Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. PCR Amplification, Gene Cloning, and Sequencing
2.3. Data Analysis
3. Results
3.1. Sequence Characteristics and Genetic Diversity
3.2. Phylogenetic Relationships and Genetic Structure
3.3. Genetic Differentiation and Gene Flow
3.4. Demographic History
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, R.B.; Jiang, Z. Elaphodus cephalophus. IUCN Red List Threat. Species 2015, e.T7112A22159620. [Google Scholar] [CrossRef]
- Leslie, D.M.; Lee, D.N.; Dolman, R.W. Elaphodus cephalophus (Artiodactyla: Cervidae). Mamm. Species 2013, 904, 80–91. [Google Scholar] [CrossRef][Green Version]
- Liu, X.; Ming, Y.; Liu, Y.; Yue, W.; Han, G. Influences of Landform and Urban Form Factors on Urban Heat Island: Comparative Case Study between Chengdu and Chongqing. Sci. Total Environ. 2022, 820, 153395. [Google Scholar] [CrossRef]
- Golosova, O.S.; Kholodova, M.V.; Volodin, I.A.; Seryodkin, I.V.; Okhlopkov, I.M.; Argunov, A.V.; Sipko, T.P. Genetic Diversity of the Eastern Subspecies of Red Deer (Cervus elaphus) in Russia Revealed by mtDNA and Microsatellite Polymorphism. Biol. Bull. Rev. 2023, 13, 482–494. [Google Scholar] [CrossRef]
- Machmoum, M.; Boujenane, I.; Azelhak, R.; Badaoui, B.; Petit, D.; Piro, M. Genetic Diversity and Population Structure of Arabian Horse Populations Using Microsatellite Markers. J. Equine Vet. Sci. 2020, 93, 103200. [Google Scholar] [CrossRef]
- Kilwanila, S.I.; Lyimo, C.M.; Rija, A.A. Mitochondrial Genetic Diversity of the Greater Cane Rat (Thryonomys swinderianus) Populations from the Eastern Arc Mountains Ecosystem, Tanzania. Mol. Biol. Rep. 2022, 49, 10431–10442. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Li, T.; Su, M.; Wang, H.; Li, Q.; Lang, X.; Ma, Y. Whole Genome Sequencing Revealed Genetic Diversity, Population Structure, and Selective Signature of Panou Tibetan sheep. BMC Genom. 2023, 24, 50. [Google Scholar] [CrossRef]
- Liu, H.; Han, T.; Liu, W.; Xu, G.; Zheng, K.; Xiao, F. Epidemiological Characteristics and Genetic Diversity of Bartonella species in Rodents from Southeastern China. Zoonoses Public Health 2022, 69, 224–234. [Google Scholar] [CrossRef]
- Ladoukakis, E.D.; Zouros, E. Evolution and Inheritance of Animal Mitochondrial DNA: Rules and Exceptions. J. Biol. Res. 2017, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, B.; Liu, D.; Wang, S.; Wang, L.; Pei, Q.; Zhang, Z.; Zhao, J.; Huang, B.; Zhang, F.; et al. Whole-Genome Resequencing to Investigate the Genetic Diversity and Mechanisms of Plateau Adaptation in Tibetan sheep. J. Anim. Sci. Biotechnol. 2024, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, H.; Sanpool, O.; Rodpai, R.; Sadaow, L.; Laummaunwai, P.; Un, M.; Thanchomnang, T.; Laymanivong, S.; Aung, W.P.P.; Intapan, P.M.; et al. Spirometra Species from Asia: Genetic Diversity and Taxonomic Challenges. Parasitol. Int. 2021, 80, 102181. [Google Scholar] [CrossRef] [PubMed]
- Angrizani, R.C.; Malabarba, L.R. Genetic Diversity and Species Delimitation in Rhamdia (Siluriformes: Heptapteridae) in South America, with a Redescription of R. quelen (Quoy Amp; Gaimard, 1824). Zootaxa 2020, 4801, 85–104. [Google Scholar] [CrossRef]
- Cho, S.; Pandey, P.; Hyun, J.Y.; Marchenkova, T.; Vitkalova, A.; Petrov, T.; Jeong, D.; Lee, J.; Kim, D.Y.; Li, Y.; et al. Efficient and Cost-Effective Non-Invasive Population Monitoring as a Method to Assess the Genetic Diversity of the Last Remaining Population of Amur Leopard (Panthera pardus orientalis) in the Russia Far East. PLoS ONE 2022, 17, e0270217. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid Evolution of Animal Mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- Galtier, N.; Nabholz, B.; Glémin, S.; Hurst, G.D.D. Mitochondrial DNA as a Marker of Molecular Diversity: A Reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Allio, R.; Donega, S.; Galtier, N.; Nabholz, B. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Mol. Biol. Evol. 2017, 34, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Irwin, D.M.; Kocher, T.D.; Wilson, A.C. Evolution of the Cytochrome b Gene of Mammals. J. Mol. Evol. 1991, 32, 128–144. [Google Scholar] [CrossRef]
