Synergistic Combinations of Native Australian Plants Against Skin Inflammation and Wound Healing
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Australian Native Plant Extracts
2.2. Cell Culture
2.3. Detection of Nitrite by Griess Assay
2.4. Detection of TNF-α and IL-6 Expressions by ELISA Assay
2.5. 2,2-Diphenyl-1-picrylhydrakzl (DPPH) Assay
2.6. Detection of Intracellular ROS Levels
2.7. Detection of Nrf2 Activation by Luciferase Assay
2.8. Cell Viability and Cytotoxicity Test via Alamar Blue Assay
2.9. Wound Healing Assay
2.10. Synergy Determination
2.11. Statistical Analysis
3. Results
3.1. Anti-Inflammatory Effects of the Nine Individual NPE
3.2. Antioxidant Effects of the Nine Individual NPE
3.3. Synergistic Anti-Inflammatory Effects of NPE Combinations
3.4. Synergistic Antioxidant Effects of NPE Combinations
3.5. Synergistic Anti-Inflammatory Effects of NPE Combinations on HDF Skin Cells
3.6. Wound Healing Activity of NPE Combinations on HDF Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brand, R.M.; Wipf, P.; Durham, A.; Epperly, M.W.; Greenberger, J.S.; Falo, L.D. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front. Pharmacol. 2018, 9, 920. [Google Scholar] [CrossRef] [PubMed]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-M.; Cheng, M.-Y.; Xun, M.-H.; Zhao, Z.-W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef] [PubMed]
- Wagener, F.; Carels, C.; Lundvig, D. Targeting the Redox Balance in Inflammatory Skin Conditions. Int. J. Mol. Sci. 2013, 14, 9126–9167. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.X. Oxidative stress and diabetic cardiovascular disorders: Roles of mitochondria and NADPH oxidase. Can. J. Physiol. Pharmacol. 2010, 88, 241–248. [Google Scholar] [CrossRef] [PubMed]
- De Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet Light Induced Generation of Reactive Oxygen Species; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–23. [Google Scholar]
- Wei, M.; He, X.; Liu, N.; Deng, H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div. 2024, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Z. ROS-scavenging materials for skin wound healing: Advancements and applications. Front. Bioeng. Biotechnol. 2023, 11, 1304835. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Cheong, Y.-K.; Kim, N.-H.; Chung, H.-T.; Kang, D.G.; Pae, H.-O. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-W.; Kwon, S.-H.; Choi, J.-Y.; Na, J.-I.; Huh, C.-H.; Choi, H.-R.; Park, K.-C. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Xu, J.; Xiong, X.; Deng, Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019, 24, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zeng, Z.; Zhang, L.; Wang, Y.; Li, P. 4′-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways. Braz. J. Med. Biol. Res. 2020, 53, e10109. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Tran, V.V.; Moon, J.-Y.; Chae, M.; Park, D.; Lee, Y.-C. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Chong, M.; Fonacier, L. Treatment of Eczema: Corticosteroids and Beyond. Clin. Rev. Allergy Immunol. 2016, 51, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Del Grossi Moura, M.; Cruz Lopes, L.; Silva, M.T.; Barberato-Filho, S.; Motta, R.H.L.; Bergamaschi, C.C. Use of steroid and nonsteroidal anti-inflammatories in the treatment of rheumatoid arthritis: Systematic review protocol. Medicine 2018, 97, e12658. [Google Scholar] [CrossRef] [PubMed]
