Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (720)

Search Parameters:
Keywords = corrosion protection methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 4006 KiB  
Review
Solvent-Driven Electroless Nickel Coatings on Polymers: Interface Engineering, Microstructure, and Applications
by Chenyao Wang, Heng Zhai, David Lewis, Hugh Gong, Xuqing Liu and Anura Fernando
Coatings 2025, 15(8), 898; https://doi.org/10.3390/coatings15080898 (registering DOI) - 1 Aug 2025
Abstract
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and [...] Read more.
Electroless nickel deposition (ELD) is an autocatalytic technique extensively used to impart conductive, protective, and mechanical functionalities to inherently non-conductive synthetic substrates. This review systematically explores the fundamental mechanisms of electroless nickel deposition, emphasising recent advancements in surface activation methods, solvent systems, and microstructural control. Critical analysis reveals that bio-inspired activation methods, such as polydopamine (PDA) and tannic acid (TA), significantly enhance coating adhesion and durability compared to traditional chemical etching and plasma treatments. Additionally, solvent engineering, particularly using polar aprotic solvents like dimethyl sulfoxide (DMSO) and ethanol-based systems, emerges as a key strategy for achieving uniform, dense, and flexible coatings, overcoming limitations associated with traditional aqueous baths. The review also highlights that microstructural tailoring, specifically the development of amorphous-nanocrystalline hybrid nickel coatings, effectively balances mechanical robustness (hardness exceeding 800 HV), flexibility, and corrosion resistance, making these coatings particularly suitable for wearable electronic textiles and smart materials. Furthermore, commercial examples demonstrate the real-world applicability and market readiness of nickel-coated synthetic fibres. Despite significant progress, persistent challenges remain, including reliable long-term adhesion, internal stress management, and environmental sustainability. Future research should prioritise environmentally benign plating baths, standardised surface activation protocols, and scalable deposition processes to fully realise the industrial potential of electroless nickel coatings. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
Machine Learning-Based Prediction of Atmospheric Corrosion Rates Using Environmental and Material Parameters
by Saurabh Tiwari, Khushbu Dash, Nokeun Park and Nagireddy Gari Subba Reddy
Coatings 2025, 15(8), 888; https://doi.org/10.3390/coatings15080888 (registering DOI) - 31 Jul 2025
Viewed by 133
Abstract
Atmospheric corrosion significantly impacts infrastructure worldwide, with traditional assessment methods being time-intensive and costly. This study developed a comprehensive machine learning framework for predicting atmospheric corrosion rates using environmental and material parameters. Three regression models (Linear Regression, Random Forest, and Gradient Boosting) were [...] Read more.
Atmospheric corrosion significantly impacts infrastructure worldwide, with traditional assessment methods being time-intensive and costly. This study developed a comprehensive machine learning framework for predicting atmospheric corrosion rates using environmental and material parameters. Three regression models (Linear Regression, Random Forest, and Gradient Boosting) were trained on a scientifically informed synthetic dataset incorporating established corrosion principles from ISO 9223 standards and peer-reviewed literature. The Gradient Boosting model achieved superior performance with cross-validated R2 = 0.835 ± 0.024 and RMSE = 98.99 ± 16.62 μm/year, significantly outperforming the Random Forest (p < 0.001) and Linear Regression approaches. Feature importance analysis revealed the copper content (30%), exposure time (20%), and chloride deposition (15%) as primary predictors, consistent with the established principles of corrosion science. Model diagnostics demonstrated excellent predictive accuracy (R2 = 0.863) with normally distributed residuals and homoscedastic variance patterns. This methodology provides a systematic framework for ML-based corrosion prediction, with significant implications for protective coating design, material selection, and infrastructure risk assessment, pending comprehensive experimental validation. Full article
(This article belongs to the Special Issue Advanced Anticorrosion Coatings and Coating Testing)
Show Figures

