Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning
Abstract
1. Introduction
- (1)
- calculate the EVI based on the SRP model and classify ecological vulnerability levels;
- (2)
- explore the spatial heterogeneity of EVI and investigate its natural and socioeconomic drivers;
- (3)
- perform feature selection and construct six multi-class Machine Learning models (MLP, ET, DT, RF, LightGBM, KNN), identify the most efficient and cost-effective model, and interpret it using the SHAP framework.
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Sources and Processing
2.3. Methodology
2.3.1. Technical Framework
2.3.2. Construction of the Ecological Vulnerability Assessment System
2.3.3. Index Data Standardization
- (1)
- Quantitative indicators were standardized using the dynamic range method [34], which retains the original distribution characteristics of the data:
- (2)
- Qualitative indicators, such as land use type and soil erosion intensity, were normalized based on expert scoring and literature-based classification schemes. The standardized values are shown in Table 2.
2.3.4. Spatial Principal Component Analysis (SPCA)
2.3.5. Classification of the Ecological Vulnerability Index (EVI)
2.3.6. Spatial Autocorrelation Analysis
2.3.7. Factor Analysis Using the Geodetector Model
2.3.8. Feature Selection and Machine Learning Model
- ①
- Multilayer Perceptron (MLP)
- ②
- Decision Tree (DT)
- ③
- Extra Trees (ET)
- ④
- K-Nearest Neighbors (KNN)
- ⑤
- Light Gradient Boosting Machine (LightGBM)
- ⑥
- Random Forest (RF)
2.3.9. Evaluation Metrics for Classification Models and SHAP-Based Interpretation
- ①
- Accuracy:
- ②
- Precision:
- ③
- Recall (Sensitivity):
- ④
- F1 Score:
- ⑤
- ROC–AUC (Receiver Operating Characteristic–Area Under the Curve):
- ⑥
- Cohen’s Kappa Coefficient:
- ⑦
- SHAP (SHapley Additive exPlanations):
3. Results
3.1. Spatial Differentiation Patterns of Ecological Vulnerability
3.2. Spatial Autocorrelation Characteristics of Ecological Vulnerability
3.3. Factor Driving Analysis Using Geodetector
3.3.1. Results of Single-Factor Detection
3.3.2. Results of Interaction Detection
3.4. Evaluation of Multi-Class Ecological Vulnerability Models
3.5. SHAP Interpretation of the Random Forest Model
4. Discussion
4.1. Advantages and Limitations of the SRP Model
4.2. Evaluation Metrics and Challenges in Multi-Class Machine Learning Models
- (1)
- Class ambiguity: Slightly and moderately vulnerable regions exhibit complex environmental characteristics influenced by multiple overlapping factors, making it difficult for models to delineate clear boundaries, thus lowering classification accuracy. In contrast, the features of extremely and minimally vulnerable regions are more distinct, enabling more accurate classification.
- (2)
- Class imbalance: Despite manual oversampling strategies, significant differences remain in spatial distribution and sample sizes across vulnerability classes—especially in heavily and moderately vulnerable zones. The limited representation of minority classes reduces model performance in those categories. Combined with class ambiguity, this often leads to misclassification, such as assigning slightly vulnerable samples to more severe classes, which negatively impacts overall performance.