- Uva, L.; Miguel, D.; Pinheiro, C.; Antunes, J.; Cruz, D.; Ferreira, J.; Filipe, P. Mechanisms of Action of Topical Corticosteroids in Psoriasis. Int. J. Endocrinol. 2012, 2012, 561018. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Ye, Z.; Shao, Z.; Fan, B.; Huang, C.; Zhang, Y.; Kuang, X.; Miao, L.; Wu, X.; Zhao, R.; et al. Multidisciplinary Guidelines for the Rational Use of Topical Non-Steroidal Anti-Inflammatory Drugs for Musculoskeletal Pain (2022). J. Clin. Med. 2023, 12, 1544. [Google Scholar] [CrossRef] [PubMed]
- Llamas-Velasco, M.; Garcia-Diez, A. Climate Change and Skin: Diagnostic and Therapeutic. Chall. Dermo-Sifiograficas 2010, 101, 401–410. [Google Scholar]
- Egambaram, O.P.; Kesavan Pillai, S.; Ray, S.S. Materials Science Challenges in Skin UV Protection: A Review. Photochem. Photobiol. 2020, 96, 779–797. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.; Gupta, L.K.; Khare, A.K.; Balai, M.; Mittal, A.; Mehta, S.; Bhatri, G. Topical Corticosteroids Abuse: A Clinical Study of Cutaneous Adverse Effects. Indian J. Dermatol. 2017, 62, 675. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Drucker, A.M.; Lebwohl, M.; Silverberg, J.I. A systematic review of the safety and efficacy of systemic corticosteroids in atopic dermatitis. J. Am. Acad. Dermatol. 2018, 78, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Paiva, J.P.; Diniz, R.R.; Leitão, A.C.; Cabral, L.M.; Fortunato, R.S.; Santos, B.A.M.C.; de Padula, M. Insights and controversies on sunscreen safety. Crit. Rev. Toxicol. 2020, 50, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Sander, M.; Sander, M.; Burbidge, T.; Beecker, J. The efficacy and safety of sunscreen use for the prevention of skin cancer. Can. Med. Assoc. J. 2020, 192, e1802–e1808. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Smith, S.D. Topical corticosteroids and risk of diabetes mellitus: Systematic review and meta-analysis. J. Dermatol. Treat. 2021, 32, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research. Front. Pharmacol. 2016, 7, 201. [Google Scholar] [CrossRef] [PubMed]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Iii, G.F.S.; E Staunton, J.; Jin, X.; et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Amparo, T.R.; Seibert, J.B.; Vieira, P.M.A.; Teixeira, L.F.M.; Santos, O.; de Souza, G.H.B. Herbal medicines to the treatment of skin and soft tissue infections: Advantages of the multi-targets action. Phytother. Res. 2020, 34, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, A.; Gupta, J.; Gupta, R. Miracles of Herbal Phytomedicines in Treatment of Skin Disorders: Natural Healthcare Perspective. Infect. Disord. Drug Targets 2021, 21, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem. 2010, 122, 260–266. [Google Scholar] [CrossRef]
- Uddin, A.B.M.N.; Hossain, F.; Reza, A.S.M.A.; Nasrin, M.S.; Alam, A.H.M.K. Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: A review. Food Sci. Nutr. 2022, 10, 1789–1819. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sakulnarmrat, K.; Konczak, I. Anti-inflammatory potential of native Australian herbs polyphenols. Toxicol. Rep. 2014, 1, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.; Abdelhameed, M.F.; Abdou, R.; Ibrahim, A.M.; Dawoud, M.; Alasmari, S.M.; El Raey, M.A.; Attia, H.G. Mechanistic action of linalyl acetate: Acyclic monoterpene isolated from bitter orange leaf as anti-inflammatory, analgesic, antipyretic agent: Role of TNF-α, IL1β, PGE2, and COX-2. Ind. Crops Prod. 2023, 203, 117131. [Google Scholar] [CrossRef]
