Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = corridor-following

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7392 KiB  
Article
Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China
by Fuli Wang, Chengzhong Yang, Yalin Xiong, Qian Xiang, Xiaojuan Cui and Jianjun Peng
Animals 2025, 15(15), 2254; https://doi.org/10.3390/ani15152254 (registering DOI) - 31 Jul 2025
Abstract
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively [...] Read more.
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively evaluate the genetic diversity, population structure, gene flow, and demographic history of tufted deer across this critical region. We analyzed mitochondrial DNA (mtDNA) from 46 non-invasively collected fecal samples from three distinct populations: Jinfo Mountain (JF, n = 13), Simian Mountain (SM, n = 21), and the Northeastern Mountainous region (NEM, n = 12). Genetic variation was assessed using the cytochrome b (Cyt b) and D-loop regions, with analyses including Fst, gene flow (Nm), neutrality tests, and Bayesian Skyline Plots (BSP). Our results revealed the highest genetic diversity in the SM population, establishing it as a genetic hub. In contrast, the JF population exhibited the lowest diversity and significant genetic differentiation (>0.23) from the SM and NEM populations, indicating profound isolation. Gene flow was substantial between SM and NEM but severely restricted for the JF population. Demographic analyses, including BSP, indicated a long history of demographic stability followed by a significant expansion beginning in the Middle to Late Pleistocene. We conclude that the SM/NEM metapopulation serves as the genetic core for the species in this region, while the highly isolated JF population constitutes a distinct and vulnerable Management Unit (MU). This historical demographic expansion is likely linked to climatic and environmental changes during the Pleistocene, rather than recent anthropogenic factors. These findings underscore the urgent need for a dual conservation strategy: targeted management for the isolated JF population and the establishment of ecological corridors to connect the Jinfo Mountain and Simian Mountain populations, ensuring the long-term persistence of this unique species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

22 pages, 6699 KiB  
Article
Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”
by Baiyang Li, Fuping Zhang, Qi Feng, Yongfen Wei, Guangwen Li and Zhiyuan Song
Land 2025, 14(8), 1542; https://doi.org/10.3390/land14081542 - 27 Jul 2025
Viewed by 241
Abstract
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout [...] Read more.
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout the area. Utilizing an integrated “water–soil–carbon–grain” framework, this study conducted a quantitative assessment of four essential ecosystem services within the Hexi Corridor from 2000 to 2020: water yield, soil conservation, vegetation carbon sequestration, and grain production. Our research thoroughly explores the equilibrium and synergistic interactions between grain production and other ecosystem services, while also exploring potential strategies to boost grain yields through the precise management of these services. The insights garnered are invaluable for strategic regional development and will contribute to the revitalization efforts in Northwest China. Key findings include the following: (1) between 2000 and 2020, grain production exhibited a steady increase, alongside rising trends in water yields, soil conservation, and carbon sequestration, all of which demonstrated significant synergies with agricultural productivity; (2) in areas identified as grain production hotspots, there were stronger positive correlations between grain output and carbon sequestration services, soil conservation, and water yields than the regional averages, suggesting more pronounced mutual benefits; (3) the implementation of strategic initiatives such as controlling soil erosion, expanding afforestation efforts, and enhancing water-saving irrigation infrastructure could simultaneously boost ecological services and agricultural productivity. These results significantly enhance our comprehension of the interplay between ecosystem services in the Hexi Corridor and present practical approaches for the optimization of regional agricultural systems. Full article
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
What Can Ground-Dwelling Ants Tell Us About Different Land-Use Systems in the Brazilian Amazon?
by Elisangela Silva, Cristina Machado Borges, Emília Zoppas Albuquerque, Daniela Faria Florencio, Izaias Fernandes, Mariana Tolentino, Vanesca Korasaki, Júlio Louzada and Ronald Zanetti
Forests 2025, 16(7), 1190; https://doi.org/10.3390/f16071190 - 19 Jul 2025
Viewed by 327
Abstract
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants [...] Read more.
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants within various land-use systems at a local scale in the Amazonian rainforest. Our focus was to respond to the following: (i) How do local species richness and community composition reflect differences among land-use systems? (ii) Are ground-dwelling ants, especially specialists, negatively impacted by intensified land-use changes? We surveyed 55 sites representing five land-use systems: primary forest, secondary forest, forest corridor, selective logging, and Eucalyptus plantation. We registered 150 ant species, and species richness ranged from 43 to 94. Richness varies according to the land-use systems, likely influenced by differences in habitat structural complexity both vertically and horizontally. Ant species composition and guilds distribution also varied among land-use systems studied. Environments characterized by reduced structural complexity or higher disturbed levels, such as Eucalyptus plantations, tend to support lower resource availability, which may lead to decreased species richness. However, the surrounding matrix appears to play a key role in maintaining regional biodiversity, as evidenced by the absence of differences in ground-dwelling ants diversity across all land-use systems studied. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