Figure 1

13 pages, 6341 KiB  
Article
Interaction of Ethanolamine with Magnetite Through Molecular Dynamic Simulations
by Nikoleta Ivanova, Vasil Karastoyanov, Iva Betova and Martin Bojinov
Molecules 2025, 30(15), 3197; https://doi.org/10.3390/molecules30153197 - 30 Jul 2025
Viewed by 118
Abstract
Magnetite (Fe3O4) provides a protective corrosion layer in the steam generators of nuclear power plants. The presence of monoethanolamine (MEA) in coolant water has a beneficial effect on corrosion processes. In that context, the adsorption of MEA and ethanol–ammonium [...] Read more.
Magnetite (Fe3O4) provides a protective corrosion layer in the steam generators of nuclear power plants. The presence of monoethanolamine (MEA) in coolant water has a beneficial effect on corrosion processes. In that context, the adsorption of MEA and ethanol–ammonium cation on the {111} surface of magnetite was studied using the molecular dynamics (MD) method. A modified version of the mechanical force field (ClayFF) was used. The systems were simulated at different temperatures (423 K; 453 K; 503 K). Surface coverage data were obtained from adsorption simulations; the root-mean-square deviation (RMSD) of the target molecules were calculated, and their minimum distance to the magnetite surface was traced. The potential and adsorption energies of MEA were calculated as a function of temperature. It has been established that the interaction between MEA and magnetite is due to electrostatic phenomena and the adsorption rate increases with temperature. A comparison was made with existing experimental results and similar MD simulations. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

32 pages, 5581 KiB  
Article
Composite Noise Reduction Method for Internal Leakage Acoustic Emission Signal of Safety Valve Based on IWTD-IVMD Algorithm
by Shuxun Li, Xiaoqi Meng, Jianjun Hou, Kang Yuan and Xiaoya Wen
Sensors 2025, 25(15), 4684; https://doi.org/10.3390/s25154684 - 29 Jul 2025
Viewed by 214
Abstract
As the core device for protecting the safety of the pressure-bearing system, the spring full-open safety valve is prone to various forms of valve seat sealing surface damage after long-term opening and closing impact, corrosion, and medium erosion, which may lead to internal [...] Read more.
As the core device for protecting the safety of the pressure-bearing system, the spring full-open safety valve is prone to various forms of valve seat sealing surface damage after long-term opening and closing impact, corrosion, and medium erosion, which may lead to internal leakage. In view of the problems that the high-frequency acoustic emission signal of the internal leakage of the safety valve has, namely, a large number of energy-overlapping areas in the frequency domain, the overall signal presents broadband characteristics, large noise content, and no obvious time–frequency characteristics. A composite denoising method, IWTD, improved wavelet threshold function with dual adjustable factors, and the improved VMD algorithm is proposed. In view of the problem that the optimal values of the dual adjustment factors a and b of the function are difficult to determine manually, an improved dung beetle optimization algorithm is proposed, with the maximum Pearson coefficient as the optimization target; the optimization is performed within the value range of the dual adjustable factors a and b, so as to obtain the optimal value. In view of the problem that the key parameters K and α in VMD decomposition are difficult to determine manually, the maximum Pearson coefficient is taken as the optimization target, and the improved dung beetle algorithm is used to optimize within the value range of K and α, so as to obtain the IVMD algorithm. Based on the IVMD algorithm, the characteristic decomposition of the internal leakage acoustic emission signal occurs after the denoising of the IWTD function is performed to further improve the denoising effect. The results show that the Pearson coefficients of all types of internal leakage acoustic emission signals after IWTD-IVMD composite noise reduction are greater than 0.9, which is much higher than traditional noise reduction methods such as soft and hard threshold functions. Therefore, the IWTD-IVMD composite noise reduction method can extract more main features out of the measured spring full-open safety valve internal leakage acoustic emission signals, and has a good noise reduction effect. Feature recognition after noise reduction can provide a good evaluation for the safe operation of the safety valve. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 625
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

20 pages, 7113 KiB  
Article
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
by Yuanzheng Li, Ziyu Guo, Tianle Fu, Sha Sha, Bing Wang, Xiaoping Chen, Shujun Jia and Qingyou Liu
Materials 2025, 18(15), 3496; https://doi.org/10.3390/ma18153496 - 25 Jul 2025
Viewed by 256
Abstract
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was [...] Read more.
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