- Kang, S.R.; Park, K.I.; Park, H.S.; Lee, D.H.; Kim, J.A.; Nagappan, A.; Kim, E.H.; Lee, W.S.; Shin, S.C.; Park, M.K.; et al. Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways. Food Chem. 2011, 129, 1721–1728. [Google Scholar] [CrossRef]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. J. Food Sci. Technol. 2021, 58, 2054–2067. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.N.A.; Okello, E.J.; Howes, M.J.; Birch-Machin, M.A.; Bowman, A. In vitro protective effects of an aqueous extract of Clitoria ternatea L. flower against hydrogen peroxide-induced cytotoxicity and UV-induced mtDNA damage in human keratinocytes. Phytother. Res. 2018, 32, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Bang, W.Y.; Schreckinger, E.; Andarwulan, N.; Cisneros-Zevallos, L. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells. J. Agric. Food Chem. 2015, 63, 6355–6365. [Google Scholar] [CrossRef] [PubMed]
- Ololade, Z.; No, O. Recovered Secondary Metabolites of Post-Hydrodistilled Callitris columellaris Leaf and their Free Radical Scavenging Potentials. Org. Chem. Curr. Res. 2013, 2, 1000115. [Google Scholar]
- Ololade, Z.S.O.O.; Kolawole, S.; Onipede, O.J. Phyto-chemicals, Free Radical Scavenging and Anti-inflammatory Activity of the Leaf Essential Oil of Callitris columellaris F. Meull from Plateau Sate, Nigeria. Int. J. Appl. Res. Technol. 2012, 1, 38–45. [Google Scholar]
- Cock, I.E.; Baghtchedjian, L.; Cordon, M.-E.; Dumont, E. Phytochemistry, Medicinal Properties, Bioactive Compounds, and Therapeutic Potential of the Genus Eremophila (Scrophulariaceae). Molecules 2022, 27, 7734. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Jones, G.L. A possible role of partially pyrolysed essential oils in Australian Aboriginal traditional ceremonial and medicinal smoking applications of Eremophila longifolia (R. Br.) F. Muell (Scrophulariaceae). J. Ethnopharmacol. 2013, 147, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Cock, I. The phytochemistry and chemotherapeutic potential of Tasmannia lanceolata (Tasmanian pepper): A review. Pharmacogn. Commun. 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Tang, K.S.; Konczak, I.; Zhao, J. Identification and quantification of phenolics in Australian native mint (Mentha australis R. Br.). Food Chem. 2016, 192, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Ajagun-Ogunleye, M.O.; Ebuehi, O.A.T. Evaluation of the anti-aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. J. Food Biochem. 2020, 44, e13426. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Rahman, S.M.M. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int. 2011, 44, 672–676. [Google Scholar] [CrossRef]
- Li, J.; Mao, B.; Tang, X.; Zhang, Q.; Zhao, J.; Zhang, H.; Cui, S. Protective Effects of Naringenin and Apigenin in Ameliorating Skin Damage via Mediating the Nrf2 and NF-κB Pathways in Mice. Foods 2023, 12, 2120. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Konczak, I.; Ramzan, I.; Sze, D.M.Y. Antioxidant and cytoprotective activities of native Australian fruit polyphenols. Food Res. Int. 2011, 44, 2034–2040. [Google Scholar] [CrossRef]
