Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Research Methods
2.2.1. Land-Use Change and Simulation
- (1)
- Scenario setting
- (2)
- The PLUS model
2.2.2. Ecological Network Construction
- (1)
- Selection of the ecological source areas
- (2)
- Construction of the resistance surface
- (3)
- Extraction of the ecological corridors
- (4)
- Extraction of the ecological pinches
2.2.3. Ecological Network Evaluation
2.2.4. Data Source
3. Results
3.1. Simulation of Land-Use Change and Pattern
3.2. Construction of the Ecological Network
- (1)
- Ecological Source Identification
- (2)
- Extraction of the Ecological Corridors
- (3)
- Ecological Network Structure
3.3. Evaluation of the Ecological Network Structure and Analysis of the Scenario Differences
4. Discussion
4.1. Impact of Land-Use-Pattern Change on the Ecological Network
4.2. Tradeoff Synergistic Effect Analysis Between Ecological Network Structure and Land-Use Pattern
4.3. Ecological Network Building in the Future
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.P.; Chen, W.B. Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China. Chin. J. Appl. Ecol. 2016, 27, 1611–1618. [Google Scholar]
- Ma, L.B.; Bo, J.; Li, X.Y.; Fang, F.; Cheng, W.J. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.H.; Jia, S.S.; Zhang, Y.; Cui, X.F. How can urban expansion and ecological preservation be balanced? A simulation of the spatial dynamics of production-living-ecological spaces in the Huaihe River Eco-Economic Belt. Ecol. Indic. 2025, 171, 113192. [Google Scholar] [CrossRef]
- Asif, K. Encroachment of agricultural land in urban fringe areas of Aligarh city, India—Process and parameters. Asian Geogr. 2014, 31, 129–148. [Google Scholar] [CrossRef]
- Li, X.; Yu, X.; Wu, K.N.; Feng, Z.; Liu, Y.N.; Li, X.L. Land-use zoning management to protecting the Regional Key Ecosystem Services: A case study in the city belt along the Chaobai River, China. Sci. Total Environ. 2021, 762, 143167. [Google Scholar] [CrossRef] [PubMed]
- Opdam, P.; Steingröver, E.; Rooij, S.V. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plann. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Kong, F.H.; Yin, H.W.; Nakagoshi, N.; Zong, Y.G. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plann. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Liu, S.L.; Hou, X.Y.; Yin, Y.J.; Cheng, F.Y.; Zhang, Y.; Dong, S.K. Research progress on landscape ecological networks. Acta Ecol. Sin. 2017, 37, 3947–3956. [Google Scholar] [CrossRef]
- Huo, J.G.; Shi, Z.Q.; Zhu, W.B.; Li, T.Q.; Xue, H.; Chen, X.; Yan, Y.H.; Ma, R. Construction and Optimization of an Ecological Network in Zhengzhou Metropolitan Area, China. Int. J. Env. Res. Public Health 2022, 19, 8066. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.B.; Luo, X.Y. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Wang, S.Y.; Rong, W.Z. Construction of ecological network in Suzhou based on the PLUS and MSPA models. Ecol. Indic. 2023, 154, 110740. [Google Scholar] [CrossRef]
- Campos, F.S.; Lourenço-de-Moraes, R.; Ruas, D.S.; Mira-Mendes, C.V.; Franch, M.; Llorente, G.A.; Solé, M.; Cabral, P. Searching for Networks: Ecological Connectivity for Amphibians Under Climate Change. Environ. Manag. 2020, 65, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Kamusoko, C.; Aniya, M.; Adi, B.; Manjoro, M. Rural sustainability under threat in Zimbabwe—Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl. Geogr. 2009, 29, 435–447. [Google Scholar] [CrossRef]