21 pages, 4935 KiB  
Article
Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model
by Xiaoyan Luo, Xun Luo, Xianhua Yang, Jian Wang, Jialing Liao, Yu He, Ye Du and Ye Yang
Land 2025, 14(7), 1488; https://doi.org/10.3390/land14071488 - 18 Jul 2025
Viewed by 313
Abstract
Optimizing the ecological network is an urgent need to enhance the stability of the ecosystem and maintain regional ecological security. We utilized the PLUS (Patch-generating Land Use Simulation) model to simulate the land use patterns of the Loess Plateau of China under four [...] Read more.
Optimizing the ecological network is an urgent need to enhance the stability of the ecosystem and maintain regional ecological security. We utilized the PLUS (Patch-generating Land Use Simulation) model to simulate the land use patterns of the Loess Plateau of China under four different development scenarios in 2030, constructed the corresponding ecological network, and evaluated the network structure. The results indicate the following: (1) By 2030, the spatial pattern of ecological network under the four scenarios will be concentrated in the east and west, in the north and south, and the middle of the Loess Plateau. (2) The change of land use pattern driven by a single policy has a trade-off effect on the ecological network and is prone to form the phenomenon of “ecological increase–functional lag”. (3) The regional ecological network layout of “four cores, multiple corridors and multiple sources” was proposed. The results reveal the development trends of land-use change and ecological protection construction under different future development scenarios in the Loess Plateau, which is helpful for decision-makers to balance the relationship between ecological protection and economic development and realize regional sustainable development. Full article
Show Figures

Figure 1

22 pages, 11512 KiB  
Article
Hazard Assessment of Highway Debris Flows in High-Altitude Mountainous Areas: A Case Study of the Laqi Gully on the China–Pakistan Highway
by Xiaomin Dai, Qihang Liu, Ziang Liu and Xincheng Wu
Sustainability 2025, 17(14), 6411; https://doi.org/10.3390/su17146411 - 13 Jul 2025
Viewed by 370
Abstract
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to [...] Read more.
Located on the northern side of the China–Pakistan Highway in the Pamir Plateau, Laqi Gully represents a typical rainfall–meltwater coupled debris flow gully. During 2020–2024, seven debris flow events occurred in this area, four of which disrupted traffic and posed significant threats to the China–Pakistan Economic Corridor (CPEC). The hazard assessment of debris flows constitutes a crucial component in disaster prevention and mitigation. However, current research presents two critical limitations: traditional models primarily focus on single precipitation-driven debris flows, while low-resolution digital elevation models (DEMs) inadequately characterize the topographic features of alpine narrow valleys. Addressing these issues, this study employed GF-7 satellite stereo image pairs to construct a 1 m resolution DEM and systematically simulated debris flow propagation processes under 10–100-year recurrence intervals using a coupled rainfall–meltwater model. The results show the following: (1) The mudslide develops rapidly in the gully section, and the flow velocity decays when it reaches the highway. (2) At highway cross-sections, maximum velocities corresponding to 10-, 20-, 50-, and 100-year recurrence intervals measure 2.57 m/s, 2.75 m/s, 3.02 m/s, and 3.36 m/s, respectively, with maximum flow depths of 1.56 m, 1.78 m, 2.06 m, and 2.52 m. (3) Based on the hazard classification model of mudslide intensity and return period, the high-, medium-, and low-hazard sections along the highway were 58.65 m, 27.36 m, and 24.1 m, respectively. This research establishes a novel hazard assessment methodology for rainfall–meltwater coupled debris flows in narrow valleys, providing technical support for debris flow mitigation along the CPEC. The outcomes demonstrate significant practical value for advancing infrastructure sustainability under the United Nations Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

