Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = corn particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3885 KiB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 (registering DOI) - 26 Jul 2025
Viewed by 62
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 2757 KiB  
Article
Starch Films Reinforced with Pistachio Shell Particles: A Sustainable Biocomposite
by Cynthia G. Flores-Hernandez, Alicia Del Real, María de los Ángeles Cornejo-Villegas, Beatriz Millán-Malo, Gerardo A. Fonseca-Hernández and José Luis Rivera-Armenta
Polymers 2025, 17(14), 1907; https://doi.org/10.3390/polym17141907 - 10 Jul 2025
Viewed by 337
Abstract
This study investigates the development of corn starch-based biocomposites reinforced with pistachio shell powder, focusing on improving their mechanical and thermal performance. Composite films were prepared by solution casting with pistachio shell contents ranging from 2 wt% to 8 wt% by weight. The [...] Read more.
This study investigates the development of corn starch-based biocomposites reinforced with pistachio shell powder, focusing on improving their mechanical and thermal performance. Composite films were prepared by solution casting with pistachio shell contents ranging from 2 wt% to 8 wt% by weight. The materials were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and tensile testing. The incorporation of pistachio shell particles led to a progressive improvement in tensile strength and elastic modulus, with the highest values observed in the formulation with 8% reinforcement (SP08). The TGA results indicated a shift in degradation temperatures for the sample with the highest percentage, reflecting a higher thermal stability that is attributed to the interactions between the starch, plasticizer, and cellulosic components of the pistachio shell. The FITR spectra shows very similar structures between starch and pistachio. An XRD analysis shows the alpha-type structure for starch and the cellulose type 1 structure for pistachio. Overall, the results suggest that pistachio shell powder can serve as an effective natural reinforcement, improving the functional properties of starch matrices and promoting the development of environmentally friendly materials derived from agro-industrial waste. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Graphical abstract

13 pages, 1222 KiB  
Article
Starch Digestion Characteristics of Different Starch Sources and Their Effects on Goslings’ Apparent Nutrient Utilization
by Zhi Yang, Jun Lin, Chen Xu, Xiyuan Xing, Haiming Yang and Zhiyue Wang
Vet. Sci. 2025, 12(7), 630; https://doi.org/10.3390/vetsci12070630 - 1 Jul 2025
Viewed by 477
Abstract
This study used integrated in vitro and in vivo approaches to investigate how the starch source (glutinous rice, indica rice, maize, or high-amylose rice) influences starch digestion kinetics and, consequently, the apparent nutrient utilization and amino acid metabolism in goslings. Four diets were [...] Read more.
This study used integrated in vitro and in vivo approaches to investigate how the starch source (glutinous rice, indica rice, maize, or high-amylose rice) influences starch digestion kinetics and, consequently, the apparent nutrient utilization and amino acid metabolism in goslings. Four diets were formulated using glutinous rice, indica rice, maize, and high-amylose rice, and in vitro digestion and animal experiments were carried out. The data showed the particle sizes of the four starches: glutinous rice ≈ indica rice < corn < amylose. The glutinous rice starch grain is a porous polyhedron with an angular surface, the corn starch grain is an ellipsoid with a smooth surface, the indica rice starch grain is a polyhedron with a smooth and compact surface, and the high-amylose starch grain is an irregular polyhedron with a smooth surface. Starch digestibility was relatively stable for the indica and corn-based diets, and starch digestibility was higher for the indica rice diet compared to the corn- and high-amylose starch-based diets. The utilization of Asp, Ser, Glu, Gly, and Phe was higher for the glutinous rice diet compared to the maize and high-amylose diets. Furthermore, with this diet, the availability of Thr and Ala was observed to be higher than with the indica rice and high-amylose diets. In conclusion, the particle size and structure of starch from different sources (glutinous rice, indica rice, corn, and high-amylose rice) were different, significantly affecting the starch digestion rate. The glutinous rice diet enables a fast digestion rate for starch, which is rapidly digested in the proximal intestine. The inadequate supply of glucose in the distal intestine enhances the oxidative energy supply from dietary amino acids in that region, thereby improving the apparent digestibility of both starch and crude protein. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

