Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (917)

Search Parameters:
Keywords = critical failure load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 234
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

17 pages, 5711 KiB  
Article
Impact of High-Temperature Exposure on Reinforced Concrete Structures Supported by Steel Ring-Shaped Shear Connectors
by Atsushi Suzuki, Runze Yang and Yoshihiro Kimura
Buildings 2025, 15(15), 2626; https://doi.org/10.3390/buildings15152626 - 24 Jul 2025
Viewed by 178
Abstract
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical [...] Read more.
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical and lateral load paths in containment systems. Scaled-down cyclic loading tests were performed on pedestal specimens with and without prior thermal exposure, simulating post-accident conditions observed at a damaged nuclear power plant. Experimental results show that thermal degradation significantly reduces lateral stiffness, with failure mechanisms concentrating at the interface between the concrete and the embedded steel skirt. Complementary finite element analyses, incorporating temperature-dependent material degradation, highlight the crucial role of load redistribution to steel components when concrete strength is compromised. Parametric studies reveal that while geometric variations in the inner skirt have limited influence, thermal history is the dominant factor affecting vertical capacity. Notably, even with substantial section loss in the concrete, the steel inner skirt maintained considerable load-bearing capacity. This study establishes a validated analytical framework for assessing structural performance under extreme conditions, offering critical insights for risk evaluation and retrofit strategies in the context of nuclear facility decommissioning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4172 KiB  
Article
Transient Dynamic Analysis of Composite Vertical Tail Structures Under Transportation-Induced Vibration Loads
by Wei Zheng, Wubing Yang, Sen Li, Dawei Wang, Weidong Yu, Zhuang Xing, Lan Pang, Zhenkun Lei and Yingming Wang
Symmetry 2025, 17(8), 1182; https://doi.org/10.3390/sym17081182 - 24 Jul 2025
Viewed by 211
Abstract
The potential damage to aviation products caused by vibration and shock during road transportation has long been overlooked, despite structural failure under dynamic loading emerging as a critical technical challenge affecting product reliability. For aviation components, both stress and vibration analysis are essential [...] Read more.
The potential damage to aviation products caused by vibration and shock during road transportation has long been overlooked, despite structural failure under dynamic loading emerging as a critical technical challenge affecting product reliability. For aviation components, both stress and vibration analysis are essential prerequisites prior to formal assembly. This study investigates a symmetric vertical tail, a common aviation structure, employing an innovative model group analysis method to characterize its dynamic stress and strain distributions under real transportation conditions. Experimental measurements of vibration acceleration and impact loads during transport served as input data for constructing a numerical model based on stress and vibration theory. The model elucidates the mechanical responses of the tail in both modal and vibrational states, enabling effectively evaluation of dynamic vibrations on the tail and its critical subcomponents during road transport. The findings provide actionable insights for optimizing aviation component packaging design, mitigating vibration-induced damage, and enhancing transportation safety. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

20 pages, 5786 KiB  
Article
Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates
by Pawel Wysmulski
Materials 2025, 18(15), 3452; https://doi.org/10.3390/ma18153452 - 23 Jul 2025
Viewed by 242
Abstract
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2 [...] Read more.
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2/90°/−45°/45°]. Four central hole plates of 0 mm (reference), 2 mm, 4 mm, and 8 mm in diameter were analyzed. Tests were conducted using a Cometech universal testing machine in combination with the ARAMIS digital image correlation (DIC) system, enabling the non-contact measurement of real-time displacements and local deformations in the region of interest. The novel feature of this work was its dual use of independent measurement methods—machine-based and DIC-based—allowing for the assessment of boundary condition effects and grip slippage on failure load accuracy. The experiments were carried out until complete structural failure, enabling a post-critical analysis of material behavior and failure modes for different geometric configurations. The study investigated load–deflection and load–shortening curves, failure mechanisms, and ultimate loads. The results showed that the presence of a hole leads to localized deformation, a change in the failure mode, and a nonlinear reduction in load-carrying capacity—by approximately 30% for the largest hole. These findings provide complementary data for the design of thin-walled composite components with technological openings and serve as a robust reference for numerical model validation. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

25 pages, 4994 KiB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 413
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