- Geng, B.; Zheng, X.Q.; Fu, M.C. Scenario analysis of sustainable intensive land use based on SD model. Sustain. Cities Soc. 2017, 29, 193–202. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.W.; Sun, Q.K.; Wang, S.H. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhou, Q.G.; Wang, Z.L.; Wang, F.H. Simulation and prediction of land use change in Three Gorges Reservoir Area based on MCE-CA-Markov. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 268–277. [Google Scholar] [CrossRef]
- Zhang, D.X.; Fu, M.C.; Tao, J.; Hu, L.Z.; Yang, X.L. Scenario simulation of land use change in mining city based on CLUE-S model. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2013, 29, 246–256. [Google Scholar]
- Li, M.J.; Qian, L.X.; Wu, Z.F.; Cui, H.S.; Yong, H.X. The SLEUTH Model Simulation of High Density Urban Sprawl in Haizhu District of Guangzhou City. Acta Geogr. Sin. 2010, 65, 1163–1172. [Google Scholar] [CrossRef]
- Liu, Y.B.; Hou, X.Y.; Li, X.W.; Song, B.Y.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Nie, W.B.; Xu, B.; Ma, S.; Yang, F.; Shi, Y.; Liu, B.T.; Hao, N.Y.; Wu, R.W.; Lin, W.; Bao, Z.Y. Coupling an Ecological Network with Multi-Scenario Land Use Simulation: An Ecological Spatial Constraint Approach. Remote Sens. 2022, 14, 6099. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, C.; Cheng, Y.J. Spatial influence of ecological networks on land use intensity. Sci. Total Environ. 2020, 717, 137151. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Guo, X.N.; Hu, Y.; Liu, Y.X. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: A case study in Yuxi City, Yunnan Province, China. Chin. J. Appl. Ecol. 2017, 28, 627–635. [Google Scholar]
- Aminzadeh, B.; Khansefid, M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area. Urban Ecosyst. 2010, 13, 23–36. [Google Scholar] [CrossRef]
- Vergnes, A.; Kerbiriou, C.; Clergeau, P. Ecological corridors also operate in an urban matrix: A test case with garden shrews. Urban Ecosyst. 2013, 16, 511–525. [Google Scholar] [CrossRef]
- Dai, X.; Li, Z.; Lin, S.; Xu, W. Assessment and zoning of eco-environmental sensitivity for a typical developing province in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 1095–1107. [Google Scholar] [CrossRef]
- Yang, L.Z.; Niu, T.; Yu, Q.; Yue, D.P.; Ma, J.; Pei, Y.R. Ecological spatial optimization based on complex network theory: A case study of Songhua River Basin of northeastern China. J. Beijing For. Univ. 2022, 44, 91–103. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Z.; Wang, Y.; Sun, D.; Zhang, J. Combining MSPA-MCR Model to Evaluate the Ecological Network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- Lee, J.A.; Chon, J.; Ahn, C. Planning Landscape Corridors in Ecological Infrastructure Using Least-Cost Path Methods Based on the Value of Ecosystem Services. Sustainability 2014, 6, 7564–7585. [Google Scholar] [CrossRef]
- Qian, D.W.; Yan, C.Z.; Xiu, L.N.; Feng, K. The impact of mining changes on surrounding lands and ecosystem service value in the Southern Slope of Qilian Mountains. Ecol. Complex. 2018, 36, 138–148. [Google Scholar] [CrossRef]
- Chang, Q.; Liu, X.; Wu, J.; He, P. MSPA-Based Urban Green Infrastructure Planning and Management Approach for Urban Sustainability: Case Study of Longgang in China. J. Urban Plan. Dev. 2015, 141, A5014006. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban Plann. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Ye, H.; Yang, Z.; Xu, X. Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region. Sustainability 2020, 12, 959. [Google Scholar] [CrossRef]