23 pages, 3778 KiB  
Article
Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning
by Fuchao Li, Tian Nan, Huang Zhang, Kun Luo, Kui Xiang and Yi Peng
Land 2025, 14(7), 1435; https://doi.org/10.3390/land14071435 - 9 Jul 2025
Viewed by 336
Abstract
This study focuses on the Dongting Lake region in China and evaluates ecological vulnerability using the Sensitivity–Resilience–Pressure (SRP) framework, integrated with Spatial Principal Component Analysis (SPCA) to calculate the Ecological Vulnerability Index (EVI). The EVI values were classified into five levels using the [...] Read more.
This study focuses on the Dongting Lake region in China and evaluates ecological vulnerability using the Sensitivity–Resilience–Pressure (SRP) framework, integrated with Spatial Principal Component Analysis (SPCA) to calculate the Ecological Vulnerability Index (EVI). The EVI values were classified into five levels using the Natural Breaks (Jenks) method, and spatial autocorrelation analysis was applied to reveal spatial differentiation patterns. The Geodetector model was used to analyze the driving mechanisms of natural and socioeconomic factors on EVI, identifying key influencing variables. Furthermore, the LightGBM algorithm was used for feature optimization, followed by the construction of six machine learning models—Multilayer Perceptron (MLP), Extremely Randomized Trees (ET), Decision Tree (DT), Random Forest (RF), LightGBM, and K-Nearest Neighbors (KNN)—to conduct multi-class classification of ecological vulnerability. Model performance was assessed using ROC–AUC, accuracy, recall, confusion matrix, and Kappa coefficient, and the best-performing model was interpreted using SHAP (SHapley Additive exPlanations). The results indicate that: ① ecological vulnerability increased progressively from the core wetlands and riparian corridors to the transitional zones in the surrounding hills and mountains; ② a significant spatial clustering of ecological vulnerability was observed, with a Moran’s I index of 0.78; ③ Geodetector analysis identified the interaction between NPP (q = 0.329) and precipitation (PRE, q = 0.268) as the dominant factor (q = 0.50) influencing spatial variation of EVI; ④ the Random Forest model achieved the best classification performance (AUC = 0.954, F1 score = 0.78), and SHAP analysis showed that NPP and PRE made the most significant contributions to model predictions. This study proposes a multi-method integrated decision support framework for assessing ecological vulnerability in lake wetland ecosystems. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