22 pages, 3526 KiB  
Article
Indirect Regulation of SOC by Different Land Uses in Karst Areas Through the Modulation of Soil Microbiomes and Aggregate Stability
by Haiyuan Shu, Xiaoling Liang, Lei Hou, Meiting Li, Long Zhang, Wei Zhang and Yali Song
Agriculture 2025, 15(11), 1220; https://doi.org/10.3390/agriculture15111220 - 3 Jun 2025
Viewed by 439
Abstract
Natural restoration of vegetation and plantation are effective land use measures to promote soil organic carbon (SOC) sequestration. How soil physicochemical properties, microorganisms, Glomalin-related soil proteins (GRSPs), and aggregates interact to regulate SOC accumulation and sequestration remains unclear. This study examined five land [...] Read more.
Natural restoration of vegetation and plantation are effective land use measures to promote soil organic carbon (SOC) sequestration. How soil physicochemical properties, microorganisms, Glomalin-related soil proteins (GRSPs), and aggregates interact to regulate SOC accumulation and sequestration remains unclear. This study examined five land uses in the karst region of Southwest China: corn field (CF), corn intercropped with cabbage fields (CICF), orchard (OR), plantation (PL), and natural restoration of vegetation (NRV). The results revealed that SOC, total nitrogen (TN), total phosphorus (TP), total GRSP (T-GRSP), and easily extractable GRSP (EE-GRSP) contents were significantly higher under NRV and PL than in the CF, CICF, and OR, with increases ranging from 10.69% to 266.72%. Land use significantly influenced bacterial α-diversity, though fungal α-diversity remained unaffected. The stability of soil aggregates among the five land uses followed the order: PL > NRV > CF > OR > CICF. Partial least-squares path modeling (PLS-PM) identified land use as the most critical factor influencing SOC. SOC accumulation and stability were enhanced through improved soil properties, increased microbial diversity, and greater community abundance, promoting GRSP secretion and strengthening soil aggregate stability. In particular, soil microorganisms adhere to the aggregates of soil particles through the entanglement of fine roots and microbial hyphae and their secretions (GRSPs, etc.) to maintain the stability of the aggregates, thus protecting SOC from decomposition. Natural restoration of vegetation and plantation proved more effective for soil carbon sequestration in the karst region of Southwest China compared to sloping cropland and orchards. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

34 pages, 3535 KiB  
Article
Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis
by Teka Tesfaye Mengesha, Venkata Ramayya Ancha, Abebe Nigussie, Million Merid Afessa and Ramchandra Bhandari
Sustainability 2025, 17(11), 4962; https://doi.org/10.3390/su17114962 - 28 May 2025
Viewed by 555
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in biochar, as opposed to those in pyrolysis liquid products that exit the reactor without adhering to the solid product, are particularly undesirable due to their environmental persistence and potential toxicity. When applied as a soil amendment, biochar containing [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) in biochar, as opposed to those in pyrolysis liquid products that exit the reactor without adhering to the solid product, are particularly undesirable due to their environmental persistence and potential toxicity. When applied as a soil amendment, biochar containing PAHs poses risks to soil ecosystems and human health. Their formation during pyrolysis presents a significant challenge in biochar production, requiring the optimization of pyrolysis process parameters to minimize PAH content for safe soil amendment applications. This study explored the effects of particle size and heating rate on PAH formation during corn cob pyrolysis. Thermogravimetric analysis (TGA) was employed to heat corn cob powder of varying sample masses from ambient temperature to 550 °C at heating rates of 5, 10, and 20 °C/min. Simultaneously, the Chemical Reaction Engineering and Chemical Kinetics (CRECK) model simulated the pyrolysis of spherical corn cob biomass particles with a radius ranging from 1 to 40 mm, using feedstock chemical compositions as inputs. Tar species generated from the solid biomass model were introduced into a gas-phase batch reactor model to evaluate PAH formation. The results demonstrate that the particle size and heating rate significantly affect PAH formation, shedding light on the complex dynamics of biomass pyrolysis. A single spherical particle with a radius close to 1 mm approximates ideal TGA conditions by minimizing temperature and mass transfer limitations. The CRECK model suggested that a particle radius of 5–10 mm, combined with a low heating rate of 5 °C/min, optimally reduces PAH formation. Future research should focus on using thermogravimetric analysis coupled with gas chromatography–mass spectrometry (TGA-GC-MS) to comprehensively quantify PAH species formation. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