28 pages, 5939 KiB  
Article
Buckling Performance of Prefabricated Light-Gauge Steel Frame Materials Under Combined Random Defects During Construction: A CRITIC-Based Analysis
by Gang Yao, Ting Lei, Yang Yang and Mingtao Zhu
Materials 2025, 18(14), 3406; https://doi.org/10.3390/ma18143406 - 21 Jul 2025
Viewed by 229
Abstract
Light-gauge steel frame (LGSF) materials are inherently susceptible to stochastic imperfections arising from their design, manufacturing, and erection. These defects can compromise operational integrity and adversely impact structural stability, especially during the construction period. Consequently, a thorough investigation into the buckling characteristics of [...] Read more.
Light-gauge steel frame (LGSF) materials are inherently susceptible to stochastic imperfections arising from their design, manufacturing, and erection. These defects can compromise operational integrity and adversely impact structural stability, especially during the construction period. Consequently, a thorough investigation into the buckling characteristics of LGSF materials with such imperfections is imperative. Conventional stochastic probabilistic methods, such as Monte Carlo simulations, often fail to fully capture intrinsic material and complex structural properties, leading to discrepancies between computational predictions and actual behavior. To address these limitations, this study introduces an innovative model using the Criteria Importance Through Intercriteria Correlation (CRITIC) method to assess LGSF materials under combined defects scenarios. The CRITIC method systematically evaluates various buckling modes in LGSFs under combined defects to identify the most detrimental modal combination, representing the most unfavorable scenario. Rigorous finite element analysis is then performed on the LGSF model based on this critical scenario. Compared to conventional approaches, the proposed CRITIC-based combined defects analysis model predicts a 0%~5% reduction in the critical load factor and a 1%~3% increase in ultimate displacement at control nodes. These findings indicate that the CRITIC-based method yields a more critical combination of buckling modes, thereby enhancing the reliability and safety of the simulation results. Furthermore, this research demonstrates that, for LGSF materials, the common assumption that the first-order buckling mode is inherently the most deleterious failure pattern is inaccurate. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 7122 KiB  
Article
Experimental Study on Two Types of Novel Prefabricated Counterfort Retaining Wall: Performance Characteristics and Earth Pressure Reduction Effect of Geogrids
by Ao Luo, Yutao Feng, Detan Liu, Junjie Wang, Shi Wang, Huikun Ling and Shiyuan Huang
Coatings 2025, 15(7), 841; https://doi.org/10.3390/coatings15070841 - 18 Jul 2025
Viewed by 256
Abstract
Conventional cast-in-place counterfort retaining walls, while widely used to support the fill body in geotechnical engineering cases, suffer from extended construction cycles and environmental impacts that constrain their usage more widely. In this study, in order to overcome these limitations, the performance of [...] Read more.
Conventional cast-in-place counterfort retaining walls, while widely used to support the fill body in geotechnical engineering cases, suffer from extended construction cycles and environmental impacts that constrain their usage more widely. In this study, in order to overcome these limitations, the performance of two types of innovative prefabricated counterfort retaining wall system—a monolithic design and a modular design—was investigated through physical modeling. The results reveal that failure mechanisms are fundamentally governed by the distribution of stress at the connection interfaces. The monolithic system, with fewer connections, concentrates stress and is more vulnerable to cracking at the primary joints. In contrast, the modular system disperses loads across numerous connections, reducing localized stress. Critically, this analysis identified a construction-dependent failure mode: incomplete contact between the foundation and the base slab induces severe bending moments that can lead to catastrophic failure. Furthermore, this study shows that complex stress states due to backfill failure can induce detrimental tensile forces on the wall structure. To address this, a composite soil material–wall structure system incorporating geogrid reinforcement was developed. This system significantly enhances the backfill’s bearing capacity and mitigates adverse loading. Based on the comprehensive analysis of settlement and structural performance, the optimal configuration involves concentrating geogrid layers in the upper third of section of the backfill, with sparser distribution below. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 312
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