- Keeley, A.T.H.; Beier, P.; Gagnon, J.W. Estimating landscape resistance from habitat suitability: Effects of data source and nonlinearities. Landsc. Ecol. 2016, 31, 2151–2162. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, K.J.; Li, D.H. The width of ecological corridor in landscape planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar]
- Chi, Y.; Xie, Z.; Wang, J. Establishing archipelagic landscape ecological network with full connectivity at dual spatial scales. Ecol. Model. 2019, 399, 54–65. [Google Scholar] [CrossRef]
- Li, J.L.; Xu, J.L.; Chu, J.L. The Construction of a Regional Ecological Security Pattern Based on Circuit Theory. Sustainability 2019, 11, 6343. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Liu, Y.; Qiu, S.; Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plann. 2020, 199, 103815. [Google Scholar] [CrossRef]
- Luo, Y.H.; Wu, J.S.; Wang, X.Y.; Wang, Z.Y.; Zhao, Y.H. Can policy maintain habitat connectivity under landscape fragmentation? A case study of Shenzhen, China. Sci. Total Environ. 2020, 715, 136829. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhang, Y.Z.; Jiang, Z.Z.; Guo, C.X.; Zhao, M.Y.; Yang, Z.G.; Guo, M.Y.; Wu, B.Y.; Chen, Q.L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Yang, Y.F.; Wang, B.; Wang, G.L.; Li, Z.S. Ecological regionalization and overview of the Loess Plateau. Acta Ecol. Sin. 2019, 39, 7389–7397. [Google Scholar] [CrossRef]
- Qu, Z.; Zhao, Y.; Luo, M.; Han, L.; Yang, S.; Zhang, L. The Effect of the Human Footprint and Climate Change on Landscape Ecological Risks: A Case Study of the Loess Plateau, China. Land 2022, 11, 217. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Huang, M.X.; Chen, X.Y.; Wang, Z.G.; Xiao, L.J.; Xu, K.; Zhang, S.; Wang, M.M.; Xu, Z.; Shi, Z. Identification and risk prediction of potentially contaminated sites in the Yangtze River Delta. Sci. Total Environ. 2022, 815, 151982. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liao, J.; Zhu, W.; Qiu, Q.; Wagn, L.; Tang, L. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the Golden Triangle of Southern Fujian in 2030. Acta Ecol. Sin. 2019, 39, 4284–4298. [Google Scholar]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Coupling Coordination Analysis and Prediction of Landscape Ecological Risks and Ecosystem Services in the Min River Basin. Land 2022, 11, 222. [Google Scholar] [CrossRef]
- Luo, S.Q.; Hu, X.M.; Sun, Y.; Yan, C.; Zhang, X. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model. Chin. J. Eco-Agric. 2023, 31, 300–314. [Google Scholar]
- Gao, Y.; Mu, H.K.; Zhang, Y.L.; Tian, Y.; Tang, D.W.; Li, X. Research on construction path optimization of urban-scale green network system based on MSPA analysis method: Taking Zhaoyuan City as an example. Acta Ecol. Sin. 2019, 39, 7547–7556. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, C.C.; Zhao, Q.; Xu, C.M.; Lin, S.; Qiu, R.Z.; Hu, X.S. Construction of ecological network in Fujian Province based on Morphological Spatial Pattern Analysis. Acta Ecol. Sin. 2023, 43, 603–614. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2023, 18, 189–196. [Google Scholar]