23 pages, 4424 KiB  
Article
Comparative Evaluation of Spray-Drying Versus Freeze-Drying Techniques on the Encapsulation Efficiency and Biofunctional Performance of Chenpi Extract Microcapsules
by Jiawei Zhao, Xueling Qin, Ying Liu, Qingyun He, Junwei Qin, Fei Shen and Zhenqiang Wu
Foods 2025, 14(10), 1825; https://doi.org/10.3390/foods14101825 - 21 May 2025
Viewed by 872
Abstract
Chenpi extracts (CPEs) are highly valued for their rich bioactive compounds and distinctive aromatic properties, but their environmental sensitivity poses stability challenges in food applications. In this study, CPE microcapsules were fabricated using corn peptide as the wall material, and the functional properties [...] Read more.
Chenpi extracts (CPEs) are highly valued for their rich bioactive compounds and distinctive aromatic properties, but their environmental sensitivity poses stability challenges in food applications. In this study, CPE microcapsules were fabricated using corn peptide as the wall material, and the functional properties of spray-dried microcapsules (SDMCs) and freeze-dried microcapsules (FDMCs) were systematically characterized and compared. The results demonstrate that SDMCs exhibit superior characteristics compared to FDMCs, including reduced moisture content, lower hygroscopicity, enhanced solubility, smaller particle size, and a more uniform microstructure. Both FDMCs and SDMCs showed excellent thermal stability. The SDMCs of CPE encapsulated 93.45% of flavonoids, 90.35% of polyphenols, and 81.32% of sugars from the CPE, while also demonstrating exceptional retention of key terpene volatile compounds, particularly D-limonene (44.63%), γ-terpinene (45.18%), and β-myrcene (40.17%). In contrast, FDMCs exhibited stronger retention of alcohol-based volatile compounds. Furthermore, SDMCs displayed higher antioxidant and hypoglycemic activities, along with improved storage stability. In vitro digestion results reveal that SDMCs provide enhanced protection for CPE flavonoids and polyphenols, achieving bioaccessibility rates of 95.64% and 94.57%, respectively. These findings offer a theoretical basis for optimizing the drying processes in CPE microencapsulation, striking a balance between functional properties and flavor preservation for advanced food applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

18 pages, 2479 KiB  
Article
Material Properties Changes Caused by High Temperature Drying—Corn Cobs Case Study
by Marek Wróbel, Marcin Jewiarz, Jozef Krilek and Luiza Dmochowska-Kuc
Materials 2025, 18(10), 2302; https://doi.org/10.3390/ma18102302 - 15 May 2025
Cited by 1 | Viewed by 525
Abstract
Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it [...] Read more.
Biomass is an energy source with variable physico-chemical properties. Thermal treatments lower moisture and volatile matter contents. They also raise the high heating value (HHV). This is especially desirable for agro-wastes with low-energy potential, like maize cobs. To make pellets from biomass, it is important to keep the lignin intact. It is responsible for particle adhesion. This paper presents a study focused on high-temperature drying of maize cobs. The process temperatures were selected from a range between 60 and 220 °C. The upper temperature limit prevents significant lignin breakdown. We also do not exceed the self-ignition temperature of the raw material. The study analyzed changes in basic technical parameters. These include moisture content, ash content, volatile matter, and HHV. We tested the grinding and densification process. We measured the raw material’s particle size distribution (PSD), specific density, and the mechanical durability (DU) of the agglomerates. The study showed a positive effect of high-temperature drying on the technical parameters. We found that the drying of corn cobs at a temperature of 180 °C gives the best results. Both PSD and DU values indicate that it is possible to create quality compacted biofuels from this material. Full article
(This article belongs to the Special Issue Innovative Utilization of Biomass for Sustainable Energy Production)
Show Figures