16 pages, 4296 KiB  
Article
Enhanced Photocathodic Protection Performance of TiO2/NiCo2S4 Composites for 304 Stainless Steel
by Honggang Liu, Hong Li, Xuan Zhang, Baizhao Xing, Zhuangzhuang Sun and Yanhui Li
Coatings 2025, 15(8), 874; https://doi.org/10.3390/coatings15080874 - 25 Jul 2025
Viewed by 283
Abstract
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth [...] Read more.
To address the corrosion of 304 stainless steel in marine environments, TiO2/NiCo2S4 composite photoanodes were fabricated via anodic oxidation and hydrothermal methods. X-ray diffraction, scanning electron microscope, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy analyses indicated the growth of hexagonal NiCo2S4 particles on anatase TiO2 nanotube arrays, forming a type-II heterojunction. Spectroscopy of ultraviolet-visible diffuse reflectance absorption showed that NiCo2S4 extended TiO2’s light absorption into the visible region. Electrochemical tests revealed that under visible light, the composite photoanode decreased the corrosion potential of 304ss to −0.7 V vs. SCE and reduced charge transfer resistance by 20% compared to pure TiO2. The enhanced performance stemmed from efficient electron-hole separation and transport enabled by the type-II heterojunction. Cyclic voltammetry tests indicated the composite’s electrochemical active surface area increased 1.8-fold, demonstrating superior catalytic activity. In conclusion, the TiO2/NiCo2S4 composite photoanode offers an effective approach for marine corrosion protection of 304ss. Full article
Show Figures

Figure 1

37 pages, 14524 KiB  
Review
Recent Developments in Layered Double Hydroxides as Anticorrosion Coatings
by Alessandra Varone, Riccardo Narducci, Alessandra Palombi, Subhan Rasulzade, Roberto Montanari and Maria Richetta
Materials 2025, 18(15), 3488; https://doi.org/10.3390/ma18153488 - 25 Jul 2025
Viewed by 370
Abstract
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly [...] Read more.
To date, one of the main problems associated with the engineering application of metallic materials is corrosion protection. To increase their durability and reduce damage, a variety of protection methods have been studied and applied. In recent decades, coating techniques have become increasingly important. Among these coatings, Layered Double Hydroxides (LDHs) have shown unique properties, such as ion exchange, high adhesion, and hydrophobicity, particularly useful for biomedical applications. In this review, after a detailed exposition of the LDHs’ synthesis processes, the most recent corrosion protection methods are illustrated. Intercalation of corrosion inhibitors and release kinetics of intercalates are presented. Although this work is mainly focused on laboratory-scale investigations and fundamental research, the problems inherent to large-scale industrial manufacturing and application are outlined and briefly discussed. Full article
(This article belongs to the Special Issue Advanced Coating Research for Metal Surface Protection)
Show Figures