- Fu, Y.; Shi, X.; He, J.; Yuan, Y.; Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Karimi, A.; Brown, G.; Hockings, M. Methods and participatory approaches for identifying social-ecological hotspots. Appl. Geogr. 2015, 63, 9–20. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Liu, Y.; Chen, J.; Dong, J. Scenario-based ecological security patterns to indicate landscape sustainability: A case study on the Qinghai-Tibet Plateau. Landsc. Ecol. 2021, 36, 2175–2188. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Song, Y. Study on the Construction of the Ecological Security Pattern of the Lancang River Basin (Yunnan Section) Based on InVEST-MSPA-Circuit Theory. Sustainability 2023, 15, 477. [Google Scholar] [CrossRef]
- Zhu, J.; Su, J.; Yin, H.W.; Kong, F.H. Construction of Xuzhou ecological network based on comprehensive sources identification and multi-scale nesting. J. Nat. Resour. 2020, 35, 1986–2001. [Google Scholar] [CrossRef]
- Fu, F.J.; Liu, Z.H.; Liu, H. Identifying key areas of ecosystem restoration for territorial space based on ecological security pattern: A case study in Hezhou City. Acta Ecol. Sin. 2021, 41, 3406–3414. [Google Scholar] [CrossRef]
- Song, L.L.; Qin, M.Z. Identification of ecological corridors and its importance by integrating circuit theory. Chin. J. Appl. Ecol. 2016, 27, 3344–3352. [Google Scholar]
- Guo, Z.; Zhu, C.; Fan, X.; Li, M.; Xu, N.; Yuan, Y.; Guan, Y.; Lyu, C.; Bai, Z. Analysis of ecological network evolution in an ecological restoration area with the MSPA-MCR model: A case study from Ningwu County, China. Ecol. Indic. 2025, 170, 113067. [Google Scholar] [CrossRef]
- Tian, S.J.; Zhang, W.J.; He, L.; Miu, J.Y.; Zi, Y.K. Construction and Optimization of Chengdu Ecological Network Based on Linkage Mapper and Complex Network. J. Northwest For. Univ. 2023, 38, 176–184. [Google Scholar]
- Peng, C.; Lin, Y.; Gu, C. Evaluation and optimization strategy of city network structural resilience in the middle reaches of Yangtze River. Geogr. Res. 2018, 37, 1193–1207. [Google Scholar]
- Yang, L.J.; Zhang, L.L.; Zhang, F.N.; Yang, Y.C.; Luo, Y.L. A study on the resilience of ecological networks in the Loess Plateau from the perspective of ecological security patterns. Acta Ecol. Sin. 2024, 44, 10471–10485. [Google Scholar]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Guo, H.; Song, X.; Leng, P.; Zhu, X.; Hu, R.; Guo, D.; Gao, L.; Wang, Y.; Xue, K. Higher water ecological service values have better network connectivity in the middle Yellow River basin. Ecol. Indic. 2024, 160, 111797. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Li, Z.H.; Chen, H.; Wan, S.L.; Lu, J.G. Spatial Pattern and Stability Measurement of Regional Ecological Space Network Based on Complex Network Theory: A Case Study of Yangtze River Delta. J. Chin. Urban For. 2021, 19, 1–8. [Google Scholar]
Scenario | Class of Land | Cultivated Land | Forest | Grassland | Water Area | Construction Land | Unused |
---|---|---|---|---|---|---|---|
Q1 | Cultivated land | 1 | 1 | 1 | 0 | 1 | 1 |
Forest | 1 | 1 | 1 | 0 | 1 | 1 | |
Grassland | 1 | 1 | 1 | 0 | 1 | 1 | |
Water area | 0 | 0 | 0 | 1 | 0 | 0 | |
Construction land | 1 | 1 | 1 | 0 | 1 | 1 | |
Unused | 1 | 1 | 1 | 0 | 1 | 1 | |
Q2 | Cultivated land | 1 | 1 | 1 | 0 | 1 | 1 |
Forest | 0 | 1 | 1 | 0 | 0 | 0 | |
Grassland | 0 | 1 | 1 | 0 | 0 | 0 | |
Water area | 0 | 0 | 0 | 1 | 0 | 0 | |
Construction land | 1 | 1 | 1 | 0 | 1 | 0 | |
Unused | 1 | 1 | 1 | 0 | 1 | 1 | |
Q3 | Cultivated land | 1 | 1 | 1 | 0 | 1 | 1 |
Forest | 0 | 1 | 1 | 0 | 1 | 0 | |
Grassland | 0 | 1 | 1 | 0 | 1 | 1 | |
Water area | 0 | 0 | 0 | 1 | 1 | 0 | |