Graphical abstract

14 pages, 4266 KiB  
Article
One-Step Labeling Based on Eu-MOFs to Develop Fluorescence Side-Flow Immunoassay for AFB1 Detection in Corn
by Yinjun Li, Hua Ding, Ziyu Wang, Zewei Luo and Xitian Peng
Biosensors 2025, 15(5), 313; https://doi.org/10.3390/bios15050313 - 14 May 2025
Viewed by 486
Abstract
Lateral flow immunoassay (LFIA) is a promising tool for rapid detection in the field of agricultural product analysis due to its advantages of cost-effectiveness and operational simplicity. In this work, Eu metal–organic frameworks (MOFs) were introduced to LFIA as a rapid detection method [...] Read more.
Lateral flow immunoassay (LFIA) is a promising tool for rapid detection in the field of agricultural product analysis due to its advantages of cost-effectiveness and operational simplicity. In this work, Eu metal–organic frameworks (MOFs) were introduced to LFIA as a rapid detection method characterized by high stability and low interference. Key research objectives included strong fluorescence, ease of labeling, and the utilization of fluorescent probes. Eu-MOFs were synthesized in one step via the hydrothermal method, exhibiting a fluorescence lifetime of 163 μs and spherical particles with diameters ranging from 250 to 400 nm. These conditions fulfill the characteristics and requirements of LFIA. Eu-MOFs exploit the porous nature of MOFs to mitigate the drawbacks associated with complex crosslinking agents. This enables antibody proteins to be cross-linked merely upon contact, thereby simplifying the detection process. A time-resolved LFIA method was developed utilizing Eu-MOFs for the detection of aflatoxin B1 (AFB1) in corn, achieving a limit of detection (LOD, IC10) of 0.149 ng/mL. The accuracy and reliability of the Eu-MOFs-LFIA method were validated through comparisons with spiked concentrations during spiking and blind sample analyses, with verification conducted using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS). Furthermore, testing of real samples demonstrated that the Eu-MOFs-LFIA method can effectively facilitate rapid detection of AFB1 in corn. Full article
(This article belongs to the Special Issue Optical Fiber Biochemical and Environmental Sensors)
Show Figures

Figure 1

17 pages, 2214 KiB  
Article
The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops
by Omid Gholami Banadkoki, Shahab Sokhansanj, Anthony Lau, Selvakumari Arunachalam and Donald Smith
Energies 2025, 18(8), 1969; https://doi.org/10.3390/en18081969 - 11 Apr 2025
Cited by 1 | Viewed by 464
Abstract
The increasing demand for renewable energy has driven interest in utilizing agricultural residues for bioenergy applications. This study investigates the pelletization of foliage from six vegetable crops, including tomato, eggplant, summer squash, cucumber corn, and soybean, to assess their potential as bioenergy feedstocks. [...] Read more.
The increasing demand for renewable energy has driven interest in utilizing agricultural residues for bioenergy applications. This study investigates the pelletization of foliage from six vegetable crops, including tomato, eggplant, summer squash, cucumber corn, and soybean, to assess their potential as bioenergy feedstocks. The physiochemical properties of these biomasses, including particle size and shape, lignin, and elemental composition, were analyzed to determine their impact on pellet density and durability. The results reveal significant variations in pellet quality across different biomasses. Cucumber and summer squash demonstrated the highest pellet densities (1.48–1.51 g/cm3) and superior durability (98.1% and 94.2%, respectively), making them the most promising candidates for pelletization. In contrast, eggplant exhibited the lowest density (1.14 g/cm3) and durability (47.2%), indicating poor pellet quality. The correlation between pellet durability and pellet density was positive and modest at r=0.647. The study further highlights the impact of inorganic elements on pellet properties, where the high silica and chlorine content of cucumber, summer squash, tomato, and eggplant reduced energy efficiency and increased ash-related challenges. The resulting color parameters analysis (L*, a*, and b*) shows that the pellets from eggplant, tomato, summer squash, and cucumber foliage are darker than pellets from sawdust, corn stover, and soybean residues. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