20 pages, 7174 KiB  
Article
The Spatiotemporal Evolution Characteristics and Influencing Factors of Traditional Villages in the Qinling-Daba Mountains
by Tianshu Chu and Chenchen Liu
Buildings 2025, 15(14), 2397; https://doi.org/10.3390/buildings15142397 - 8 Jul 2025
Viewed by 246
Abstract
Traditional villages are irreplaceable cultural heritages, embodying complex human–environment interactions. This study uses historical geography analysis, kernel density estimation, centroid migration modeling, and Geodetector techniques to analyze the 2000-year spatiotemporal evolution and formation mechanisms of 224 nationally designated traditional villages in China’s Qinling-Daba [...] Read more.
Traditional villages are irreplaceable cultural heritages, embodying complex human–environment interactions. This study uses historical geography analysis, kernel density estimation, centroid migration modeling, and Geodetector techniques to analyze the 2000-year spatiotemporal evolution and formation mechanisms of 224 nationally designated traditional villages in China’s Qinling-Daba Mountains. The findings are as follows: (1) These villages significantly cluster on sunny slopes of hills and low mountains with moderate gradients. They are also closely located near waterways, ancient roads, and historic cities. (2) From the embryonic stage during the Qin and Han dynasties, through the diffusion and transformation phases in the Wei, Jin, Song, and Yuan dynasties, to the mature stage in the Ming and Qing dynasties, the spatial center of these villages shifted distinctly southwestward. This migration was accompanied by expansion along waterway transport corridors, an enlarged spatial scope, and a decrease in directional concentration. (3) The driving forces evolved from a strong coupling between natural conditions and infrastructure in the early stage to human-dominated adaptation in the later stage. Agricultural innovations, such as terraced fields, and sociopolitical factors, like migration policies, overcame environmental constraints through the synergistic effects of cultural and economic networks. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 8917 KiB  
Article
Creating the Spatial Utilization Pattern of Traditional Villages in the Yellow River by Connecting the Heritage Corridors System with the Assessment of Tourism Potential
by Xin Liu, Tangxia Wu, Ziyi Xie, Weijing Yuan and Huan Yang
Land 2025, 14(7), 1402; https://doi.org/10.3390/land14071402 - 3 Jul 2025
Viewed by 318
Abstract
Traditional villages possess considerable heritage values. Tourism provides an effective way to protect and revitalize the traditional village heritages. Current research has insufficient consideration of tourism potential when constructing the spatial utilization pattern of traditional villages. This study aims to build a spatial [...] Read more.
Traditional villages possess considerable heritage values. Tourism provides an effective way to protect and revitalize the traditional village heritages. Current research has insufficient consideration of tourism potential when constructing the spatial utilization pattern of traditional villages. This study aims to build a spatial utilization pattern of traditional villages within the Yellow River Basin by assessing the tourism potential of each traditional village via the Combined Weight Method and identifying cultural heritage corridors through the application of the Minimum Cumulative Resistance model. The results indicate the following: (1) The traditional villages situated within the Yellow River Basin demonstrate an uneven spatial distribution, with a notable concentration in the middle and lower reaches. (2) The traditional villages located in the middle and lower reaches possess greater tourism potential compared to those found in the upstream, and they are primarily situated in Shanxi and Henan provinces. (3) In light of the cultural attributes, this study proposes a spatial utilization pattern characterized by “four core areas, seven cultural zones, and a three–tiered corridor system”. These findings promote the development of traditional villages while preserving their heritage values, strengthen the communication and integration of regional cultures, and offer practical guidance towards regional coordination and enduring development. Full article
Show Figures