- Zhou, X.; Munch, G.; Wohlmuth, H.; Afzal, S.; Kao, M.T.; Al-Khazaleh, A.; Low, M.; Leach, D.; Li, C.G. Synergistic Inhibition of Pro-Inflammatory Pathways by Ginger and Turmeric Extracts in RAW 264.7 Cells. Front. Pharmacol. 2022, 13, 818166. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Zhou, X.; Or, K.; Raju, R.; Munch, G. Identification of Nrf2 Activators from the Roots of Valeriana officinalis. Planta Medica 2023, 89, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Dixon, K.M.; Deo, S.S.; Norman, A.W.; Bishop, J.E.; Halliday, G.M.; Reeve, V.E.; Mason, R. In vivo relevance for photoprotection by the vitamin D rapid response pathway. J. Steroid Biochem. Mol. Biol. 2007, 103, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Phukan, K.; Devi, R.; Chowdhury, D. Insights into Anti-Inflammatory Activity and Internalization Pathway of Onion Peel-Derived Gold Nano Bioconjugates in RAW 264.7 Macrophages. ACS Omega 2022, 7, 7606–7615. [Google Scholar] [CrossRef] [PubMed]
- Zagorski, J.W.; Turley, A.E.; Dover, H.E.; Vandenberg, K.R.; Compton, J.R.; Rockwell, C.E. The Nrf2 Activator, tBHQ, Differentially Affects Early Events Following Stimulation of Jurkat Cells. Toxicol. Sci. 2013, 136, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.S.; Arulselvan, P.; Ng, S.F.; Taib, C.N.M.; Sarian, M.N.; Fakurazi, S. Healing Effect of Vicenin-2 (VCN-2) on Human Dermal Fibroblast (HDF) and Development VCN-2 Hydrocolloid Film Based on Alginate as Potential Wound Dressing. Biomed. Res. Int. 2020, 2020, 4730858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Razmovski-Naumovski, V.; Kam, A.; Chang, D.; Li, C.; Bensoussan, A.; Chan, K. Synergistic Effects of Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) Combination in Angiogenesis Behavior in EAhy 926 Cells. Medicines 2017, 4, 85. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arnedo, A.; Torres Figueroa, F.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-C. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 2018, 7, 49–50. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Skrzydlewska, E. The role of transcription factor Nrf2 in skin cells metabolism. Arch. Dermatol. Res. 2015, 307, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.E.; Ahmed, O.M.; Abdel-Moneim, A.; Zoheir, K.M.A.; Elesawy, B.H.; Al Askary, A.; Hassaballa, A.; El-Shahawy, A.A.G. Protective Effects of Naringin-Dextrin Nanoformula against Chemically Induced Hepatocellular Carcinoma in Wistar Rats: Roles of Oxidative Stress, Inflammation, Cell Apoptosis, and Proliferation. Pharmaceuticals 2022, 15, 1558. [Google Scholar] [CrossRef] [PubMed]
- Song, M.Y.; Kim, E.K.; Moon, W.S.; Park, J.W.; Kim, H.J.; So, H.S.; Park, R.; Kwon, K.B.; Park, B.H. Sulforaphane protects against cytokine- and streptozotocin-induced beta-cell damage by suppressing the NF-kappaB pathway. Toxicol. Appl. Pharmacol. 2009, 235, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Guo, L.; Yang, Y.; Wang, Y.; Xia, S.; Gong, H.; Zhang, B.-K.; Yan, M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front. Cell Dev. Biol. 2022, 9, 809952. [Google Scholar] [CrossRef] [PubMed]
- Brasier, A.R. The nuclear factor- B-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc. Res. 2010, 86, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Arias-Salvatierra, D.; Silbergeld, E.K.; Acosta-Saavedra, L.C.; Calderon-Aranda, E.S. Role of nitric oxide produced by iNOS through NF-kappaB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell Signal 2011, 23, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front. Oncol. 2022, 12, 1023177. [Google Scholar] [CrossRef] [PubMed]