15 pages, 4526 KiB  
Article
Dielectric Properties of Isotactic Polypropylene with Lignocellulose-Based Biomass Filler
by Dragana D. Cerovic, Ivan M. Petronijevic, Filip S. Marinkovic, Slavica B. Maletic and Dusan M. Popovic
Materials 2025, 18(7), 1657; https://doi.org/10.3390/ma18071657 - 4 Apr 2025
Viewed by 399
Abstract
The ecological aspect of substituting synthetic materials with natural materials is of great interest nowadays. This paper examines the percentage of lignocellulose-based fillers that can be added to a synthetic polymer matrix to ensure the resulting biocomposite maintains its dielectric properties. Biocomposites were [...] Read more.
The ecological aspect of substituting synthetic materials with natural materials is of great interest nowadays. This paper examines the percentage of lignocellulose-based fillers that can be added to a synthetic polymer matrix to ensure the resulting biocomposite maintains its dielectric properties. Biocomposites were made from isotactic polypropylene (iPP) and various proportions (20%, 30%, and 40%) of oats, rye, wheat, and barley bran and granules from corn cobs using a Brabender plastograph and a hydraulic hot press. From a morphological analysis, it was noted that the particles were well incorporated into the polymer matrix. The frequency-dependent behavior of the dielectric properties was analyzed across a frequency range from 30 Hz to 60 kHz at a room temperature of 23 °C and 35% relative humidity. The obtained results showed that the incorporation of biomasses into the iPP matrix increased the values of the dielectric properties across the entire measured frequency range. The samples with wheat showed the most stable values of the dielectric parameters with frequency changes, for all three concentrations. A linear regression analysis showed a very high coefficient of determination (R2 = 0.997) between the effective dielectric permeability and filler concentration at 30 Hz for the samples with wheat. Furthermore, the biocomposite iPP/20% wheat showed a desirable balance of dielectric properties for electronic applications. The results showed that biocomposites obtained by adding cheap lignocellulose-based biomass, such as bran or granules from corn cobs, to a synthetic polymer matrix have a great potential for use as electrically insulating materials because their dielectric parameters are comparable to those of standard insulating materials. Full article
Show Figures