Construction land | 0 | 0 | 0 | 1 | 1 | 0 | |
Unused | 1 | 1 | 1 | 0 | 1 | 1 | |
Q4 | Cultivated land | 1 | 0 | 0 | 0 | 0 | 0 |
Forest | 1 | 1 | 1 | 0 | 0 | 0 | |
Grassland | 1 | 0 | 1 | 0 | 0 | 0 | |
Water area | 0 | 0 | 0 | 1 | 0 | 1 | |
Construction land | 1 | 0 | 0 | 0 | 1 | 0 | |
Unused | 1 | 1 | 1 | 1 | 1 | 1 |
Land Use | Cultivated Land | Forest | Grassland | Water Area | Construction Land | Unused |
---|---|---|---|---|---|---|
Neighborhood coefficient | 0.404 | 0.026 | 0.096 | 0.042 | 0.373 | 0.060 |
Evaluation Factor | Classification Standard | Assignment | Weight | Evaluation Factor | Classification Standard | Assignment | Weight |
---|---|---|---|---|---|---|---|
Land-use type | Forest | 1 | 0.22 | Distance from a road | >1500 m | 1 | 0.29 |
Grassland | 3 | 1000–1500 m | 3 | ||||
Cultivated land | 5 | 500–1000 m | 5 | ||||
Unused | 7 | 100–500 m | 7 | ||||
Construction land and Water area | 9 | <100 m | 9 | ||||
Slope | <5° | 1 | 0.1 | Distance from construction land | <500 m | 9 | 0.18 |
5–15° | 3 | 500–1500 m | 7 | ||||
15–25° | 5 | 1500–2500 m | 5 | ||||
25–35° | 7 | 2500–3500 m | 3 | ||||
>35° | 9 | >3500 m | 1 | ||||
Elevation | <150 m | 1 | 0.14 | ||||
150–500 m | 3 | ||||||
500–1000 m | 5 | ||||||
1000–1500 m | 7 | ||||||
>1500 m | 9 |
Index | Indicators | Method | Formula | Explanation |
---|---|---|---|---|
Stability | Aggregation | Average clustering coefficient | , aggregation coefficient; , the number of adjacent connections of node I; , the degree of node I; and n, the number of nodes. The clustering coefficient represents the clustering degree of the whole network, and the larger the value, the higher the clustering degree of the network. | |
Transmissibility | Average path length | L, the average path length and , the distance between any two nodes, which can reflect the overall connectivity and information transmission rate of the network. | ||
Connectivity | Network density | D, network density; m and n, the actual number of relations and the number of nodes, respectively. It is used to reflect the closeness between nodes in the ecological network. | ||
Average degree | K, the average degree; , the degree of the ith node; and N, the number of nodes. | |||
Average weighting | n, the number of nodes; , the weight of the edge connecting node i and node j; , the path length between node i and node j; and , the sum of the actual path lengths of all nodes. | |||
Stability index | - | S, the stability index; are the normalized results of their respective indices. The larger the S value, the higher the network stability. | ||
Complexity | α index | L, the number of corridors; V, the number of nodes, usually the intersection or turning point of the corridor. The higher the value of each index, the higher the complexity of the ecological network. | ||
β index | ||||
γ index | ||||
Complexity index | - | , the complexity index, reflecting the complexity of the network and , the normalized results of their respective indices. |
Data Type | Data Name | Data Source |
---|---|---|
Landcover data | Land cover (LUCC) data for 2000, 2010, and 2020 | https://www.resdc.cn/, accessed on 24 August 2024 |
Socio-economic data | Population data for 2010, 2015, 2020 | https://hub.worldpop.org/, accessed on 24 August 2024 |
GDP (Gross Domestic Product) data for 2010, 2015, 2020 | https://www.resdc.cn/, accessed on 24 August 2024 | |
Road data | Open Street Map | |