Figure 1

19 pages, 4839 KiB  
Article
Corrosion Inhibition of C38 Steel in 1 M HCl Using Benzoxazole-2-Thione: Electrochemical, SEM-EDX, and Theoretical Studies
by Mohamed Omari, Khalid Bouiti, Said Jebbari, Nabil Lahrache, Ali Barhoumi, Najoua Labjar, Souad El Hajjaji, Mahado Said-Ahmed, Mounim Lebrini, Hamid Nasrellah, Mohammed El Idrissi and Abdessamad Tounsi
Metals 2025, 15(7), 810; https://doi.org/10.3390/met15070810 - 19 Jul 2025
Viewed by 477
Abstract
This study explores the corrosion inhibition of C38 steel in a 1 M hydrochloric acid (HCl) solution using a novel benzoxazole-2-thione compound. The inhibitor was synthesized and structurally characterized by both 1H NMR (DMSO-d6/TMS) and 13C NMR spectroscopy. Electrochemical [...] Read more.
This study explores the corrosion inhibition of C38 steel in a 1 M hydrochloric acid (HCl) solution using a novel benzoxazole-2-thione compound. The inhibitor was synthesized and structurally characterized by both 1H NMR (DMSO-d6/TMS) and 13C NMR spectroscopy. Electrochemical techniques, including Tafel polarization and electrochemical impedance spectroscopy, were employed to evaluate the inhibition performance. The results indicate that the benzoxazole-2-thione significantly reduces the corrosion rate, achieving a maximum inhibition efficiency of 95.25% at a concentration of 10−4 M. To gain deeper insights into the inhibition mechanism, theoretical methods such as density functional theory, Monte Carlo simulations, and molecular dynamics were applied to investigate the adsorption behavior of the compound on the steel surface. The adsorption process follows the Langmuir isotherm model, suggesting the coexistence of physisorption and chemisorption interactions. Surface morphology and elemental composition analyses using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) confirm the formation of a protective inhibitor film on the steel surface. Full article
Show Figures

Figure 1

20 pages, 7035 KiB  
Article
Microstructure Evolution Mechanism and Corrosion Resistance of FeCrNi(AlTi)x Medium Entropy Alloy Prepared by Laser Melting Deposition with Al and Ti Content Changes
by Kai Wang, Mingjie Liu, Chuan Liu, Xiaohui Li and Guanghui Shao
Coatings 2025, 15(7), 851; https://doi.org/10.3390/coatings15070851 - 19 Jul 2025
Viewed by 304
Abstract
In order to improve the microstructure and corrosion resistance of entropy alloy in the FeCrNi system, laser melting deposition technology was used as a preparation method to study the effects of different contents of Al and Ti on the microstructure and corrosion resistance [...] Read more.
In order to improve the microstructure and corrosion resistance of entropy alloy in the FeCrNi system, laser melting deposition technology was used as a preparation method to study the effects of different contents of Al and Ti on the microstructure and corrosion resistance of entropy alloy in FeCrNi(AlTi)x (x = 0.17, 0.2, and 0.24). The results show that the addition of Al and Ti elements can change the phase structure of the alloy from a single FCC phase structure to an FCC + BCC biphase structure. The BCC phase volume fraction of FeCrNi(AlTi)0.2 is the highest among the three alloys, reaching 37.5%. With the addition of Al and Ti content, the grain of the alloy will be refined to a certain extent. In addition, the dual-phase structure will also improve the corrosion resistance of the alloy. In 3.5 wt.% NaCl solution, the increase of Al and Ti content can effectively improve the protection of the passivation film on the surface of the entropy alloy in FeCrNi(AlTi)x, effectively inhibit the large-scale corrosion phenomenon on the alloy surface, and thus improve the corrosion resistance of the alloy. In a certain range, increasing the content of Al and Ti elements in the FeCrNi(AlTi)x system can improve the corrosion resistance of the alloy. Full article
Show Figures