4.3. Interpretation Discrepancies Between Machine Learning and Geodetector
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef]
- Yang, X.; Liu, S.; Jia, C.; Liu, Y.; Yu, C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 2021, 298, 113540. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, J.; Li, T.; Chen, J.; Mi, Y.; Wang, K. A Framework to Identify Priority Areas for Restoration: Integrating Human Demand and Ecosystem Services in Dongting Lake Eco-Economic Zone, China. Land 2023, 12, 965. [Google Scholar] [CrossRef]
- Gu, H.; Huan, C.; Yang, F. Spatiotemporal Dynamics of Ecological Vulnerability and Its Influencing Factors in Shenyang City of China: Based on SRP Model. Int. J. Environ. Res. Public Health 2023, 20, 1525. [Google Scholar] [CrossRef]
- Li, Q.; Shi, X.; Wu, Q. Effects of protection and restoration on reducing ecological vulnerability. Sci. Total Environ. 2021, 761, 143180. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, Y.; Sang, H. Spatial-temporal variation and driving factors of ecological vulnerability in Nansi Lake Basin, China. Int. J. Environ. Res. Public Health 2023, 20, 2653. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huan, C.; Yang, J.; Gu, H. Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China. Land 2022, 11, 1025. [Google Scholar] [CrossRef]
- Wang, X.; Duan, L.; Zhang, T.; Cheng, W.; Jia, Q.; Li, J.; Li, M. Ecological vulnerability of China’s Yellow River Basin: Evaluation and socioeconomic driving factors. Environ. Sci. Pollut. Res. 2023, 30, 115915–115928. [Google Scholar] [CrossRef]
- Zhang, L.X.; Fan, J.W.; Zhang, H.Y.; Zhou, D.C. Spatial-temporal Variations and Their Driving Forces of the Ecological Vulnerability in the Loess Plateau. Environ. Sci. 2022, 43, 4902–4910. [Google Scholar] [CrossRef]
- Hou, K.; Li, X.; Zhang, J. GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China. Int. J. Environ. Res. Public Health 2015, 12, 4292–4305. [Google Scholar] [CrossRef]
- Montano, V.; Jombart, T. An Eigenvalue test for spatial principal component analysis. BMC Bioinform. 2017, 18, 562. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.Q.; Pu, J.W.; Yue, Q.F.; Chen, X.Y.; Shi, X.Q. Spatial-temporal variations and influencing factors of eco-environment vulnerability in the karst region of Southeast Yunnan, China. J. Appl. Ecol. 2021, 32, 2180–2190. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, X.; Li, S. New insights of eco-environmental vulnerability in China’s Yellow River Basin: Spatio-temporal pattern and contributor identification. Ecol. Indic. 2024, 167, 112655. [Google Scholar] [CrossRef]
- Ke, C.; He, S.; Qin, Y. Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping. Bull. Eng. Geol. Environ. 2023, 82, 384. [Google Scholar] [CrossRef]
- Demšar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal component analysis on spatial data: An overview. Ann. Assoc. Am. Geogr. 2013, 103, 106–128. [Google Scholar] [CrossRef]
- Zhang, J.X.; Li, H.Y.; Cao, E.J.; Gong, J. Assessment of ecological vulnerability in multi-scale and its spatial correlation: A case study of Bailongjiang Watershed in Gansu Province, China. J. Appl. Ecol. 2018, 29, 2897–2906. [Google Scholar] [CrossRef]
- Zou, T.; Chang, Y.; Chen, P.; Liu, J. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecol. Indic. 2021, 133, 108429. [Google Scholar] [CrossRef]
- Wu, S.; Zeng, G.; Sun, J.; Liu, X.; Li, X.; Zeng, Q.; Gu, S. Assessment of the Spatiotemporal Evolution Characteristics and Driving Factors of Ecological Vulnerability in the Hubei Section of the Yangtze River Economic Belt. Land 2025, 14, 996. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, W.M.; Jia, X.; Zhou, L.; Yu, D.P.; Dai, L.M. Ecological vulnerability assessment on Changbai Mountain National Nature Reserve and its surrounding areas, Northeast China. J. Appl. Ecol. 2019, 30, 1633–1641. [Google Scholar] [CrossRef]
- Song, R.; Li, X. Urban Human Settlement Vulnerability Evolution and Mechanisms: The Case of Anhui Province, China. Land 2023, 12, 994. [Google Scholar] [CrossRef]
- Gao, B.P.; Li, C.; Wu, Y.M.; Zheng, K.J.; Wu, Y. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan provinces, China. J. Appl. Ecol. 2021, 32, 1603–1613. [Google Scholar] [CrossRef]