Climate data | Annual precipitation data from 2010 to 2020 | https:/data.cma.cn/, accessed on 24 August 2024 |
Annual air temperature data from 2010 to 2020 | ||
Future climate data for 2030 | https://data.tpdc.ac.cn/, accessed on 24 August 2024 | |
Topographic data | DEM | https://www.gscloud.cn/, accessed on 24 August 2024 |
Land Use Type | 2010 (km2) | 2020 (km2) | Change (km2) |
---|---|---|---|
Cultivated land | 199,033 | 193,821.75 | −5211.25 |
Forest | 95,473 | 95,802.75 | 329.75 |
Grassland | 26,0876.75 | 259,636.25 | −1240.5 |
Water area | 8264 | 8810 | 546 |
Construction land | 21,648.5 | 26,456.25 | 4807.75 |
Unused | 40,612.5 | 41,380.75 | 768.25 |
Land Use Type | Area of 2020 | Q1 | Q2 | Q3 | Q4 | ||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Rate of Change (%) | Area (km2) | Rate of Change (%) | Area (km2) | Rate of Change (%) | Area (km2) | Rate of Change (%) | ||
Cultivated land | 193,821.8 | 189,181.5 | −2.39 | 182,931.5 | −5.62 | 191,681.5 | −1.10 | 211,065.9 | 8.90 |
Forest | 95,802.8 | 96,136.9 | 0.35 | 91,400.9 | −4.59 | 92,047.4 | −3.92 | 94,186.9 | −1.69 |
Grassland | 259,636.3 | 258,494.7 | −0.44 | 284,040.9 | 9.40 | 255,636.2 | −1.54 | 252,244.7 | −2.85 |
Water area | 8810.0 | 9295.7 | 5.51 | 9006.4 | 2.23 | 9295.7 | 5.51 | 8044.8 | −8.69 |
Construction land | 26,456.3 | 30,699.4 | 16.04 | 26,705.3 | 0.94 | 39,621.9 | 49.76 | 27,574.4 | 4.23 |
Unused | 41,380.8 | 42,099.6 | 1.74 | 31,822.8 | −23.10 | 37,625.1 | −9.08 | 32,791.1 | −20.76 |
Index | Indicators | Sub-Indicators | 2020 | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|---|---|---|
Stability | Aggregation | Average clustering coefficient | 0.464 | 0.466 | 0.485 | 0.476 | 0.475 |
Transmissibility | Average path length | 5.231 | 5.232 | 5.345 | 4.896 | 4.846 | |
Connectivity | Network density | 0.040 | 0.040 | 0.030 | 0.040 | 0.040 | |
Average degree | 4.69 | 4.61 | 4.50 | 4.44 | 4.61 | ||
Average weighting degree | 4.69 | 18.24 | 16.78 | 21.25 | 15.20 | ||
Stability index | 0.560 | 0.560 | 0.603 | 0.402 | 0.416 | ||
Complexity | α | 0.313 | 0.312 | 0.315 | 0.301 | 0.295 | |
γ | 0.907 | 0.839 | 1.000 | 0.281 | 0.000 | ||
β | 0.889 | 0.884 | 0.898 | 0.835 | 0.808 | ||
Complexity index | 0.703 | 0.678 | 0.738 | 0.472 | 0.368 |
Indicators | 2020 | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|---|
Proportion of ecological source area (%) | 10.54 | 8.94 | 10.91 | 7.43 | 6.60 |
Corridor mean resistance | 2.73 | 2.97 | 2.96 | 2.99 | 2.95 |
Network density | 0.04 | 0.04 | 0.03 | 0.04 | 0.04 |
Average degree | 4.69 | 4.61 | 4.50 | 4.44 | 4.61 |
Average weighting degree | 4.69 | 18.24 | 16.78 | 21.25 | 15.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Luo, X.; Yang, X.; Wang, J.; Liao, J.; He, Y.; Du, Y.; Yang, Y. Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model. Land 2025, 14, 1488. https://doi.org/10.3390/land14071488
Luo X, Luo X, Yang X, Wang J, Liao J, He Y, Du Y, Yang Y. Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model. Land. 2025; 14(7):1488. https://doi.org/10.3390/land14071488
Chicago/Turabian StyleLuo, Xiaoyan, Xun Luo, Xianhua Yang, Jian Wang, Jialing Liao, Yu He, Ye Du, and Ye Yang. 2025. "Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model" Land 14, no. 7: 1488. https://doi.org/10.3390/land14071488
APA StyleLuo, X., Luo, X., Yang, X., Wang, J., Liao, J., He, Y., Du, Y., & Yang, Y. (2025). Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model. Land, 14(7), 1488. https://doi.org/10.3390/land14071488