28 pages, 16653 KiB  
Article
Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
by Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi and Shuxiang Liu
Appl. Sci. 2025, 15(14), 7971; https://doi.org/10.3390/app15147971 - 17 Jul 2025
Viewed by 135
Abstract
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, [...] Read more.
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, and punch-through risk, thereby filling the gap in holistic platform stability analysis. An entire four-legged centrifuge test at 150× g was integrated with coupled Eulerian–Lagrangian (CEL) numerical simulations and theoretical methods to systematically investigate spudcan penetration mechanisms and global sliding/overturning evolution in clay/sand. The key findings reveal that soil properties critically influence penetration resistance and platform stability: Sand exhibited a six-times-higher ultimate bearing capacity than clay, yet its failure zone was 42% smaller. The sliding resistance in sand was 2–5 times greater than in clay, while the overturning behavior diverged significantly. Although the horizontal loads in clay were only 50% of those in sand, the tilt angles at equivalent sliding distances reached 8–10 times higher. Field validation at Guangdong Lemen Wind Farm confirmed the method’s reliability: penetration prediction errors of <5% and soil backflow/plugging effects were identified as critical control factors for punch-through risk assessment. Notably, the overturning safety factors for crane operation at 90° outreach and storm survival were equivalent, indicating operational load combinations dominate overturning risks. These results provide a theoretical and decision-making basis for the safe operation of large WTIVs, particularly applicable to engineering practices in complex stratified seabed areas. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Viewed by 181
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 4942 KiB  
Review
A Review of Crack Sealing Technologies for Asphalt Pavement: Materials, Failure Mechanisms, and Detection Methods
by Weihao Min, Peng Lu, Song Liu and Hongchang Wang
Coatings 2025, 15(7), 836; https://doi.org/10.3390/coatings15070836 - 17 Jul 2025
Viewed by 355
Abstract
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s [...] Read more.
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s structural integrity and extends service life. This paper presents a systematic review of the development of crack sealing technology, conducts a comparative analysis of conventional sealing materials (including emulsified asphalt, hot-applied asphalt, polymer-modified asphalt, and rubber-modified asphalt), and examines the existing performance evaluation methodologies. Critical failure mechanisms are thoroughly investigated, including interfacial bond failure resulting from construction defects, material aging and degradation, hydrodynamic scouring effects, and thermal cycling impacts. Additionally, this review examines advanced sensing methodologies for detecting premature sealant failure, encompassing both non-destructive testing techniques and active sensing technologies utilizing intelligent crack sealing materials with embedded monitoring capabilities. Based on current research gaps, this paper identifies future research directions to guide the development of intelligent and sustainable asphalt pavement crack repair technologies. The proposed research framework provides valuable insights for researchers and practitioners seeking to improve the long-term effectiveness of pavement maintenance strategies. Full article
Show Figures

Figure 1

19 pages, 1827 KiB  
Article
Discrete Element Modeling of Concrete Under Dynamic Tensile Loading
by Ahmad Omar and Laurent Daudeville
Materials 2025, 18(14), 3347; https://doi.org/10.3390/ma18143347 - 17 Jul 2025
Viewed by 218
Abstract
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding [...] Read more.
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding of concrete behavior under high strain rates is essential for safe and resilient design. Experimental investigations, particularly spalling tests, have highlighted the strain-rate sensitivity of concrete in dynamic tensile loading conditions. This study presents a macroscopic 3D discrete element model specifically developed to simulate the dynamic response of concrete subjected to extreme loading. Unlike conventional continuum-based models, the proposed discrete element framework is particularly suited to capturing damage and fracture mechanisms in cohesive materials. A key innovation lies in incorporating a physically grounded strain-rate dependency directly into the local cohesive laws that govern inter-element interactions. The originality of this work is further underlined by the validation of the discrete element model under dynamic tensile loading through the simulation of spalling tests on normalstrength concrete at strain rates representative of severe impact scenarios (30–115 s−1). After calibrating the model under quasi-static loading, the simulations accurately reproduce key experimental outcomes, including rear-face velocity profiles and failure characteristics. Combined with prior validations under high confining pressure, this study reinforces the capability of the discrete element method for modeling concrete subjected to extreme dynamic loading, offering a robust tool for predictive structural assessment and design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 5885 KiB  
Article
Investigation of Buckling and Failure in Thin-Walled Columns Fabricated from PLA and PETG Using FDM 3D Printing
by Denys Baranovskyi, Pawel Wysmulski, Patryk Rozylo, Hubert Debski, Maryna Bulakh, Marcin Kopyść and Sergey Myamlin
Materials 2025, 18(14), 3346; https://doi.org/10.3390/ma18143346 - 17 Jul 2025
Viewed by 274
Abstract
This paper presents the results of an experimental study on the buckling and failure behavior of thin-walled square columns made from PLA and PETG polymers using FDM 3D printing technology. Thin-walled square columns made from thermoplastic materials, intended for use in lightweight load-bearing [...] Read more.
This paper presents the results of an experimental study on the buckling and failure behavior of thin-walled square columns made from PLA and PETG polymers using FDM 3D printing technology. Thin-walled square columns made from thermoplastic materials, intended for use in lightweight load-bearing applications such as structural supports in transportation, construction, and mechanical assemblies, were tested under axial compression from the onset of buckling to complete failure. The novelty of this work lies in the application of an interdisciplinary experimental approach to the analysis of the behavior of thin-walled columns made of PLA and PETG materials during FDM 3D printing under compression until complete failure, as well as the use of acoustic and optical diagnostic methods for a comprehensive assessment of damage. The experimental results are as follows: Buckling load (N): PLA—1175 ± 32, PETG1—1910 ± 34, PETG2—1315 ± 27. Ultimate load (N): PLA—2770, PETG1—4077, PETG2—2847. Maximum strain: PLA—11.35%, PETG1—11.77%, PETG2—10.99%. Among the tested materials, PETG1 exhibited the highest resistance and energy absorption capacity upon failure, making it a favorable choice for manufacturing 3D-printed load-bearing columns. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

