allow for determining the optimal concentration and place of key component accumulation for antibacterial activity in the bulk liquid phase and prevention of oral plaque formation at the prosthetic material surface. The adsorptive (Gibbs’ excesses ΓLV, critical micellar concentration) and thermal (entropy and enthalpy) surface characteristics originated from surface tension γLV(T) and γLV(C) dependences. The surface wetting properties were quantified upon the contact angle hysteresis formalism on the advancing ΘA, receding ΘR contact angles, and γLV as the input data, which yield a set of wettability parameters: 2D adsorptive film pressure, surface free energy with its dispersive and polar components, work of adhesion, and adhesional tension, considered as interfacial interaction indicators. In particular, molecular partitioning Kp and ΓLV are indicators of the efficiency of particular active substance accumulation in the volume phase, while γSV, a = ΓSL/ΓLV, and WA point to the degree of its accumulation at the immersed polymer surface. Finally, the liquid penetration coefficient PC and the Marangoni temperature gradient-driven liquid flow speed were estimated. Full article
Show Figures

Figure 1

15 pages, 824 KiB  
Article
Transglutaminase Crosslinked Milk Protein Concentrate and Micellar Casein Concentrate: Impact on the Functionality of Imitation Mozzarella Cheese Manufactured on a Small Scale Using a Rapid Visco Analyzer
by Prafulla Salunke and Lloyd E. Metzger
Foods 2024, 13(17), 2720; https://doi.org/10.3390/foods13172720 - 27 Aug 2024
Cited by 1 | Viewed by 1129
Abstract
In dairy-based imitation mozzarella cheese (IMC) formulations, intact casein is critical and imparts IMC with a firm and elastic, stringy, melted texture. Rennet casein (RCN) is the desired ingredient to provide intact casein in IMC and is preferred over milk protein concentrate (MPC) [...] Read more.
In dairy-based imitation mozzarella cheese (IMC) formulations, intact casein is critical and imparts IMC with a firm and elastic, stringy, melted texture. Rennet casein (RCN) is the desired ingredient to provide intact casein in IMC and is preferred over milk protein concentrate (MPC) and micellar casein concentrate (MCC). Transglutaminase (TGase), a crosslinking enzyme, alters the physical properties of MPC or MCC and may change IMC functionality. The objective of this study was to determine the effect of TGase-crosslinked MPC and MCC powders on the functionality of IMCs. The TGase treatment included TGase at 0.3 (L) and 3.0 (H) units/g of protein and a control (C) with no TGase addition. Each IMC formulation was balanced for constituents and was produced in a Rapid Visco Analyzer (RVA). The MCC or MPC powder with high TGase enzyme in IMC formulation did not form an emulsion. The IMC containing TGase-treated powders had a significantly (p ≤ 0.05) higher RVA-viscosity during manufacture and transition temperature (TT), and a significantly (p ≤ 0.05) lower Schreiber melt test area. The IMC made from MPC (with or without TGase) had lower TT values and Schreiber melt test area as compared with that made from MCC. The TGase-treated MPC and MCC, when used for IMC manufacture, were comparable to IMC manufactured with RCN in texture and some measured melted characteristics. In conclusion, TGase treatment alters the melt characteristics of MCC and MPC in IMC applications. Full article
Show Figures

Figure 1

Back to TopTop