- Canton, M.; Sanchez-Rodriguez, R.; Spera, I.; Venegas, F.C.; Favia, M.; Viola, A.; Castegna, A. Reactive Oxygen Species in Macrophages: Sources and Targets. Front. Immunol. 2021, 12, 734229. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Mi, W.; Li, F.; Zhu, L.; Ou, Q.; Li, M.; Li, T.; Ma, Y.; Zhang, Y.; Xu, Y. Optimizing drug combination and mechanism analysis based on risk pathway crosstalk in pan cancer. Sci. Data 2024, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.R.; Berman, B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J. Investig. Dermatol. 1991, 97, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Grossman, R.M.; Krueger, J.; Yourish, D.; Granelli-Piperno, A.; Murphy, D.P.; May, L.T.; Kupper, T.S.; Sehgal, P.B.; Gottlieb, A.B. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 6367–6371. [Google Scholar] [CrossRef] [PubMed]
- Cialdai, F.; Risaliti, C.; Monici, M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022, 10, 958381. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Shi, F.; Zhou, Z.; Sun, F.; Sun, M.-H.; Sun, Q.; Chen, L.; Li, D.; Jiang, C.-Y.; Zhao, R.-Z.; et al. M1 macrophage mediated increased reactive oxygen species (ROS) influence wound healing via the MAPK signaling in vitro and in vivo. Toxicol. Appl. Pharmacol. 2019, 366, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Mani, J.S.; Johnson, J.B.; Hosking, H.; Ashwath, N.; Walsh, K.B.; Neilsen, P.M.; Broszczak, D.A.; Naiker, M. Antioxidative and therapeutic potential of selected Australian plants: A review. J. Ethnopharmacol. 2021, 268, 113580. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Park, H.; Lim, K.-M. Phototoxicity: Its Mechanism and Animal Alternative Test Methods. Toxicol. Res. 2015, 31, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Aalto-Korte, K.; Suuronen, K.; Frosch, P.J. Patch Testing with the Patients’ Own Products; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1–19. [Google Scholar]
- Donkor, M.N.; Donkor, A.-M.; Mosobil, R. Combination therapy: Synergism among three plant extracts against selected pathogens. BMC Res. Notes 2023, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- El Kahlout, K.E.M.; El Borsh, W.; Aksoy, A.; El Kichaoi, A.Y.; El Hindi, M.W.; El Ashgar, N.M. Evaluation of Antibacterial and Synergistic/Antagonistic Effect of Some Medicinal Plants Extracted by Microwave and Conventional Methods. J. Biosci. Med. 2020, 8, 69–79. [Google Scholar] [CrossRef]
- Millward, H.; Lewis, A. Barriers to successful new product development within small manufacturing companies. J. Small Bus. Enterp. Dev. 2005, 12, 379–394. [Google Scholar] [CrossRef]
NPE | Compounds |
---|---|
#1: Aniseed myrtle | Procyanidins, tryptophan, catechin, myricetin, quercetin, anethole, flavonoid glycosides, flavan-3-ol (flavanols), ellagic acid, amino acids |
#2: Bitter orange | Naringin, hesperidin, nobiletin, flavone derivatives, amino acids, phenolics |
#3: Blue butterfly pea | Anthocyanins, adenosine, nucleotides, kaempferol, quercetin, rutin, lignan, phenolics, flavonoid glycosides, amino acids |
#4: Blue cypress leaf | Gallocatechin, procyanidins, catechin, hypolaetin, tetrahydroxy flavone, flavonoid glucosides, amino acids, organic acids, sugars, phenolics |