Figure 1

27 pages, 18002 KiB  
Article
Quantifying Ecological Dynamics and Anthropogenic Dominance in Drylands: A Hybrid Modeling Framework Integrating MRSEI and SHAP-Based Explainable Machine Learning in Northwest China
by Beilei Zhang, Xin Yang, Mingqun Wang, Liangkai Cheng and Lina Hao
Remote Sens. 2025, 17(13), 2266; https://doi.org/10.3390/rs17132266 - 2 Jul 2025
Viewed by 360
Abstract
Arid and semi-arid regions serve as crucial ecological barriers in China, making the spatiotemporal evolution of their ecological environmental quality (EEQ) scientifically significant. This study developed a Modified Remote Sensing Ecological Index (MRSEI) by innovatively integrating the Comprehensive Salinity Indicator (CSI) into the [...] Read more.
Arid and semi-arid regions serve as crucial ecological barriers in China, making the spatiotemporal evolution of their ecological environmental quality (EEQ) scientifically significant. This study developed a Modified Remote Sensing Ecological Index (MRSEI) by innovatively integrating the Comprehensive Salinity Indicator (CSI) into the Remote Sensing Ecological Index (RSEI) and applied it to systematically evaluate the spatiotemporal evolution of EEQ (2014–2023) in Yinchuan City, a typical arid region of northwest China along the upper Yellow River. The study revealed the spatiotemporal evolution patterns through the Theil–Sen (T-S) estimator and Mann–Kendall (M-K) test, and adopted the Light Gradient Boosting Machine (LightGBM) combined with the Shapley Additive Explanation (SHAP) to quantify the contributions of ten natural and anthropogenic driving factors. The results suggest that (1) the MRSEI outperformed the RSEI, showing 0.41% higher entropy and 5.63% greater contrast, better characterizing the arid region’s heterogeneity. (2) The EEQ showed marked spatial heterogeneity. High-quality areas are concentrated in the Helan Mountains and the integrated urban/rural development demonstration zone, while the core functional zone of the provincial capital, the Helan Mountains ecological corridor, and the eastern eco-economic pilot zone showed lower EEQ. (3) A total of 87.92% of the area (7609.23 km2) remained stable with no significant changes. Notably, degraded areas (934.52 km2, 10.80%) exceeded improved zones (111.04 km2, 1.28%), demonstrating an overall ecological deterioration trend. (4) This study applied LightGBM with SHAP to analyze the driving factors of EEQ. The results demonstrated that Land Use/Land Cover (LULC) was the predominant driver, contributing 41.52%, followed by the Digital Elevation Model (DEM, 18.26%) and Net Primary Productivity (NPP, 12.63%). This study offers a novel framework for arid ecological monitoring, supporting evidence-based conservation and sustainable development in the Yellow River Basin. Full article
Show Figures

Graphical abstract

26 pages, 4956 KiB  
Article
Applying Circuit Theory and Risk Assessment Models to Evaluate High-Temperature Risks for Vulnerable Groups and Identify Control Zones
by Xuanying Chen, Lang Zhang, Qicheng Zhong, Guilian Zhang, Yang Yi, Di Wang and Qingping Zhang
Land 2025, 14(7), 1378; https://doi.org/10.3390/land14071378 - 30 Jun 2025
Viewed by 482
Abstract
Rapid urban development has exacerbated heat events. Vulnerable groups, due to deficiencies in physical functions and social support, often face higher health risks and survival pressures during heat events. Effectively identifying and assessing the heat risks they face and developing effective management strategies [...] Read more.
Rapid urban development has exacerbated heat events. Vulnerable groups, due to deficiencies in physical functions and social support, often face higher health risks and survival pressures during heat events. Effectively identifying and assessing the heat risks they face and developing effective management strategies still pose many challenges. This study develops a heat risk assessment model based on the “hazard–accessibility–vulnerability” framework, incorporating circuit theory modeling to assess the health benefits of ventilation corridors for vulnerable populations and identifying high-temperature risk areas to better support science-based planning. The results show the following: (1) The urban heat island levels in the study area were classified based on the mean-standard deviation method, identifying that high-level heat islands account for 14.2% of the total area, with surface temperatures in urban built-up areas being significantly higher than in rural areas. (2) Based on the circuit theory model, 54 ventilation corridors were identified and 12 major corridors and 42 minor corridors were determined. (3) Based on the thermal risk assessment model, five residential areas covering 1.45 km2 were identified as having the highest thermal risk, and 5.68 km2 of residential areas had an imbalance between the ventilation demand and ventilation supply for vulnerable populations. This study innovatively assesses the health benefits of urban ventilation corridors from a social equity perspective and proposes urban renewal strategies such as introducing ventilation corridors, adjusting building layouts, enhancing green infrastructure, and promoting cooling technologies, offering new insights for future research. Full article
(This article belongs to the Topic Ecological Protection and Modern Agricultural Development)
Show Figures