Figure 1

20 pages, 5172 KiB  
Article
Design and Experimentation on a Pneumatic Corn Seed Metering Device with Assisted Seed-Filling and Airflow-Guided Seed Release
by Jiahua Yan, Guangwei Wu, Rui Liu, Liwei Li, Yuejin Xiao, Junxian Guo and Bingxin Yan
Agriculture 2025, 15(7), 745; https://doi.org/10.3390/agriculture15070745 - 31 Mar 2025
Viewed by 581
Abstract
In view of the problem that the qualified index of grain spacing deteriorates during high-speed operation of the pneumatic corn seed dispenser, a new method of homologous dual-action positive-pressure-assisted seed filling and seed release is proposed, and a pneumatic corn seed dispenser with [...] Read more.
In view of the problem that the qualified index of grain spacing deteriorates during high-speed operation of the pneumatic corn seed dispenser, a new method of homologous dual-action positive-pressure-assisted seed filling and seed release is proposed, and a pneumatic corn seed dispenser with assisted inflow filling is designed. The structure and working principle of the seed dispenser are explained, and a theoretical analysis is carried out on the seed filling and seed release process in the seed guide tube. The key structural parameters of the conical deflector-groove seed metering disc and the homologous airflow-assisted seed release mechanism are determined. The test factors were working pressure and operating speed, and the evaluation indicators were the qualified particle spacing index, missed sowing index, resowing index, and qualified particle spacing variation coefficient. A full-factor bench test was carried out, and the test results showed that when the sowing speed was 6 km/h and the working pressure was 5 kPa, the qualified particle spacing index was 96.37%, the missed sowing index was 0.30%, the resowing index was 3.33%, and the coefficient of variation in the qualified particle spacing was 17.37%. The results of the field test showed that when the operating speed was 6 km/h and the working pressure was 5 kPa, the qualified particle spacing index was 95.30%, the missed sowing index was 2.33%, and the resowing index was 2.37%. All indicators met the technical requirements for precision single-seed maize sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 7403 KiB  
Article
Optimization of Biomass Delignification by Extrusion and Analysis of Extrudate Characteristics
by Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue and Kokou Adjallé
Waste 2025, 3(2), 12; https://doi.org/10.3390/waste3020012 - 25 Mar 2025
Cited by 1 | Viewed by 1689
Abstract
Pretreatment of lignocellulosic biomass remains the primary obstacle to the profitable use of this type of biomass in biorefineries. The challenge lies in the recalcitrance of the lignin-carbohydrate complex to pretreatment, especially the difficulty in removing the lignin to access the carbohydrates (cellulose [...] Read more.
Pretreatment of lignocellulosic biomass remains the primary obstacle to the profitable use of this type of biomass in biorefineries. The challenge lies in the recalcitrance of the lignin-carbohydrate complex to pretreatment, especially the difficulty in removing the lignin to access the carbohydrates (cellulose and hemicellulose). This study had two objectives: (i) to investigate the effect of reactive extrusion on lignocellulosic biomass in terms of delignification percentage and the structural characteristics of the resulting extrudates, and (ii) to propose a novel pretreatment approach involving extrusion technology based on the results of the first objective. Two types of biomasses were used: agricultural residue (corn stover) and forest residue (black spruce chips). By optimizing the extrusion conditions via response surface analysis (RSA), the delignification percentages were significantly improved. For corn stover, the delignification yield increased from 2.3% to 27.4%, while increasing from 1% to 25.3% for black spruce chips. The highest percentages were achieved without the use of sodium hydroxide and for temperatures below 65 °C. Furthermore, the optimized extrudates exhibited important structural changes without any formation of p-cresol, furfural, and 5-hydroxymethylfurfural (HMF) (enzymes and microbial growth-inhibiting compounds). Acetic acid however was detected in corn stover extrudate. The structural changes included the disorganization of the most recalcitrant functional groups, reduction of particle sizes, increase of specific surface areas, and the appearance of microscopic roughness on the particles. Analyzing all the data led to propose a new promising approach to the pretreatment of lignocellulosic biomasses. This approach involves combining extrusion and biodelignification with white rot fungi to improve the enzymatic hydrolysis of carbohydrates. Full article
Show Figures

Figure 1

17 pages, 1732 KiB  
Article
Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications
by Mahsa Farrokhi, Ines N. Ramos and Cristina L. M. Silva
Foods 2025, 14(7), 1094; https://doi.org/10.3390/foods14071094 - 21 Mar 2025
Viewed by 562
Abstract
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising [...] Read more.
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising corn starch, rice flour, and other ingredients, was treated at hydration levels of 15% and 25% (w/w) under controlled conditions (10 min of sonication at 20 °C) and compared to a non-sonicated control. Sonication reduced the water absorption capacity (WAC) and swelling power (SP) while increasing the oil absorption capacity (OAC) and water solubility (WSI). Thermal analysis revealed lower gelatinization enthalpy, indicating structural modifications induced by cavitation. Structural assessments (XRD and FTIR) confirmed minimal alterations in crystallinity and short-range order. Rheological studies demonstrated an enhanced elasticity in the gel structure, especially at 15% hydration, while a morphological analysis via SEM highlighted particle fragmentation and surface roughening. These findings demonstrate the potential of ultrasound to modify gluten-free flours for improved functionality and diverse applications in gluten-free product development. Full article
Show Figures