#5: Emu bush | Chlorogenic acid, ferulic acid, quercetin, vebrascoside, flavone glycoside, isorhamnetin, phenolics, caffeic acid ester derivatives |
#6: Mountain pepper berry | Anthocyanins, polygodial, protocatechuic acid, chlorogenic acid, rutin, quercetin, flavonoid glycosides, sugars, amino acids, organic acids, phenolics |
#7: Native river mint | Rosmarinic acid, methoxy-flavones, flavonoid glycosides, terpenoids, amino acids, organic acids, phenolics |
#8: Pineapple | Polyamines (spermine/spermidine), glutamyl-cysteine and derivatives, tryptophan sinapic acid and derivatives, phenolics, amino acids, sugars, organic acids |
#9: Kakadu plum | Natural vitamin c (abscorbic acid), gallic acid, ellagic acid, amino acids, tryptophan, flavone c-glycoside |
NPE | Cell Viability LC50 (mg/mL) | NO | TNF-α | IL-6 | |||
---|---|---|---|---|---|---|---|
IC50 (mg/mL) | Therapeutic Index | IC50 (mg/mL) | Therapeutic Index | IC50 (mg/mL) | Therapeutic Index | ||
#1: Aniseed myrtle | 19.78 ± 4.25 | 1.11 ± 0.40 | 17.80 | 4.38 ± 2.12 | 4.50 | 3.42 ± 1.42 | 5.78 |
#2: Bitter orange | >100 | 7.44 ± 2.93 | 28.17 | 15.70 ± 1.70 | 13.34 | 13.55 ± 4.02 | 15.47 |
#3: Blue butterfly pea | 19.33 ± 3.24 | 17.37 ± 3.34 | 1.11 | 29.5 ± 10.01 | <1 | 58.68 ± 9.37 | <1 |
#4: Blue cypress leaf | 81.12 ± 6.04 | 22.02 ± 3.13 | 3.68 | 89.26 ± 14.20 | <1 | 88.05 ± 6.08 | <1 |
#5: Emu bush | 90.19 ± 8.30 | 12.09 ± 4.21 | 7.4 | 185.10 | <1 | 99.03 ± 14.23 | <1 |
#6: Mountain pepper berry | 46.74 ± 5.52 | 4.44 ± 0.51 | 10.53 | 13.32 ± 3.22 | 3.51 | 13.49 ± 6.83 | 3.46 |
#7: Native river mint | 56.70 ± 5.72 | 3.13 ± 1.31 | 18.12 | 23.42 ± 2.23 | 2.42 | 31.88 ± 5.43 | 1.77 |
#8: Pineapple | >100 | 73.03 ± 11.87 | 1.97 | 134.40 ± 15.30 | 1.07 | 87.48 ± 5.67 | 1.64 |
#9: Kakadu plum | 65.64 ± 11.63 | 15.02 ± 4.31 | 4.30 | 110.20 ± 12.60 | <1 | 73.84 ± 3.10 | <1 |
NPE | DPPH | ROS | Nrf2 Activation | |||
---|---|---|---|---|---|---|
IC50 (mg/mL) | IC50 (mg/mL) | Therapeutic Index | Concentration with the Maximum Nrf2 Activation (mg/mL) | Maximum Mean Nrf2 Fold Increase | Cell Viability for MC-7 AREc32 Cells at Maximum Nrf2 Activation (%) | |
#1: Aniseed myrtle | 1.85 ± 0.71 | 3.21 ± 0.76 | 6.16 | 9.76 | 1.62 ± 0.75 | 92.90 ± 2.66 |
#2: Bitter orange | 2.08 ± 0.34 | 9.69 ± 2.82 | 21.63 | 36.87 | 2.22 ± 0.79 | 94.86 ± 8.27 |
#3: Blue butterfly pea | 204.99 ± 42.65 | 27.05 ± 5.40 | <1 | 9.22 | 0.86 ± 0.21 | 82.25 ± 6.48 |
#4: Blue cypress leaf | 64.31 ± 10.90 | 29.87 ± 7.73 | 2.71 | 75 | 1.42 ± 0.78 | 67.59 ± 6.52 |
#5: Emu bush | 1081.35 ± 46.58 | 14.82 ± 3.31 | 6.09 | 37.81 | 1.67 ± 0.37 | 88.63 ± 4.02 |
#6: Mountain pepper berry | 0.95 ± 0.06 | 6.56 ± 1.04 | 7.13 | 36.87 | 3.47 ± 0.85 | 92.39 ± 6.60 |
#7: Native river mint | 9.65 ± 0.37 | 4.95 ± 1.50 | 11.45 | 38.43 | 2.82 ± 0.60 | 92.33 ± 4.27 |
#8: Pineapple | 1112.01 ± 17.89 | >100 | <1 | 10.31 | 1.74 ± 0.59 | 96.89 ± 2.91 |
#9: Kakadu plum | 576.03 ± 3.35 | 16.70 ± 5.78 | 3.90 | 36.56 | 1.61 ± 0.29 | 92.32 ± 2.16 |
NPE | Cell Viability LC50 (mg/mL) | NO | TNF-α | IL-6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
IC50 (mg/mL) | Therapeutic Index | CI Value Fa = 0.5 | IC50 (mg/mL) | Therapeutic Index | CI Value Fa = 0.5 | IC50 (mg/mL) | Therapeutic Index | CI Value Fa = 0.5 | ||
COMBINATION | ||||||||||
#2+6 | 72. 85 ± 7.65 # | 6.70 ± 3.75 * | 10.87 | 0.23 | 55.44 ± 13.68 * | 1.31 | >1 | 7.93 ± 1.54 * | 9.18 | 0.94 |