13 pages, 1097 KiB  
Article
Research on an Algorithm of Power System Node Importance Assessment Based on Topology–Parameter Co-Analysis
by Guowei Sun, Xianming Sun, Junqi Geng and Guangyang Han
Energies 2025, 18(14), 3778; https://doi.org/10.3390/en18143778 - 17 Jul 2025
Viewed by 243
Abstract
As power grids continue to expand in scale, the occurrence of cascading failures within them can lead to significant economic losses. Therefore, assessing the criticality of grid nodes is crucial for ensuring the secure and stable operation of power systems and for mitigating [...] Read more.
As power grids continue to expand in scale, the occurrence of cascading failures within them can lead to significant economic losses. Therefore, assessing the criticality of grid nodes is crucial for ensuring the secure and stable operation of power systems and for mitigating losses when cascading failures occur. The classical Local Link Similarity (LLS) algorithm in complex networks evaluates the importance of network nodes from a neighborhood topology perspective, but it suffers from issues such as the excessive weighting of node degrees and the neglect of electrical parameters. Based on the classical algorithm, this paper first develops the Improved Local Link Similarity (ILLS) algorithm by substituting alternative similarity metrics and comparatively evaluating their performance. Building upon the ILLS, we then propose the Electrical LLS (ELLS) algorithm by integrating node power flow and electrical coupling connectivity as multiplicative factors, with optimal combinations determined via simulation experiments. Compared to classical approaches, ELLS demonstrates superior adaptability to power grid contexts and delivers enhanced accuracy in power system node importance assessments. These algorithms are applied to rank the node importance in the IEEE 300-bus system. Their performance is evaluated using the loss-of-load-size metric, comparing ELLS, ILLS, and the classical algorithm. The results demonstrate that under the loss-of-load-size metric, the ELLS algorithm achieves approximately 25% higher accuracy compared to both the ILLS and the classical algorithm, validating its effectiveness. Full article
Show Figures

Figure 1

38 pages, 15401 KiB  
Article
Failure Behavior of Aluminum Solar Panel Mounting Structures Subjected to Uplift Pressure: Effects of Foundation Defects
by Sachi Furukawa, Hiroki Mikami, Takehiro Okuji and Koji Takamori
Solar 2025, 5(3), 33; https://doi.org/10.3390/solar5030033 - 15 Jul 2025
Viewed by 190
Abstract
This study investigates the failure behavior of aluminum solar panel mounting structures subjected to uplift pressure, with particular focus on conditions not typically considered in conventional design, specifically, foundation defects. To clarify critical failure modes and evaluate potential countermeasures, full-scale pressure loading tests [...] Read more.
This study investigates the failure behavior of aluminum solar panel mounting structures subjected to uplift pressure, with particular focus on conditions not typically considered in conventional design, specifically, foundation defects. To clarify critical failure modes and evaluate potential countermeasures, full-scale pressure loading tests were conducted. The results showed that when even a single column base was unanchored, structural failure occurred at approximately half the design wind pressure. Although reinforcement measures—such as the installation of uplift-resistant braces—increased the failure pressure to 1.5 times the design value, they also introduced the risk of undesirable failure modes, including panel detachment. Additionally, four-point bending tests of failed members and joints, combined with structural analysis of the frame, demonstrated that once the ultimate strength of each component is known, the likely failure location within the structure can be reasonably predicted. To prevent panel blow-off and progressive failure of column bases and piles, specific design considerations are proposed based on both experimental observations and numerical simulations. In particular, avoiding local buckling in members parallel to the short side of the panels is critical. Furthermore, a safety factor of approximately two should be applied to column bases and pile foundations to ensure structural integrity under unforeseen foundation conditions. Full article
Show Figures

Figure 1

Back to TopTop