Figure 1

32 pages, 18860 KiB  
Article
Spatiotemporal Variations in Human Activity Intensity Along the Qinghai–Tibet Railway and Analysis of Its Decoupling Process from Ecological Environment Quality Changes
by Fengli Zou, Qingwu Hu, Lei Liao, Yuqi Liu, Haidong Li and Xujie Zhang
Remote Sens. 2025, 17(13), 2215; https://doi.org/10.3390/rs17132215 - 27 Jun 2025
Viewed by 268
Abstract
Scientifically and accurately assessing the interaction between changes in human activity intensity and the surrounding ecological environment along the Qinghai–Tibet Railway is of great significance for the optimized construction of the railway and the restoration of the regional ecological environment. Based on different [...] Read more.
Scientifically and accurately assessing the interaction between changes in human activity intensity and the surrounding ecological environment along the Qinghai–Tibet Railway is of great significance for the optimized construction of the railway and the restoration of the regional ecological environment. Based on different spatial distribution scales and construction phases of the Qinghai–Tibet Railway, this study integrates multi-source remote sensing data to construct a long-term spatiotemporal dataset of human activity intensity in the region. Drawing on analytical methods from production theory, a coupling theoretical framework based on remote sensing ecological models is proposed to quantitatively reveal the coupling relationships between the ecological environment and human activities across varying spatiotemporal scales along the Qinghai–Tibet Railway. The study finds that (1) the spatiotemporal distribution of human activity intensity along the Qinghai–Tibet Railway demonstrates clear patterns, with expansion primarily radiating from transportation corridors and their intersections, and marked spatial heterogeneity across different segments. Overall, human activity intensity increased slowly between 1990 and 2002, followed by a significant rise during the construction and opening of the Golmud–Lhasa section (2001–2007). From 2013 to 2020, the growth rate began to slow. Within a 0–30 km buffer zone centered on railway station locations (with a 15 km radius), the growth rate of human activity intensity generally decreased with increasing distance from the railway. In the 30–60 km buffer zone, this trend tended to stabilize. (2) The coupling process between ecological quality and human activity intensity across different spatiotemporal scales along the railway exhibits considerable spatial and temporal heterogeneity and complexity. The decoupling relationship is dominated by strong and weak decoupling patterns, with strong decoupling being the most prevalent. Weak decoupling is mainly distributed along the sides of the railway. Overall, in most areas along the railway, ecological quality has shown a certain degree of improvement alongside increasing human activity intensity; however, the rate of ecological improvement is generally lower than the rate of increase in human activity intensity. In some areas adjacent to the railway, intensified human activities have led to a decline in ecological quality, though the resulting ecological pressure remains relatively low. Full article
Show Figures

Figure 1

18 pages, 338 KiB  
Article
The Temporal–Spatial Parameters of Gait After Total Knee Arthroplasty
by Karina Szczypiór-Piasecka, Paulina Adamczewska, Łukasz Kołodziej and Paweł Ziętek
J. Clin. Med. 2025, 14(13), 4548; https://doi.org/10.3390/jcm14134548 - 26 Jun 2025
Viewed by 390
Abstract
Background/Objectives: Gait abnormalities in advanced knee osteoarthritis (KOA) are characterized by decreased stride length, walking speed, and cadence. Total knee arthroplasty (TKA) is intended to improve temporal–spatial gait parameters; however, the extent and timing of functional recovery remain under investigation. To assess changes [...] Read more.
Background/Objectives: Gait abnormalities in advanced knee osteoarthritis (KOA) are characterized by decreased stride length, walking speed, and cadence. Total knee arthroplasty (TKA) is intended to improve temporal–spatial gait parameters; however, the extent and timing of functional recovery remain under investigation. To assess changes in stride length, walking speed, and cadence following TKA in short- and long-term perspectives, and to compare outcomes with a non-operated KOA cohort. Methods: A prospective observational study was conducted involving 46 patients with unilateral KOA (grades III–IV, Kellgren–Lawrence scale) who underwent cemented TKA via a medial parapatellar approach. Group I (n = 34) was assessed one day prior to surgery and six weeks postoperatively. Group II (n = 12), a follow-up subset, was reassessed 1.5 years postoperatively. Group III (n = 34) served as a non-operated control group, assessed only preoperatively. Temporal–spatial gait parameters were evaluated under standardized conditions using a two-dimensional video analysis (Kinovea® software version 0.8.27). Stride length (m) and walking speed (m/s) were assessed during continuous walking along a 15 m corridor, with at least three valid gait cycles averaged per trial. Cadence (steps/min) was determined during a one-minute walk and verified frame-by-frame. No structured outpatient physiotherapy was provided; all patients followed a standardized in-hospital rehabilitation protocol. Results: In Group I, the mean stride length increased from 0.40 ± 0.10 m to 0.42 ± 0.10 m (p = 0.247), walking speed improved from 0.41 ± 0.027 m/s to 0.47 ± 0.022 m/s (p = 0.063), and cadence increased significantly from 72.9 ± 7.8 to 77.1 ± 8.6 steps/min (p = 0.044). In Group II, the mean stride length rose from 0.39 ± 0.10 m to 0.52 ± 0.09 m (p < 0.001), walking speed improved from 0.44 ± 0.02 m/s to 0.69 ± 0.01 m/s (p < 0.001), and cadence increased from 73.7 ± 8.8 to 103.6 ± 7.4 steps/min (p < 0.001). Compared to the control group (Group III: stride length 0.42 ± 0.09 m; walking speed 0.41 ± 0.02 m/s; cadence 73.9 ± 7.9 steps/min), Group II demonstrated superior values across all parameters (p < 0.001 for each comparison). No significant correlations were observed between BMI and gait outcomes. Conclusions: Total knee arthroplasty resulted in progressive improvement in temporal–spatial gait parameters. While early postoperative gains were limited, substantial functional restoration was observed at long-term follow-up, emphasizing the importance of extended recovery monitoring in post-TKA evaluation. Full article
(This article belongs to the Special Issue Advanced Approaches in Hip and Knee Arthroplasty)
Show Figures

Figure 1

20 pages, 1652 KiB  
Article
Analysis of Spatiotemporal Characteristics of Intercity Travelers Within Urban Agglomeration Based on Trip Chain and K-Prototypes Algorithm
by Shuai Yu, Yuqing Liu and Song Hu
Appl. Syst. Innov. 2025, 8(4), 88; https://doi.org/10.3390/asi8040088 - 26 Jun 2025
Viewed by 527
Abstract
In the rapid process of urbanization, urban agglomerations have become a key driving factor for regional development and spatial reorganization. The formation and development of urban agglomerations rely on communication between cities. However, the spatiotemporal characteristics of intercity travelers are not fully grasped [...] Read more.
In the rapid process of urbanization, urban agglomerations have become a key driving factor for regional development and spatial reorganization. The formation and development of urban agglomerations rely on communication between cities. However, the spatiotemporal characteristics of intercity travelers are not fully grasped throughout the entire trip chain. This study proposes a spatiotemporal analysis method for intercity travel in urban agglomerations by constructing origin-to-destination (OD) trip chains using smartphone data, with the Beijing–Tianjin–Hebei urban agglomeration as a case study. The study employed Cramer’s V and Spearman correlation coefficients for multivariate feature selection, identifying 12 key variables from an initial set of 20. Then, optimal cluster configuration was determined via silhouette analysis. Finally, the K-prototypes algorithm was applied to cluster 161,797 intercity trip chains across six transportation corridors in 2019 and 2021, facilitating a comparative spatiotemporal analysis of travel patterns. Results show the following: (1) Intercity travelers are predominantly males aged 19–35, with significantly higher weekday volumes; (2) Modal split exhibits significant spatial heterogeneity—the metro predominates in Beijing while road transport prevails elsewhere; (3) Departure hubs’ waiting times increased significantly in 2021 relative to 2019 baselines; (4) Increased metro mileage correlates positively with extended intra-city travel distances. The results substantially contribute to transportation planning, particularly in optimizing multimodal hub operations and infrastructure investment allocation. Full article
Show Figures