Figure 1

27 pages, 3627 KiB  
Article
Research on Remote Sensing Monitoring of Key Indicators of Corn Growth Based on Double Red Edges
by Ying Yin, Chunling Chen, Zhuo Wang, Jie Chang, Sien Guo, Wanning Li, Hao Han, Yuanji Cai and Ziyi Feng
Agronomy 2025, 15(2), 447; https://doi.org/10.3390/agronomy15020447 - 12 Feb 2025
Cited by 1 | Viewed by 1163
Abstract
The variation in crop growth provides critical insights for yield estimation, crop health diagnosis, precision field management, and variable-rate fertilization. This study constructs key monitoring indicators (KMIs) for corn growth based on satellite remote sensing data, along with inversion models for these growth [...] Read more.
The variation in crop growth provides critical insights for yield estimation, crop health diagnosis, precision field management, and variable-rate fertilization. This study constructs key monitoring indicators (KMIs) for corn growth based on satellite remote sensing data, along with inversion models for these growth indicators. Initially, the leaf area index (LAI) and plant height were integrated into the KMI by calculating their respective weights using the entropy weight method. Eight vegetation indices derived from Sentinel-2A satellite remote sensing data were then selected: the Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index (PVI), Soil-Adjusted Vegetation Index (SAVI), Red-Edge Inflection Point (REIP), Inverted Red-Edge Chlorophyll Index (IRECI), Pigment Specific Simple Ratio (PSSRa), Terrestrial Chlorophyll Index (MTCI), and Modified Chlorophyll Absorption Ratio Index (MCARI). A comparative analysis was conducted to assess the correlation of these indices in estimating corn plant height and LAI. Through recursive feature elimination, the most highly correlated indices, REIP and IRECI, were selected as the optimal dual red-edge vegetation indices. A deep neural network (DNN) model was established for estimating corn plant height, achieving optimal performance with an R2 of 0.978 and a root mean square error (RMSE) of 2.709. For LAI estimation, a DNN model optimized using particle swarm optimization (PSO) was developed, yielding an R2 of 0.931 and an RMSE of 0.130. KMI enables farmers and agronomists to monitor crop growth more accurately and in real-time. Finally, this study calculated the KMI by integrating the inversion results for plant height and LAI, providing an effective framework for crop growth assessment using satellite remote sensing data. This successfully enables remote sensing-based growth monitoring for the 2023 experimental field in Haicheng, making the precise monitoring and management of crop growth possible. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 3631 KiB  
Article
Assessing the Potential of Biomass Hydrothermal Liquefaction Hydrochar for Soil Amendment: Chemical/Physical Characterization and Water Holding Capacity and Retention
by Abdul Rashid Issifu and Cheng Zhang
Water 2025, 17(4), 504; https://doi.org/10.3390/w17040504 - 11 Feb 2025
Cited by 1 | Viewed by 1124
Abstract
Extensive research has been conducted on the application of pyrolysis and hydrothermal carbonization (HTC) biochar for soil amendment. However, hydrochar from hydrothermal liquefaction (HTL) has received little attention regarding its potential for such application. This research paper aims to fill this knowledge gap. [...] Read more.
Extensive research has been conducted on the application of pyrolysis and hydrothermal carbonization (HTC) biochar for soil amendment. However, hydrochar from hydrothermal liquefaction (HTL) has received little attention regarding its potential for such application. This research paper aims to fill this knowledge gap. In this study, corn stover-derived hydrochar from HTL at 280 °C was characterized using suitable analytical techniques to determine the functional groups, specific surface area, and morphology. The effects of HTL hydrochar on water holding capacity (WHC) and water retention of sandy loam soil and the resistance to biodegradation were also studied. The BET surface area of hydrochar was found to be 27.6 m2/g. The hydrochar particles are micro-sized stacking of nanometer-thick foliates. The hydrochar-amended soil consistently showed better WHC ranging from 50 to 55% compared to the unamended soil of 48%. A similar trend was observed for water retention over a period of four days. No notable biodegradation was observed for the hydrochar over a period of 106 days in wet soil at the ambient temperature. Overall, these results demonstrate the potential of HTL hydrochar as a valuable soil amendment to enhance agriculture sustainability. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

Back to TopTop