- Saccone, C.; Attimonelli, M.; Sbisà, E. Structural Elements Highly Preserved during the Evolution of the D-Loop-Containing Region in Vertebrate Mitochondrial DNA. J. Mol. Evol. 1987, 26, 205–211. [Google Scholar] [CrossRef]
- Sbisà, E.; Tanzariello, F.; Reyes, A.; Pesole, G.; Saccone, C. Mammalian Mitochondrial D-Loop Region Structural Analysis: Identification of New Conserved Sequences and Their Functional and Evolutionary Implications. Gene 1997, 205, 125–140. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, B.; Wei, F.; Long, Y.; Hao, Y.; Li, M. Phylogeography and Population Structure of the Yunnan Snub-Nosed Monkey (Rhinopithecus bieti) Inferred from Mitochondrial Control Region DNA Sequence Analysis. Mol. Ecol. 2007, 16, 3334–3349. [Google Scholar] [CrossRef]
- Babarinde, I.A.; Adeola, A.C.; Djagoun, C.A.M.S.; Nneji, L.M.; Okeyoyin, A.O.; Niba, G.; Wanzie, N.K.; Oladipo, O.C.; Adebambo, A.O.; Bello, S.F.; et al. Population Structure and Evolutionary History of the Greater Cane Rat (Thryonomys swinderianus) from the Guinean Forests of West Africa. Front. Genet. 2023, 14, 1041103. [Google Scholar] [CrossRef]
- Sumana, S.L.; Wang, P.; Zhang, C.; Jing, X.; Zhu, J.; Tang, Y.; Liu, W.; Su, S.; Liao, Y. Genetic Diversity of the Common Carp Black Strain Population Based on mtDNA (D-Loop and Cytb). Heliyon 2024, 10, e30307. [Google Scholar] [CrossRef]
- Beltrán-López, R.G.; Pérez-Rodríguez, R.; Montañez-García, O.C.; Artigas-Azas, J.M.; Köck, M.; Mar-Silva, A.F.; Domínguez-Domínguez, O. Genetic Differentiation in the Genus Characodon: Implications for Conservation and Taxonomy. PeerJ 2021, 9, e11492. [Google Scholar] [CrossRef]
- Sun, Z.; Pan, T.; Wang, H.; Pang, M.; Zhang, B. Yangtze River, an Insignificant Genetic Boundary in Tufted Deer (Elaphodus cephalophus): The Evidence from a First Population Genetics Study. PeerJ 2016, 4, e2654. [Google Scholar] [CrossRef]
- Zemanova, M.A.; Ramp, D. Genetic Structure and Gene Flow in Eastern Grey Kangaroos in an Isolated Conservation Reserve. Diversity 2021, 13, 570. [Google Scholar] [CrossRef]
- Hai, L.; Li, Y.; Lan, X.; Pei, C.; Hu, D. Insight into mtDNA Diversity of Wild Forest Musk Deer (Moschus berezovskii) in Shanxi Province Mountains. Sci. Rep. 2025, 15, 5523. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Yang, H.; Feng, L.; Mou, P.; Wang, T.; Ge, J. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China. PLoS ONE 2016, 11, e0154254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lu, G.; Gao, Y.; Li, M.; Hu, D.; Zhang, D. mtDNA CR Evidence Indicates High Genetic Diversity of Captive Forest Musk Deer in Shaanxi Province, China. Animals 2023, 13, 2191. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Li, J.; Wang, X. Karst Study of Jinfo Mountain Based on Image Analysis. Heliyon 2023, 9, e19657. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic Atherosclerosis Is Associated with an Altered Gut Metagenome. Nat. Commun. 2012, 3, 1245. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. Gene Flow and the Geographic Structure of Natural Populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature Software for Haplotype Network Construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Yang, X.; Su, M.; Meng, J.; Du, J.; An, W.; Shi, H.; Fan, W. Characterization of Two Novel HIV-1 Second-Generation Recombinants (CRF01_AE/CRF07_BC) Identified in Hebei Province, China. Front. Microbiol. 2023, 14, 1159928. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Deng, M.-X.; Xiao, B.; Yuan, J.-X.; Hu, J.-M.; Kim, K.S.; Westbury, M.V.; Lai, X.-L.; Sheng, G.-L. Ancient Mitogenomes Suggest Stable Mitochondrial Clades of the Siberian Roe Deer. Genes 2022, 13, 114. [Google Scholar] [CrossRef]