- Kolluru, V.; John, R.; Chen, J.; Xiao, J.; Amirkhiz, R.G.; Giannico, V.; Kussainova, M. Optimal ranges of social-environmental drivers and their impacts on vegetation dynamics in Kazakhstan. Sci. Total Environ. 2022, 847, 157562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, T.; Deng, M.; Huang, H.; Han, Y.; Xu, H. Spatiotemporal variations and its driving factors of NDVI in Northwest China during 2000–2021. Environ. Sci. Pollut. Res. 2023, 30, 118782–118800. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Sun, D.; Chen, D.; Zhang, J.; Mi, C.; Gu, Q.; Wen, H. Landslide Susceptibility Mapping Based on Interpretable Machine Learning from the Perspective of Geomorphological Differentiation. Land 2023, 12, 1018. [Google Scholar] [CrossRef]
- Cui, S.; Gao, Y.; Huang, Y.; Shen, L.; Zhao, Q.; Pan, Y.; Zhuang, S. Advances and applications of machine learning and deep learning in environmental ecology and health. Environ. Pollut. 2023, 335, 122358. [Google Scholar] [CrossRef]
- Kruk, M.; Pakulnicka, J. Habitat selection ecology of the aquatic beetle community using explainable machine learning. Sci. Rep. 2024, 14, 28903. [Google Scholar] [CrossRef]
- Nan, T.; Cao, W.; Wang, Z.; Gao, Y.; Zhao, L.; Sun, X.; Na, J. Evaluation of shallow groundwater dynamics after water supplement in North China Plain based on attention-GRU model. J. Hydrol. 2023, 625, 130085. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- De Meester, J.; Willems, P. Analysing spatial variability in drought sensitivity of rivers using explainable artificial intelligence. Sci. Total Environ. 2024, 931, 172685. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.H.; Kim, K.T.; Park, C.Y.; Lee, S.; Heo, T.-Y. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 2022, 832, 155070. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, W. Spatiotemporal Distribution and Influencing Factors of Ecosystem Vulnerability on Qinghai-Tibet Plateau. Int. J. Environ. Res. Public Health 2021, 18, 6508. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Jia, X.; Zhao, Y.; Zhang, P.; Zhao, M. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecol. Indic. 2024, 159, 111658. [Google Scholar] [CrossRef]
- Stevens, S.S. On the theory of scales of measurement. Science 1946, 103, 677–680. [Google Scholar] [CrossRef]
- Wartenberg, D. Multivariate spatial correlation: A method for exploratory geographical analysis. Geogr. Anal. 1985, 17, 263–283. [Google Scholar] [CrossRef]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- dos Santos, D.d.A.; Lopes, T.R.; Damaceno, F.M.; Duarte, S.N. Evaluation of deforestation, climate change and CO2 emissions in the Amazon biome using the Moran Index. J. S. Am. Earth Sci. 2024, 143, 105010. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Hu, J.; Xu, J.; Li, M.; Jiang, Z.; Mao, J.; Feng, L.; Miao, K.; Li, H.; Chen, J.; Bai, Z.; et al. Identification and validation of an explainable prediction model of acute kidney injury with prognostic implications in critically ill children: A prospective multicenter cohort study. eClin. Med. 2024, 68, 102409. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Guo, Y.; Kang, J.-J.; Wang, H.-F.; Yang, M.; Feng, J.-F.; Yu, J.-T.; Cheng, W. Development of machine learning-based models to predict 10-year risk of cardiovascular disease: A prospective cohort study. Stroke Vasc. Neurol. 2023, 8, 475–485. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 2024, 15, 1657. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Yan, J.; Li, Y.; Xing, H. Risk Assessment of Multi-Hazards in Hangzhou: A Socioeconomic and Risk Mapping Approach Using the CatBoost-SHAP Model. Int. J. Disaster Risk Sci. 2024, 15, 640–656. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, K.; Chen, Y.; Bai, X. Spatiotemporal changes and driving factors of ecological vulnerability in karst World Heritage sites based on SRP and geodetector: A case study of Shibing and Libo-Huanjiang karst. NPJ Herit. Sci. 2025, 13, 65. [Google Scholar] [CrossRef]
- Gu, W.; Fu, H.; Jin, W. Landscape Pattern Changes and Ecological Vulnerability Assessment in Mountainous Regions: A Multi-Scale Analysis of Heishui County, Southwest China. Land 2025, 14, 314. [Google Scholar] [CrossRef]
- Jin, L.; Xu, Q. Research on Ecological Vulnerability Evaluation of Yunnan Province Based on SRP Model. In Proceedings of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; pp. 1022–1026. [Google Scholar]
- Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Yao, L.; Wu, D.; Zheng, X.; Luo, S. Assessment of Forest Ecological Function Levels Based on Multi-Source Data and Machine Learning. Forests 2023, 14, 1630. [Google Scholar] [CrossRef]
- Bujang, S.D.A.; Selamat, A.; Ibrahim, R.; Krejcar, O.; Herrera-Viedma, E.; Fujita, H.; Ghani, N.A.M. Multiclass Prediction Model for Student Grade Prediction Using Machine Learning. IEEE Access 2021, 9, 95608–95621. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Talukdar, S.; Sultana, J.; Baig, M.R.I.; Hang, H.T.; Rahman, A. Integration of Machine Learning Models with Game Theory for Understanding Water-Induced Soil Erosion in an Urban Watershed. In Water Resource Management in Climate Change Scenario; Talukdar, S., Shahfahad, Pal, S., Naikoo, M.W., Ahmed, S., Rahman, A., Eds.; GIScience and Geo-environmental Modelling; Springer Nature: Cham, Switzerland, 2024; pp. 95–110. [Google Scholar]
- Yang, L.; Ji, X.; Li, M.; Yang, P.; Jiang, W.; Chen, L.; Yang, C.; Sun, C.; Li, Y. A comprehensive framework for assessing the spatial drivers of flood disasters using an Optimal Parameter-based Geographical Detector–machine learning coupled model. Geosci. Front. 2024, 15, 101889. [Google Scholar] [CrossRef]
Standardized Layer | Indicators | Property | Data Source | Resolution/m |
---|---|---|---|---|
Sensitivity | Elevation of Digital Elevation Model (DEM) | Positive | http://www.gscloud.cn/ (accessed on 10 January 2025) | 30 |
Slope | Positive | Calculated based on DEM | 30 | |
Profile Curvature (PCV) | Positive | Calculated based on DEM | 30 | |
Degree of Relief (DR) | Positive | Calculated based on DEM | 30 | |
Surface Cutting Depth (SCD) | Positive | Calculated based on DEM | 30 | |
Annual Precipitation (PRE) | Negative | https://data.tpdc.ac.cn/home (accessed on 10 January 2025) | 1000 | |
Surface Temperature (TEMP) | Negative | https://data.tpdc.ac.cn/home (accessed on 10 January 2025) | 1000 | |
Potential Evapotranspiration (ETP) | Negative | https://data.tpdc.ac.cn/home (accessed on 10 January 2025) | 1000 | |
Soil Erosion Intensity (SEI) | Qualitative | http://www.resdc.cn/ (accessed on 10 January 2025) | 1000 | |
Resilience | Net Primary Productivity of Vegetation (NPP) | Negative | NASA EARTHDATA’s MOD17A3HGF v061 dataset | 500 |
Normalized Difference Vegetation Index (NDVI) | Negative | https://data.tpdc.ac.cn/home (accessed on 10 January 2025) | 250 | |
Pressure | land use types (LUT) | Qualitative | Earth System Science Data | 30 |
population density (POP) | Positive | WorldPop http://www.worldpop.org (accessed on 10 January 2025) | 100 | |
Gross Domestic Product Density (GDP) | Positive | http://www.resdc.cn (accessed on 10 January 2025) | 1000 |
Indicator | Standardized Value | ||||
---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1 | |
Land Use Type | Forest/Water | Grassland | Cropland | Built-up Land | Unused Land |
Soil Erosion Intensity | Slight | Light | Moderate | Strong | Very Strong/Severe |
PC | EigenValue | Percent of EigenValues (%) | Accumulative of EigenValues (%) | Contribution Ratio of PCi |
---|---|---|---|---|
1 | 0.0355 | 35.198 | 35.198 | 0.4004 |
2 | 0.0318 | 31.5042 | 66.7022 | 0.3584 |
3 | 0.0111 | 11.0382 | 77.7404 | 0.1256 |
4 | 0.0065 | 6.4129 | 84.1533 | 0.0730 |
5 | 0.0038 | 3.7461 | 87.8994 | 0.0426 |
EVI | Area (km2) | Percent of Area (%) | |
---|---|---|---|
Slight vulnerability | 0.2932–0.3899 | 1144.78 | 3.07% |
Light vulnerability | 0.3899–0.6366 | 1760.31 | 4.72% |
Medium vulnerability | 0.6366–0.8667 | 8242.26 | 22.12% |
Heavey vulnerability | 0.8667–0.9201 | 21,943.19 | 58.88% |
Extreme vulnerability | 0.9201–1.1434 | 4176.47 | 11.21% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Nan, T.; Zhang, H.; Luo, K.; Xiang, K.; Peng, Y. Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning. Land 2025, 14, 1435. https://doi.org/10.3390/land14071435
Li F, Nan T, Zhang H, Luo K, Xiang K, Peng Y. Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning. Land. 2025; 14(7):1435. https://doi.org/10.3390/land14071435
Chicago/Turabian StyleLi, Fuchao, Tian Nan, Huang Zhang, Kun Luo, Kui Xiang, and Yi Peng. 2025. "Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning" Land 14, no. 7: 1435. https://doi.org/10.3390/land14071435
APA StyleLi, F., Nan, T., Zhang, H., Luo, K., Xiang, K., & Peng, Y. (2025). Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning. Land, 14(7), 1435. https://doi.org/10.3390/land14071435