Figure 1

25 pages, 2929 KiB  
Article
Modified Water-Dispersion Compositions Based on Synthesized Dispersions and Hollow Glass Microspheres with Improved Protective Characteristics
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Ruslan E. Nurlybayev, Zaure N. Altayeva, Yelzhan S. Orynbekov, Axaya S. Yestemessova, Aktota A. Murzagulova, Alinur A. Iskakov, Aidos A. Joldassov and Zhanar O. Zhumadilova
Coatings 2025, 15(7), 840; https://doi.org/10.3390/coatings15070840 - 18 Jul 2025
Viewed by 359
Abstract
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics [...] Read more.
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics proves to be effective. This article examines the development of a paint-and-coating composition using hollow glass microspheres and modified diatomite as finely dispersed fillers. The influence of technological factors on the properties of coating materials based on a synthesized acrylic dispersion and fillers—such as modified diatomite and hollow glass microspheres ranging from 20 to 100 μm in size with a bulk density of 0.107–0.252 g/cm3—is analyzed. The optimal formulation of the coating materials was determined to ensure the required coating quality. Experimental results demonstrate the improved strength and hardness of the coating due to the use of acrylic dispersion obtained through an emulsifier-free method and modifiers in the form of finely dispersed fillers. It has been established that the resulting samples also exhibit high adhesion to mineral and metallic substrates, along with excellent corrosion resistance. Moreover, the incorporation of acrylic dispersion contributes to increased elasticity of the coating, resulting in improved resistance to washing and abrasion. The developed protective material can be applied to a variety of surfaces, including walls, ceilings, and roofs of buildings and structures, pipelines, and many other applications. Thus, modified water-dispersion compositions based on synthesized acrylic dispersion showed the following results: resistance to sticking—5, which is the best; chemical resistance and gloss level with standard single-phase acrylic dispersion—no destruction or change in gloss. The adhesion of coatings cured under natural conditions and under the influence of UV radiation was 1 point. The developed formulations for obtaining water-dispersion paint and varnish compositions based on synthesized polymer dispersions, activated diatomite, and hollow glass microspheres, meet all the regulatory requirements for paint and varnish materials in terms of performance, and in terms of economic indicators, the cost of 1 kg of paint is 30% lower than the standard. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

17 pages, 4431 KiB  
Article
Wheeled Permanent Magnet Climbing Robot for Weld Defect Detection on Hydraulic Steel Gates
by Kaiming Lv, Zhengjun Liu, Hao Zhang, Honggang Jia, Yuanping Mao, Yi Zhang and Guijun Bi
Appl. Sci. 2025, 15(14), 7948; https://doi.org/10.3390/app15147948 - 17 Jul 2025
Viewed by 295
Abstract
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel [...] Read more.
In response to the challenges associated with weld treatment during the on-site corrosion protection of hydraulic steel gates, this paper proposes a method utilizing a magnetic adsorption climbing robot to perform corrosion protection operations. Firstly, a magnetic adsorption climbing robot with a multi-wheel independent drive configuration is proposed as a mobile platform. The robot body consists of six joint modules, with the two middle joints featuring adjustable suspension. The joints are connected in series via an EtherCAT bus communication system. Secondly, the kinematic model of the climbing robot is analyzed and a PID trajectory tracking control method is designed, based on the kinematic model and trajectory deviation information collected by the vision system. Subsequently, the proposed kinematic model and trajectory tracking control method are validated through Python3 simulation and actual operation tests on a curved trajectory, demonstrating the rationality of the designed PID controller and control parameters. Finally, an intelligent software system for weld defect detection based on computer vision is developed. This system is demonstrated to conduct defect detection on images of the current weld position using a trained model. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 5400 KiB  
Article
Polyaniline/Ti3C2 MXene Composites with Artificial 3D Biomimetic Surface Structure of Natural Macaw Feather Applied for Anticorrosion Coatings
by Chen-Cheng Chien, Yu-Hsuan Liu, Kun-Hao Luo, Ting-Yun Liu, Yi-Ting Kao, Shih-Harn Yang and Jui-Ming Yeh
Biomimetics 2025, 10(7), 465; https://doi.org/10.3390/biomimetics10070465 - 15 Jul 2025
Viewed by 316
Abstract
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D [...] Read more.
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D Ti3C2 MXene nanosheets were prepared by treating the Ti3AlC2 using the optimized minimally intensive layer delamination (MILD) method, followed by characterization via XRD and SEM. Subsequently, the PMC was prepared by the oxidative polymerization of aniline monomers in the presence of Ti3C2 MXene nanosheets, followed by characterization via FTIR, XRD, SEM, TEM, CV, and UV–Visible. Eventually, the PMC coatings with the artificial biomimetic surface structure of a macaw feather were prepared by the nano-casting technique. The corrosion resistance of the PMC coatings, evaluated via Tafel polarization and Nyquist impedance measurements, shows that increasing the MXene loading up to 5 wt % shifts the corrosion potential (Ecorr) on steel from −588 mV to −356 mV vs. SCE, reduces the corrosion current density (Icorr) from 1.09 µA/cm2 to 0.035 µA/cm2, and raises the impedance modulus at 0.01 Hz from 67 kΩ to 3794 kΩ. When structured with the hierarchical feather topography, the PMC coating (Bio-PA-MX-5) further advances the Ecorr to +103.6 mV, lowers the Icorr to 7.22 × 10−4 µA/cm2, and boosts the impedance to 96,875 kΩ. Compared to neat coatings without biomimetic structuring, those with engineered biomimetic surfaces showed significantly improved corrosion protection performance. These enhancements arise from three synergistic mechanisms: (i) polyaniline’s redox catalysis accelerates the formation of a dense passive oxide layer; (ii) MXene nanosheets create a tortuous gas barrier that cuts the oxygen permeability from 11.3 Barrer to 0.9 Barrer; and (iii) the biomimetic surface traps air pockets, raising the water contact angle from 87° to 135°. This integrated approach delivers one of the highest combined corrosion potentials and impedance values reported for thin-film coatings, pointing to a general strategy for durable steel protection. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