- Lu, G.; Lin, A.; Luo, J.; Blondel, D.V.; Meiklejohn, K.A.; Sun, K.; Feng, J. Phylogeography of the Rickett’s Big-Footed Bat, Myotis pilosus (Chiroptera: Vespertilionidae): A Novel Pattern of Genetic Structure of Bats in China. BMC Evol. Biol. 2013, 13, 241. [Google Scholar] [CrossRef]
- Pérez-Espona, S.; Pérez-Barbería, F.J.; Jiggins, C.D.; Gordon, I.J.; Pemberton, J.M. Variable Extent of Sex-Biased Dispersal in a Strongly Polygynous Mammal. Mol. Ecol. 2010, 19, 3101–3113. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, J.; Carranza, J. Female-Biased Dispersal under Conditions of Low Male Mating Competition in a Polygynous Mammal. Mol. Ecol. 2009, 18, 4617–4630. [Google Scholar] [CrossRef] [PubMed]
- Holand, O.; Askim, K.R.; Røed, K.H.; Weladji, R.B.; Gjøstein, H.; Nieminen, M. No Evidence of Inbreeding Avoidance in a Polygynous Ungulate: The Reindeer (Rangifer tarandus). Biol. Lett. 2007, 3, 36–39. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence (5′-3′) | Product Length |
---|---|---|
Cyt b | F: 5′-CAAACGGAGCATCAATGTT-3′ | 359 bp |
R: 5′-TGTCTCGTGGAGAAAGAGT-3′ | ||
D-loop | F: 5′-TAAGTCAAATCAGTCCTCGTCAA-3′ | 369 bp |
R: 5′-GTTAAGTCCAGCTACAATTCATG-3′ |
Items | Base Composition (%) | ||||||
---|---|---|---|---|---|---|---|
T(U) | C | A | G | AT(U) | GC | Total | |
Cyt b | 30.7 | 24.5 | 27.7 | 17.1 | 58.4 | 41.6 | 327 |
D-loop | 28.1 | 27.5 | 23.6 | 20.8 | 51.7 | 48.3 | 334 |
Genetic Marker | Group | Polymorphism Site Analysis (S) | Number of Haplotypes (H) | Haplotype Diversity (Hd) | Average Number of Nucleotide Differences (K) | Nucleotide Diversity (π) |
---|---|---|---|---|---|---|
Cyt b | JF | 8 | 6 | 0.87179 | 2.74359 | 0.00839 |
SM | 12 | 12 | 0.90952 | 4.04762 | 0.01238 | |
NEM | 13 | 10 | 0.96970 | 5.16667 | 0.01602 | |
Total Data Estimates | 17 | 25 | 0.96522 | 4.65700 | 0.01424 | |
D-loop | JF | 18 | 9 | 0.91026 | 3.92308 | 0.01178 |
SM | 25 | 16 | 0.97143 | 6.60000 | 0.01982 | |
NEM | 20 | 10 | 0.95455 | 7.96970 | 0.02393 | |
Total Data Estimates | 43 | 30 | 0.97295 | 7.08213 | 0.02127 |
Fst | JF | SM | NEM | |
---|---|---|---|---|
Nm | ||||
JF | 0.27405 | 0.25385 | ||
SM | 0.66218 | 0.09604 | ||
NEM | 0.73482 | 2.35307 |
Fst | JF | SM | NEM | |
---|---|---|---|---|
Nm | ||||
JF | 0.23394 | 0.26201 | ||
SM | 0.81883 | 0.06227 | ||
NEM | 0.70417 | 3.76494 |
Genetic Marker | Group | Tajima’s D | Tajima’s D p-Value | FS | FS p-Value |
---|---|---|---|---|---|
Cyt b | JF | 0.24882 | 0.63800 | −0.31705 | 0.44100 |
SM | 0.75692 | 0.78000 | −2.89506 | 0.08800 | |
NEM | 0.84804 | 0.84100 | −3.40205 | 0.03600 | |
Mean | 0.61793 | 0.75300 | −2.20472 | 0.18833 | |
Standard Deviation | 0.32289 | 0.10416 | 1.65431 | 0.22036 | |
D-loop | JF | −1.37337 | 0.08100 | −2.55315 | 0.07100 |
SM | −0.19214 | 0.48100 | −5.73756 | 0.00400 | |
NEM | 0.89333 | 0.86300 | −2.08194 | 0.13900 | |
Mean | −0.22406 | 0.47500 | −3.45755 | 0.07133 | |
Standard Deviation | 1.13369 | 0.39103 | 1.98855 | 0.06750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Yang, C.; Xiong, Y.; Xiang, Q.; Cui, X.; Peng, J. Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China. Animals 2025, 15, 2254. https://doi.org/10.3390/ani15152254
Wang F, Yang C, Xiong Y, Xiang Q, Cui X, Peng J. Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China. Animals. 2025; 15(15):2254. https://doi.org/10.3390/ani15152254
Chicago/Turabian StyleWang, Fuli, Chengzhong Yang, Yalin Xiong, Qian Xiang, Xiaojuan Cui, and Jianjun Peng. 2025. "Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China" Animals 15, no. 15: 2254. https://doi.org/10.3390/ani15152254
APA StyleWang, F., Yang, C., Xiong, Y., Xiang, Q., Cui, X., & Peng, J. (2025). Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China. Animals, 15(15), 2254. https://doi.org/10.3390/ani15152254