Figure 1

34 pages, 28931 KiB  
Article
Spatiotemporal Dynamics and Multi-Scenario Projections of the Land Use and Habitat Quality in the Yellow River Basin: A GeoDetector-PLUS-InVEST Integrated Framework for a Coupled Human–Natural System Analysis
by Xiuyan Zhao, Jie Li, Fengxue Ruan, Zeduo Zou, Xiong He and Chunshan Zhou
Remote Sens. 2025, 17(13), 2181; https://doi.org/10.3390/rs17132181 - 25 Jun 2025
Viewed by 482
Abstract
The Yellow River Basin (YRB) is a critical ecological zone in China now confronting growing tensions between land conservation and development. This study combines land use, climate, and socio-economic data with spatial–statistical models (GeoDetector [GD]–Patch-generating Land Use Simulation [PLUS]–Integrated Valuation of Ecosystem Services [...] Read more.
The Yellow River Basin (YRB) is a critical ecological zone in China now confronting growing tensions between land conservation and development. This study combines land use, climate, and socio-economic data with spatial–statistical models (GeoDetector [GD]–Patch-generating Land Use Simulation [PLUS]–Integrated Valuation of Ecosystem Services and Trade-Offs [InVEST]) to analyze land use changes (2000–2020), evaluate habitat quality, and simulate scenarios to 2040. Key results include the following: (1) Farmland was decreased by the conversion to forests (+3475 km2) and grasslands (+4522 km2), while construction land expanded rapidly (+11,166 km2); (2) the population and Gross Domestic Product (GDP) pressures drove the farmland loss (q = 0.148 for population, q = 0.129 for GDP), while synergies between evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI) promoted forest/grassland recovery (q = 0.155); and (3) ecological protection scenarios increased the grassland area by 12.94% but restricted the construction land growth (−13.84%), with persistent unused land (>3.61% in Inner Mongolia) indicating arid-zone risks. The Habitat Quality-Autocorrelated Coupling Index (HQACI) declined from 0.373 (2020) to 0.345–0.349 (2040), which was linked to drought, groundwater loss, and urban expansion. Proposed strategies including riparian corridor protection, adaptive urban zoning, and gradient-based restoration aim to balance ecological and developmental needs, supporting spatial planning and enhancing the basin-wide habitat quality. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 6315 KiB  
Article
Age-Friendly Public-Space Retrofit in Peri-Urban Villages Using Space Syntax and Exploratory Factor Analysis
by Qin Li, Zhenze Yang, Jingya Cui, Xingping Wu, Jiao Liu, Wenlong Li and Yijun Liu
Buildings 2025, 15(13), 2219; https://doi.org/10.3390/buildings15132219 - 24 Jun 2025
Cited by 1 | Viewed by 499
Abstract
Population ageing is revealing acute mismatches between inherited village layouts and older residents’ everyday needs in China’s peri-urban fringe. This study combines space-syntax diagnostics with an exploratory factor analysis to create a building-oriented retrofit workflow. Using Liulin Village, Beijing, as a test bed, [...] Read more.
Population ageing is revealing acute mismatches between inherited village layouts and older residents’ everyday needs in China’s peri-urban fringe. This study combines space-syntax diagnostics with an exploratory factor analysis to create a building-oriented retrofit workflow. Using Liulin Village, Beijing, as a test bed, axial-line modelling pinpoints the low-integration alleys and mono-functional retail strips, while elder-user surveys distil four latent demand factors, led by personal convenience. Overlaying these two layers highlights the “high-demand/low-fit” segments for intervention. Prefabricated 3 m × 6 m health kiosks, sunrooms and rest pergolas—constructed from light-gauge steel frames and assembled with dry joints—are then inserted along a newly permeated corridor–core walking loop. The modules follow a 600 mm dimensional grid and can be installed or removed within a single working day, cutting the on-site labour by roughly one-third relative to that required for conventional masonry kiosks and enabling their future relocation or reuse. The workflow shows how small-scale, low-carbon building interventions can simultaneously improve accessibility, social interaction and functional diversity, providing a transferable template for ageing-responsive public-space retrofits in rapidly transforming village contexts. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop