Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (997)

Search Parameters:
Keywords = cosmetic formulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2709 KiB  
Article
Metagenomic Analysis of the Skin Microbiota of Brazilian Women: How to Develop Anti-Aging Cosmetics Based on This Knowledge?
by Raquel Allen Garcia Barbeto Siqueira, Ana Luiza Viana Pequeno, Yasmin Rosa Santos, Romualdo Morandi-Filho, Alexandra Lan, Edileia Bagatin, Vânia Rodrigues Leite-Silva, Newton Andreo-Filho and Patricia Santos Lopes
Cosmetics 2025, 12(4), 165; https://doi.org/10.3390/cosmetics12040165 - 5 Aug 2025
Abstract
Metagenomic studies have provided deeper insights into the complex interactions between the skin and its microbiota. However, limited research has been conducted on the skin microbiota of Brazilian women. Given that Brazil ranks as the fourth-largest consumer of cosmetics worldwide, the development of [...] Read more.
Metagenomic studies have provided deeper insights into the complex interactions between the skin and its microbiota. However, limited research has been conducted on the skin microbiota of Brazilian women. Given that Brazil ranks as the fourth-largest consumer of cosmetics worldwide, the development of new tools to analyze skin microbiota is crucial for formulating cosmetic products that promote a healthy microbiome. Skin samples were analyzed using the Illumina platform. Biometrology assessments were applied. The results showed pH variations were more pronounced in the older age group, along with higher transepidermal water loss values. Metagenomic analysis showed a predominance of Actinobacteria (83%), followed by Proteobacteria (7%), Firmicutes (9%) and Bacteroidetes (1%). In the older group (36–45 years old), an increase in Actinobacteria (87%) was observed and a decrease in Proteobacteria (6%). Moreover, the results differ from the international literature, since an increase in proteobacteria (13.9%) and a decrease in actinobacteria (46.7%) were observe in aged skin. The most abundant genus identified was Propionibacterium (84%), being the dominant species. Interestingly, previous studies have suggested a decline in Cutibacterium abundance with aging; although there is no significant difference, it is possible to observe an increasing trend in this genus in older skin. These studies can clarify many points about the skin microbiota of Brazilian women, and these findings could lead to the development of new cosmetics based on knowledge of the skin microbiome. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

19 pages, 3697 KiB  
Article
Investigating the Behavior of a Natural Emulsifier in One-Pot and Standard Cosmetic Emulsions
by Mauro Battaiotto, Paolo Sonzini, Simone Conti, Miryam Chiara Malacarne and Enrico Caruso
Cosmetics 2025, 12(4), 164; https://doi.org/10.3390/cosmetics12040164 - 5 Aug 2025
Abstract
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form [...] Read more.
The cosmetic industry is growing at an impressive rate worldwide. In the cosmetic field, natural-origin ingredients represent the new frontier in this industry. Among the main components of cosmetics, lipids, emulsifiers, rheological modifiers, preservatives, colorants, and antioxidants can be found. These compounds form emulsions, which are among the main cosmetic formulations. An important aspect in this regard is the evaluation of emulsions’ stability over time and emulsions’ production methodology. In this paper, a comparison is made between two emulsion production technologies, the Standard and the “One-Pot” methods, through the characterization of the raw material ABWAX® Revomul, a multifunctional wax for cosmetic use which consists of a low-melting structuring wax of vegetal origin (Rhus wax) and a natural emulsifier (Polyglyceril-3 Stearate). First, we evaluated the affinity between the wax raw materials and emollients of different chemical nature; then, we analyzed the impact of the production method on the emulsions to identify similarities and differences. ABWAX® Revomul demonstrated a high level of effectiveness in regard to stabilizing water-in-oil emulsions. This study suggests that from an industrial point of view, the application of the two procedures allows products with different characteristics to be obtained, consequently allowing a specific method to be chosen to obtain the desired product. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Viewed by 264
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

21 pages, 1458 KiB  
Article
Production of a Biosurfactant for Application in the Cosmetics Industry
by Ana Paula Barbosa Cavalcanti, Gleice Paula de Araújo, Káren Gercyane de Oliveira Bezerra, Fabíola Carolina Gomes de Almeida, Maria da Glória Conceição da Silva, Alessandra Sarubbo, Cláudio José Galdino da Silva Júnior, Rita de Cássia Freire Soares da Silva and Leonie Asfora Sarubbo
Fermentation 2025, 11(8), 451; https://doi.org/10.3390/fermentation11080451 - 2 Aug 2025
Viewed by 246
Abstract
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal [...] Read more.
The cosmetics industry has been seeking to develop products with renewable natural ingredients to reduce the use of or even replace synthetic substances. Biosurfactants can help meet this demand. These natural compounds are renewable, biodegradable, and non-toxic or have low toxicity, offering minimal risk to humans and the environment, which has attracted the interest of an emerging consumer market and, consequently, the cosmetics industry. The aim of the present study was to produce a biosurfactant from the yeast Starmerella bombicola ATCC 22214 cultivated in a mineral medium containing 10% soybean oil and 5% glucose. The biosurfactant reduced the surface tension of water from 72.0 ± 0.1 mN/m to 33.0 ± 0.3 mN/m after eight days of fermentation. The yield was 53.35 ± 0.39 g/L and the critical micelle concentration was 1000 mg/L. The biosurfactant proved to be a good emulsifier of oils used in cosmetic formulations, with emulsification indices ranging from 45.90 ± 1.69% to 68.50 ± 1.10%. The hydrophilic–lipophilic balance index demonstrated the wetting capacity of the biosurfactant and its tendency to form oil-in-water (O/W) emulsions, with 50.0 ± 0.20% foaming capacity. The biosurfactant did not exhibit cytotoxicity in the MTT assay or irritant potential. Additionally, an antioxidant activity of 58.25 ± 0.32% was observed at a concentration of 40 mg/mL. The compound also exhibited antimicrobial activity against various pathogenic microorganisms. The characterisation of the biosurfactant using magnetic nuclear resonance and Fourier transform infrared spectroscopy revealed that the biomolecule is a glycolipid with an anionic nature. The results demonstrate that biosurfactant produced in this work has potential as an active biotechnological ingredient for innovative, eco-friendly cosmetic formulations. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Figure 1

22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 181
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

20 pages, 949 KiB  
Article
Exploring the Antioxidant and Preservative Potential of Lippia origanoides Kunth Essential Oil in Pure and Encapsulated Forms for Cosmetic Applications
by M. Fernanda Lopes, Sandra M. Gomes, Wanderley P. Oliveira and Lúcia Santos
Cosmetics 2025, 12(4), 160; https://doi.org/10.3390/cosmetics12040160 - 28 Jul 2025
Viewed by 442
Abstract
The increasing demand for sustainable and safer alternatives in the cosmetic industry has driven the search for multifunctional natural ingredients. Essential oils (EOs), known for their antimicrobial and antioxidant activities, are promising candidates with which to replace synthetic preservatives and antioxidants. This study [...] Read more.
The increasing demand for sustainable and safer alternatives in the cosmetic industry has driven the search for multifunctional natural ingredients. Essential oils (EOs), known for their antimicrobial and antioxidant activities, are promising candidates with which to replace synthetic preservatives and antioxidants. This study aimed to evaluate the preservative and antioxidant potential of Lippia origanoides Kunth essential oil, in pure and encapsulated in β-cyclodextrin form, for cosmetic applications. The EO exhibited strong antioxidant activity, with low IC50 values in DPPH and ABTS assays, and demonstrated antimicrobial efficacy, particularly against Escherichia coli and Staphylococcus aureus. Six cosmetic cream formulations were developed and tested for physicochemical and microbiological stability. Formulations with pure EO maintained high antioxidant performance and remained free of bacterial and fungal contamination over time, outperforming the commercial preservatives. In contrast, formulations with encapsulated EO exhibited delayed antioxidant and antimicrobial activity, indicating gradual release. Overall, Lippia origanoides EO proved to be an effective natural alternative to synthetic preservatives and antioxidants. This approach aligns with the current trend of eco-friendly formulations, offering a sustainable solution by incorporating plant-derived bioactives into cosmetic products. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 320
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

18 pages, 1425 KiB  
Article
Blackberry (Rubus spp. Xavante Cultivar) Oil-Loaded PCL Nanocapsules: Sustainable Bioactive for In Vitro Collagen-Boosting Skincare
by Daniela F. Maluf, Brenda A. Lopes, Mariana D. Miranda, Luana C. Teixeira, Ana P. Horacio, Amanda Jansen, Madeline S. Correa, Guilherme dos Anjos Camargo, Jessica Mendes Nadal, Jane Manfron, Patrícia M. Döll-Boscardin and Paulo Vitor Farago
Cosmetics 2025, 12(4), 159; https://doi.org/10.3390/cosmetics12040159 - 25 Jul 2025
Viewed by 390
Abstract
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was [...] Read more.
Background: Blackberry seed oil (BSO), obtained from Rubus spp. Xavante cultivar via supercritical CO2 extraction, contains bioactive lipids and antioxidants, but its cosmetic application is limited by poor solubility and stability. Nanoencapsulation with poly(ε-caprolactone) (PCL) can overcome these limitations. Methods: BSO was characterized by Ultra-High-Performance Liquid Chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and incorporated into PCL nanocapsules (NCBSO) using the preformed polymer deposition method. Physicochemical properties, stability (at 4 °C, room temperature, and 37 °C for 90 days), cytotoxicity, and collagen production were assessed in human fibroblasts. Additionally, a predictive in silico analysis using PASS Online, Molinspiration, and SEA platforms was performed to identify the bioactivities of major BSO compounds related to collagen synthesis, antioxidant potential, and anti-aging effects. Results: NCBSO showed a nanometric size of ~267 nm, low polydispersity (PDI < 0.2), negative zeta potential (−28 mV), and spherical morphology confirmed by FE-SEM. The dispersion remained stable across all tested temperatures, preserving pH and colloidal properties. In particular, BSO and NCBSO at 100 µg.mL−1 significantly enhanced in vitro collagen production by 170% and 200%, respectively, compared to untreated cells (p < 0.01). Superior bioactivity was observed for NCBSO. The in silico results support the role of key compounds in promoting collagen biosynthesis and protecting skin structure. No cytotoxic effects were achieved. Conclusions: The nanoencapsulation of BSO into PCL nanocapsules ensured formulation stability and potentiated collagen production. These findings support the potential of NCBSO as a promising candidate for future development as a collagen-boosting cosmeceutical. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Graphical abstract

20 pages, 954 KiB  
Review
Artificial Intelligence in Cosmetic Formulation: Predictive Modeling for Safety, Tolerability, and Regulatory Perspectives
by Antonio Di Guardo, Federica Trovato, Carmen Cantisani, Annunziata Dattola, Steven P. Nisticò, Giovanni Pellacani and Alessia Paganelli
Cosmetics 2025, 12(4), 157; https://doi.org/10.3390/cosmetics12040157 - 24 Jul 2025
Viewed by 673
Abstract
Artificial intelligence (AI) and machine learning (ML) are increasingly transforming the landscape of cosmetic formulation, enabling the development of safer, more effective, and personalized products. This article explores how AI-driven predictive modeling is applied across various components of cosmetic products, including surfactants, polymers, [...] Read more.
Artificial intelligence (AI) and machine learning (ML) are increasingly transforming the landscape of cosmetic formulation, enabling the development of safer, more effective, and personalized products. This article explores how AI-driven predictive modeling is applied across various components of cosmetic products, including surfactants, polymers, fragrances, preservatives, antioxidants, and prebiotics. These technologies are employed to forecast critical properties such as texture, stability, and shelf-life, optimizing both product performance and user experience. The integration of computational toxicology and ML algorithms also allows for early prediction of skin sensitization risks, including the likelihood of adverse events such as allergic contact dermatitis. Furthermore, AI models can support efficacy assessment, bridging formulation science with dermatological outcomes. The article also addresses the ethical, regulatory, and safety challenges associated with AI in cosmetic science, underlining the need for transparency, accountability, and harmonized standards. The potential of AI to reshape dermocosmetic innovation is vast, but it must be approached with robust oversight and a commitment to user well-being. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 320
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 3673 KiB  
Article
Photodegradation Assessment of Calcipotriol in the Presence of UV Absorbers by UHPLC/MSE
by Małgorzata Król, Paweł Żmudzki, Adam Bucki and Agata Kryczyk-Poprawa
Appl. Sci. 2025, 15(15), 8124; https://doi.org/10.3390/app15158124 - 22 Jul 2025
Viewed by 355
Abstract
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which [...] Read more.
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which may affect its therapeutic efficacy and safety profile. The present study focuses on the analysis of calcipotriol photostability. An advanced UHPLC/MSE method was employed for the precise determination of calcipotriol and its degradation products. Particular attention was given to the effects of commonly used organic UV filters—approved for use in cosmetic products in both Europe and the USA (benzophenone-3, dioxybenzone, meradimate, sulisobenzone, homosalate, and avobenzone)—on the stability of calcipotriol. Unexpected degradation of calcipotriol was observed in the presence of sulisobenzone. Importantly, this effect was consistently detected in methanolic solution and in the pharmaceutical formulation containing calcipotriol and betamethasone, which is particularly significant from a practical perspective. This finding underscores the necessity of evaluating photostability under real-life conditions, as cosmetic ingredients, when co-applied with topical drugs on the skin, may substantially influence the stability profile of the pharmaceutical active ingredient. The research resulted in the first-time characterization of four degradation products of calcipotriol. The degradation process was found to primarily affect the E-4-cyclopropyl-4-hydroxy-1-methylbut-2-en-1-yl moiety, causing its isomerization to the Z isomer and the formation of diastereomers with either the R or S configuration. Computational analyses using the OSIRIS Property Explorer indicated that none of the five degradation products exhibit a toxicity effect, whereas molecular docking studies suggested possible binding of two of the five degradation products of calcipotriol with the VDR. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

15 pages, 1669 KiB  
Article
Prospective Evaluation of a Thermogenic Topical Cream-Gel Containing Caffeine, Genistein, and Botanical Extracts for the Treatment of Moderate to Severe Cellulite
by Vittoria Giulia Bianchi, Matteo Riccardo Di Nicola, Anna Cerullo, Giovanni Paolino and Santo Raffaele Mercuri
Cosmetics 2025, 12(4), 155; https://doi.org/10.3390/cosmetics12040155 - 21 Jul 2025
Viewed by 758
Abstract
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a [...] Read more.
Cellulite, characterised by cutaneous dimpling, surface irregularities, and dermal atrophy skin texture, affects up to 90% of post-pubertal females. It is a multifactorial condition involving anatomical, hormonal, and metabolic components, primarily affecting the thighs and buttocks. Despite numerous available therapies, there remains a high demand for effective, non-invasive, and well-tolerated treatment options. This single-centre, in vivo, prospective study evaluated the efficacy of a non-pharmacological, thermogenic topical cream-gel combined with manual massage in women with symmetrical grade II or III cellulite (Nürnberger–Müller scale). A total of 56 female participants (aged 18–55 years) were enrolled and instructed to apply the product twice daily for eight weeks to the thighs and buttocks. Efficacy was assessed using instrumental skin profilometry (ANTERA® 3D CS imaging system), dermatological clinical grading, and patient self-assessment questionnaires. Quantitative analysis showed a mean reduction of 23.5% in skin indentation volume (p < 0.01) and a mean decrease of 1.1 points on the cellulite severity scale by week 8. Patient-reported outcomes revealed 85.7% satisfaction with visible results and 91% satisfaction with product texture and ease of application. Dermatological evaluation confirmed no clinically significant adverse reactions, and only 3.5% of participants reported mild and transient skin sensitivity. These findings suggest that this topical cream-gel formulation, when used in conjunction with manual massage, represents a well-tolerated and non-invasive option for the cosmetic improvement of moderate to severe cellulite. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 443
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

17 pages, 3083 KiB  
Article
Antioxidant and Photoprotective Activities of Viola philippica Polyol Extracts
by Jiang Li, Jiancheng Ma, Ya Li, Lan Luo, Wenhuan Zhang, Yong Tian, Yuncai Tian, Yi Li, Zhongjuan Wang and Mingyi Wu
Antioxidants 2025, 14(7), 884; https://doi.org/10.3390/antiox14070884 - 18 Jul 2025
Viewed by 368
Abstract
Viola philippica (VP), a traditional Chinese medicinal herb widely used for its antibacterial and antioxidant properties, has recently garnered attention for its potential in skin photoprotection. VP was extracted using glycerol (GLY), 1,3-propanediol (PDO), and 1,3-butanediol (BDO) at concentrations of 30%, 60%, and [...] Read more.
Viola philippica (VP), a traditional Chinese medicinal herb widely used for its antibacterial and antioxidant properties, has recently garnered attention for its potential in skin photoprotection. VP was extracted using glycerol (GLY), 1,3-propanediol (PDO), and 1,3-butanediol (BDO) at concentrations of 30%, 60%, and 90% (w/w) to evaluate its antioxidant and UV-protective properties. The total phenolic content (TPC) and total flavonoid content (TFC) of the nine extracts ranged from 34.73 to 71.45 mg GAEs/g and from 26.68 to 46.68 mg REs/g, respectively, with the highest TPC observed in 90% PDO and the highest TFC in 60% GLY. Antioxidant assays revealed IC50 values of 0.49–1.26 mg/mL (DPPH), 0.10–0.19 mg/mL (ABTS), and 1.58–460.95 mg/mL (OH). Notably, the 60% GLY, 30% PDO, and 90% PDO extracts demonstrated notable protective effects against UVB-induced cell damage, reducing intracellular ROS levels and preventing DNA damage. RNA-seq analysis revealed that the protective effects were associated with the modulation of key molecular pathways, including neutrophil extracellular trap formation and TNF, IL-17, and HIF-1 signaling. These findings suggest that Viola philippica polyol extracts, particularly those using 60% GLY, 30% PDO, and 90% PDO, have promising potential for skin photoprotection and could be utilized as natural antioxidants in cosmetic formulations. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

27 pages, 21524 KiB  
Article
Synergistic Combinations of Native Australian Plants For Skin Inflammation and Wound Healing
by Rotina Kapini, Dennis Chang, Gerald Münch, Lisa Carroll and Xian Zhou
Biomedicines 2025, 13(7), 1754; https://doi.org/10.3390/biomedicines13071754 - 17 Jul 2025
Viewed by 462
Abstract
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain [...] Read more.
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain limited. Objectives: This study aimed to investigate individual and combined effects of whole plant extracts on skin protection and healing, focusing on their anti-inflammatory and antioxidant properties. Methods: The antioxidant potential of the individual and combined plant extracts were investigated on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reactive oxygen species (ROS) assay followed by luciferase assay in MCF-7 AREc32 cells for nuclear factor erythroid 2-related factor 2 (Nrf2) activation. The anti-inflammatory activities were investigated on lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages for the inhibition of nitric oxide (NO), tumour necrosis factor (TNF)-α, and interleukin (IL)-6. Synergistic interaction was determined by the combination index model (CI < 1). Combination(s) showing synergistic and optimal activity were further investigated on LPS-induced human dermal fibroblasts (HDF) cells for IL-6 inhibition and wound healing activity. Results: Three of the tested Australian native plant extracts demonstrated prominent antioxidant and anti-inflammatory activities including bitter orange, mountain pepper berry and native river mint. In particular, their three-way combination (1:1:1, w/w) showed prominent synergistic (CI < 1) in reducing NO and IL-6, along with enhanced Nrf2 activation. In LPS-inflamed HDF cells, the combination maintained synergistic inhibition of IL-6 levels and promoted wound healing response. Conclusions: These findings highlight the therapeutic potential of Australian native plant as a whole extract for skin protection and repair attributed to antioxidant and anti-inflammatory activities. The observed synergistic anti-inflammatory and antioxidant effects support their use in the development of new cosmetic formulations for skin. Full article
Show Figures

Graphical abstract

Back to TopTop