#2+7 | 91.81 ± 9.34 ∆ | 10.68 ± 0.11 * | 8.59 | 0.24 | 78.56 ± 16.17 * | 1.16 | >1 | 37.68 ± 12.23 | 2.43 | 0.87 |
#6+7 | 58.96 ± 5.02 ∆ | 6.41 ± 2.32 * | 9.20 | 0.19 | 48.59 ± 6.78 | 1.21 | >1 | 27.11 ± 1.14 | 2.17 | >1 |
#2+6+7 | 80.97 ± 3.76 #∆ | 5.82 ± 2.10 *#∆ | 13.91 | 0.20 | 78.56 ± 9.49 | 1.03 | >1 | 7.55 ± 1.58 ∆ | 10.72 | 0.66 |
INDIVIDUAL | ||||||||||
#2: Bitter orange | >100 # | 7.44 ± 2.93 ∆ | 28.17 | N/A | 15.70 ± 1.70 ∆ | 13.34 | N/A | 13.55 ± 4.02 | 15.47 | N/A |
#6: Mountain pepper berry | 46.74 ± 5.52 * | 4.44 ± 0.51 | 10.50 | N/A | 13.32 ± 3.22 | 3.51 | N/A | 13.49 ± 6.83 | 3.46 | N/A |
#7: Native river mint | 56.70 ± 11.44 * | 3.13 ± 1.31 * | 18.12 | N/A | 23.42 ± 2.23 * | 2.42 | N/A | 31.88 ± 5.43 | 1.77 | N/A |
NPE | Cell Viability LC50 (mg/mL) | ROS | Nrf2 Activation | ||||
---|---|---|---|---|---|---|---|
IC50 (mg/mL) | Therapeutic Index | CI Value Fa = 0.5 | Concentration with the Maximum Nrf2 Activation (mg/mL) | Maximum Mean Nrf2 Fold Increase | Cell Viability (MC-7 AREc32) at Maximum Nrf2 Activation (%) | ||
COMBINATION | |||||||
#2+6 | 72. 85 ± 7.65 | 21.74 ± 6.73 | 3.35 | >1 | 36.87 | 3.00 ± 0.87 | 91.24 ± 8.34 |
#2+7 | 91.81± 9.34 | 34.79 ± 7.40 | 2.63 | >1 | 18.43 | 4.83 ± 0.51 *# | 95.95 ± 9.22 |
#6+7 | 58.96 ± 5.02 | 17.98 ± 5.39 | 3.27 | >1 | 36.87 | 3.68 ± 0.77 * | 95.65 ± 5.16 |
#2+6+7 | 80.97 ± 3.76 | 38.50 ± 7.58 *#∆ | 2.10 | >1 | 36.87 | 4.96 ± 1.35 *# | 101.23 ± 7.76 |
INDIVIDUAL | |||||||
#2: Bitter orange | >100 | 9.69 ± 2.82 | 21.63 | N/A | 36.87 | 2.22 ± 0.79 # | 94.86 ± 8.27 |
#6: Mountain pepper berry | 46.74 ± 5.52 | 6.56 ± 1.04 | 7.13 | N/A | 36.87 | 3.47 ± 0.85 * | 92.39 ± 6.60 |
#7: Native river mint | 56.70 ± 11.44 | 4.95 ± 1.50 | 11.45 | N/A | 38.43 | 2.82 ± 0.60 | 92.33 ± 4.27 |
NPE | LC50 (mg/mL) | IL-6 | Wound Healing | |||
---|---|---|---|---|---|---|
IC50 (mg/mL) | Therapeutic Index | CI Values When Fa = 0.5 | Concentration (mg/mL) with Highest Wound Healing Activity | Wound Healing Percentage (%) | ||
COMBINATION | ||||||
#2+6 | 32.89 ± 2.29 | 9.46 | 3.48 | >1 | N/A | N/A |
#2+6+7 | 8.45 ± 0.07 | 5.18 ± 0.74 # | 1.63 | 0.83 | 1.15 | 81.22 ± 7.05 |
INDIVIDUAL | ||||||
#2. Bitter orange | 13.71 ± 1.22 | >18.37 # | <1 | N/A | 1.15 | 75.94 ± 9.73 |
#6. Mountain pepper berry | 16.39 ± 0.94 | 15.67 ± 3.19 *∆ | 1.04 | N/A | 0.14 | 75.39 ± 9.76 |
#7. Native river mint | 2.57 ± 0.05 | 4.26 ± 0.42 # | <1 | N/A | 0.60 | 79.98 ± 6.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapini, R.; Chang, D.; Münch, G.; Carroll, L.; Zhou, X. Synergistic Combinations of Native Australian Plants Against Skin Inflammation and Wound Healing. Biomedicines 2025, 13, 1754. https://doi.org/10.3390/biomedicines13071754
Kapini R, Chang D, Münch G, Carroll L, Zhou X. Synergistic Combinations of Native Australian Plants Against Skin Inflammation and Wound Healing. Biomedicines. 2025; 13(7):1754. https://doi.org/10.3390/biomedicines13071754
Chicago/Turabian StyleKapini, Rotina, Dennis Chang, Gerald Münch, Lisa Carroll, and Xian Zhou. 2025. "Synergistic Combinations of Native Australian Plants Against Skin Inflammation and Wound Healing" Biomedicines 13, no. 7: 1754. https://doi.org/10.3390/biomedicines13071754
APA StyleKapini, R., Chang, D., Münch, G., Carroll, L., & Zhou, X. (2025). Synergistic Combinations of Native Australian Plants Against Skin Inflammation and Wound Healing. Biomedicines, 13(7), 1754. https://doi.org/10.3390/biomedicines13071754