15 pages, 1929 KiB  
Article
A Stochastic Corrosion Fatigue Model for Assessing the Airworthiness of the Front Flanges of Fleet Aero Engines Using an Automated Data Analysis Method
by Govindarajan Narayanan and Andrej Golowin
Corros. Mater. Degrad. 2025, 6(3), 32; https://doi.org/10.3390/cmd6030032 - 15 Jul 2025
Viewed by 198
Abstract
Corrosion, combined with cyclic loading, is inevitable and becomes a challenging problem, even when inherently corrosion-protected materials have been selected and applied based on established in-house experience. Aero engine mount structures are exposed to dusty and salty environmental conditions during both operational and [...] Read more.
Corrosion, combined with cyclic loading, is inevitable and becomes a challenging problem, even when inherently corrosion-protected materials have been selected and applied based on established in-house experience. Aero engine mount structures are exposed to dusty and salty environmental conditions during both operational and non-operational periods. It is becoming tough to predict the remaining useful corrosion fatigue life due to the unascertainable material strength degradations under service conditions. As such, a rationalized approach is currently being used to assess their structural integrity, which produces more wastages of the flying parts. This paper presents a novel approach for predicting corrosion fatigue by proposing a random-parameter model in combination with validated experimental data. The two-random-parameter model is employed here with the probability method to determine the time-independent corrosion fatigue life of a magnesium structural casting, which is used heavily in engine front-mount aircraft systems. This is also correlated with experimental data from the literature, validating the proposed stochastic corrosion fatigue model that addresses the technical variances that occur during service to increase optimal mount structure usage using an automated data system. Full article
Show Figures

Figure 1

21 pages, 13173 KiB  
Article
Surface Modification by Plasma Electrolytic Oxidation of Friction Surfacing 4043 Aluminum-Based Alloys Deposited onto Structural S235 Steel Substrate
by Roxana Muntean and Ion-Dragoș Uțu
Materials 2025, 18(14), 3302; https://doi.org/10.3390/ma18143302 - 13 Jul 2025
Viewed by 449
Abstract
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without [...] Read more.
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without melting the material, classifies this technique as distinct from other standard methods. This unconventional deposition method is based on the severe plastic deformation that appears on a rotating metallic rod (consumable material) pressed against the substrate under an axial load. The present study aims to investigate the tribological properties and corrosion resistance provided by the aluminum-based FS coatings deposited onto a structural S235 steel substrate and further modified by plasma electrolytic oxidation (PEO). During the PEO treatment, the formation of a ceramic film is enabled, while the hardness, chemical stability, corrosion, and wear resistance of the modified surfaces are considerably increased. The morpho-structural characteristics and chemical composition of the PEO-modified FS coatings are further investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the PEO-modified aluminum-based coatings was carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated in a 3.5 wt.% NaCl solution. The corrosion rates of the aluminum-based coatings decreased significantly when the PEO treatment was applied, while the wear rate was substantially reduced compared to the untreated aluminum-based coating and steel substrate, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop