The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops
Abstract
:1. Introduction
2. Objectives
3. Material and Methods
3.1. Sample Preparation
3.2. Pelletization
3.3. Pellet Density
3.4. Pellet Durability
3.5. Color Measurement
4. Results and Discussion
4.1. Pellet Characterization
4.2. Color Index Parameters
4.3. Inorganic Elements
4.4. Effect of Inorganic Elements of Biomass on Pellet Color Index
4.5. Pellet Density and Pellet Durability
5. Conclusions
- As confirmed in our findings, denser raw biomass samples generally yield denser pellets, consistent with prior studies. However, this trend is quantitatively validated here for previously uncharacterized greenhouse crop residues.
- We found that under standardized pelletization conditions, factors such as particle shape and elemental composition had minimal correlation with pellet durability, suggesting that processing conditions may play a stronger role—especially for high-moisture, low-lignin foliage materials.
- Pellet density and pellet durability exhibited a positive correlation (0.647), indicating that higher-density biomass materials generally produced more durable pellets, whereas lower-density biomasses resulted in weaker pellet structures.
- Higher concentrations of inorganic elements in the biomass samples, such as summer squash, cucumber, tomato vine, and eggplant, but particularly silica, chlorine, and sulfur, led to increased ash formation and reduced gross calorific value, negatively impacting the combustion efficiency of the biomass pellets.
- The color parameters were strongly correlated with physicochemical properties, reinforcing that the color index can serve as an indicator of pellet quality, energy content, and combustion characteristics. Inorganic elements such as calcium (Ca), phosphorus (P), and potassium (K) exhibited strong negative correlations with brightness L*, indicating that higher mineral content leads to darker pellets. Also, higher lignin, GCV, and C/O ratio levels in sawdust samples were associated with higher L* values (brighter pellets), while higher ash content (cucumber and summer squash) led to lower L* values (darker pellets).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MC | Moisture content |
GCV | Gross calorific value |
AC | Ash content |
PSD | Particle size distribution |
D50 | 50% of the particles have a diameter less than the specific amount |
W | Width |
L | Length |
A | Area |
P | Perimeter |
AR | Aspect ratio |
Equivalent diameter | |
PDe | Single-pellet density |
PDu | Single-pellet durability |
TD | True density |
BD | Bulk density |
XRF | X-ray fluorescence |
HSD | Tukey’s honestly significant difference |
References
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Andersen, S.P.; Allen, B.; Domingo, G.C.; Andersen, S.P. Biomass in the EU Green Deal; IEEP: Brussels, Belgium, 2021. [Google Scholar]
- Duque-Acevedo, M.; Belmonte-Urena, L.; Cortes-García, F.; Camacho-Ferre, F. Recovery of Agricultural Waste Biomass: A Sustainability Strategy for Moving towards a Circular Bioeconomy; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Jadischke, R.; Lubitz, W.D. Current State of Greenhouse Waste Biomass Disposal Methods, with a Focus on Essex County Ontario. Sustainability 2025, 17, 1476. [Google Scholar] [CrossRef]
- Oyewusi, T.F.; Olaniyan, A.R.; Ogundahunsi, O.E.; Ilori, O.O.; Soji-Adekunle, A.R. Sustainable Bioeconomy Development in the Global South; Springer Nature: Singapore, 2025; pp. 239–264. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, H.T.; Lim, C.J.; Sokhansanj, S. Study on Density, Hardness, and Moisture Uptake of Torrefied Wood Pellets. Energy Fuels 2013, 27, 967–974. [Google Scholar] [CrossRef]
- Ray, A.; Li, C.; Thompson, V.; Daubaras, D.; Nagle, N. Biomass Blending and Densification: Impacts on Feedstock Supply and Biochemical Conversion Performance; InTech: Vienna, Austria, 2017. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A Review on Biomass Densification Technologie for Energy Application; Idaho National Laboratory: Idaho Falls, ID, USA, 2010. [Google Scholar] [CrossRef]
- Siyal, A.A.; Liu, Y.; Mao, X.; Ali, B.; Husaain, S.; Dai, J.; Zhang, T.; Fu, J.; Liu, G. Characterization and Quality Analysis of Wood Pellets: Effect of Pelletization and Torrefaction Process Variables on Quality of Pellets. Biomass Convers. Biorefin. 2021, 11, 2201–2217. [Google Scholar] [CrossRef]
- Mostafa, M.E.; Hu, S.; Wang, Y.; Su, S.; Hu, X.; Elsayed, S.A.; Xiang, J. The Significance of Pelletization Operating Conditions: An Analysis of Physical and Mechanical Characteristics as Well as Energy Consumption of Biomass Pellets. Renew. Sustain. Energy Rev. 2019, 105, 332–348. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. Fuel Pellets from Biomass: The Importance of the Pelletizing Pressure and Its Dependency on the Processing Conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef]
- Berghel, J.; Ståhl, M.; Frodeson, S.; Pichler, W.; Weigl-Kuska, M. A Comparison of Relevant Data and Results from Single Pellet Press Research Is Mission Impossible: A Review. Bioresour. Technol. Rep. 2022, 18, 101054. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Loureiro, L.M.E.F.; Sá, L.C.R.; Matias, J.C.O.; Ferraz, A.I.O.F.; Rodrigues, A.C.P.B. Energy Recovery of Agricultural Residues: Incorporation of Vine Pruning in the Production of Biomass Pellets with ENplus® Certification. Recycling 2021, 6, 28. [Google Scholar] [CrossRef]
- Zhang, J.; De, X.; Yu, Z.; Guo, W.; Ge, Y.; Chen, X. Effectiveness of Biomass Pellet Parameters on Their Fractal Dimension. Appl. Sci. 2022, 12, 9841. [Google Scholar] [CrossRef]
- Sun, P.; Wang, C.; Zhang, M.; Cui, L.; Dong, Y. Ash Problems and Prevention Measures in Power Plants Burning High Alkali Fuel: Brief Review and Future Perspectives. Sci. Total Environ. 2023, 901, 165985. [Google Scholar] [CrossRef]
- Wilson, T.O. Factors Affecting Wood Pellet Durability. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2010. [Google Scholar]
- Inna, S.; Henriette, A.Z.; Boukar, H.; Cornelius, T.; Cârâc, G.; Mihaela, R.D.; Ruben, M.; Richard, K. Compositional Characteristics and Theoretical Energy Potential of Animal Droppings from Adamawa Region of Cameroon. Biomass Convers. Biorefin. 2022, 14, 10871–10883. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; He, L.; Zhu, Q.; Wang, Y.; Hu, G.; He, M. Characterization of Different Types of Agricultural Biomass and Assessment of Their Potential for Energy Production in China. Bioresources 2019, 14, 6447–6464. [Google Scholar] [CrossRef]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. From Coal to Biomass Gasification: Comparison of Thermodynamic Efficiency. Energy 2007, 32, 1248–1259. [Google Scholar] [CrossRef]
- Inna, S.; Amadou, O.A.; Yvette, J.N.; Cârâc, G.; Mihaela, R.D.; Richard, K. Assessment of Efficient Thermal Conversion Technologies and HHV from Compositional Characteristics of Cassava Peelings, Plantain Peelings and Corn Cobs. Energy Res. J. 2022, 13, 30–41. [Google Scholar] [CrossRef]
- Faidallah, R.S.A.; Morad, M.; Wasfy, K.I.; El-Sharnouby, M.; Kesba, H.; El-Tahan, A.M.; El-Saadony, M.T.; Awny, A. Utilizing Biomass Energy for Improving Summer Squash Greenhouse Productivity during the Winter Season. Saudi J. Biol. Sci. 2022, 29, 822–830. [Google Scholar] [CrossRef]
- Huang, T.; Li, H.; Zhang, G.; Xu, F. Experimental Study on Biomass Heating System in the Greenhouse: A Case Study in Xiangtan, China. Sustainability 2020, 12, 5673. [Google Scholar] [CrossRef]
- Perron, M. Heating of Greenhouses from Biomass Polygeneration Systems; Polytechnique Montréal: Montreal, QC, Canada, 2023. [Google Scholar]
- Reinoso Moreno, J.V.; Pinna-Hernández, G.; Fernández Fernández, M.D.; Sánchez Molina, J.A.; Rodríguez Díaz, F.; López Hernández, J.C.; Acién Fernández, F.G. Optimal Processing of Greenhouse Crop Residues to Use as Energy and CO2 Sources. Ind. Crops Prod. 2019, 137, 662–671. [Google Scholar] [CrossRef]
- Gholami, B.O.; Sokhansanj, S.; Lau, A.; Lee, J.S.; Arunachalam, S.; Smith, D. The Study of Post-Harvest Processing and Handling of Residues from Plants Grown Primarily for Agronomics: Soybean Stalk, Corn Stover, Tomato Vine, Cucumber, Eggplant, and Summer Squash. Eur. J. Agric. Food Sci. 2024, 6, 44–53. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP). 2008; Issue Date: 17 July 2005. Available online: https://www.nrel.gov/docs/gen/fy08/42622.pdf (accessed on 6 April 2025).
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); 2008; Issue Date: 17 July 2005. Available online: https://www.nrel.gov/docs/gen/fy08/42619.pdf (accessed on 6 April 2025).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass Laboratory Analytical Procedure (LAP); 2008; Issue Date: 17 July 2005. Available online: https://www.nrel.gov/docs/gen/fy11/42618.pdf (accessed on 6 April 2025).
- ANSI/ASAE S319.4 FEB2008 (R2012); Method of Determining and Expressing Fineness of Feed Materials by Sieving. American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2012.
- Ulusoy, U.; Yekeler, M.; Hiçyilmaz, C. Determination of the Shape, Morphological and Wettability Properties of Quartz and Their Correlations. Miner. Eng. 2003, 16, 951–964. [Google Scholar] [CrossRef]
- Tannous, K.; Lam, P.S.; Sokhansanj, S.; Grace, J.R. Physical Properties for Flow Characterization of Ground Biomass from Douglas Fir Wood. Part. Sci. Technol. 2013, 31, 291–300. [Google Scholar] [CrossRef]
- Rezaei, H.; Lim, C.J.; Lau, A.; Sokhansanj, S. Size, Shape and Flow Characterization of Ground Wood Chip and Ground Wood Pellet Particles. Powder Technol. 2016, 301, 737–746. [Google Scholar] [CrossRef]
- Yu, Y.; Lau, A.; Sokhansanj, S. Improvement of the Pellet Quality and Fuel Characteristics of Agricultural Residues through Mild Hydrothermal Treatment. Ind. Crops Prod. 2021, 169, 113654. [Google Scholar] [CrossRef]
- Schilling, C.; Wöhler, M.; Yazdanpanah, F.; Bi, X.; Lau, A.; Lim, J.; Sokhansanj, S.; Pelz, S. Development of a Novel Wood Pellet Durability Tester for Small Samples. In Proceedings of the World Sustainable Energy Days—Energy Efficiency & Biomass, Wels, Austria, 26–27 February 2015. [Google Scholar] [CrossRef]
- Robertson, A.R. The CIE 1976 Color-Difference Formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation. Eng. Life Sci. Wiley Online Libr. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef]
- Du, S.; Yang, H.; Qian, K.; Wang, X.; Chen, H. Fusion and Transformation Properties of the Inorganic Components in Biomass Ash. Fuel 2014, 117, 1281–1287. [Google Scholar] [CrossRef]
- Roberts, L.J.; Mason, P.E.; Jones, J.M.; Gale, W.F.; Williams, A.; Ellul, C. Additives to Mitigate against Slagging and Fouling in Biomass Combustion. Fuel Process. Technol. 2018, 178, 13–23. [Google Scholar] [CrossRef]
- Tomlin, A.S. Air Quality and Climate Impacts of Biomass Use as an Energy Source: A Review. Energy Fuels 2021, 35, 14213–14240. [Google Scholar] [CrossRef]
- Kar, T.; Keles, S. Environmental Impacts of Biomass Combustion for Heating and Electricity Generation. J. Eng. Res. Appl. Sci. 2016, 5, 458–465. [Google Scholar]
- Akowuah, J.O.; Kemausuor, F.; Mitchual, S.J. Physico-Chemical Characteristics and Market Potential of Sawdust Charcoal Briquette. Int. J. Energy Environ. Eng. 2012, 3, 20. [Google Scholar] [CrossRef]
- Shaba Mohammed, I.; Aliyu, M.; Aliyu Abdullahi, N.; Ahmed Alhaji, I. Production of Bioenergy from Rice-Melon Husk Co-Digested with Cow Dung as Inoculant. CIGR J. 2020, 22, 108–117. [Google Scholar]
- Abiodun, O.A.O.; Oluwaseun, O.; Oladayo, O.K.; Abayomi, O.; George, A.A.; Opatola, E.; Orah, R.F.; Isukuru, E.J.; Ede, I.C.; Oluwayomi, O.T.; et al. Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models. Clean Technol. 2023, 5, 934–960. [Google Scholar] [CrossRef]
- Dogar, S.; Nayab, S.; Farooq, M.Q.; Said, A.; Kamran, R.; Duran, H.; Yameen, B. Utilization of Biomass Fly Ash for Improving Quality of Organic Dye-Contaminated Water. ACS Omega 2020, 5, 15850–15864. [Google Scholar] [CrossRef]
- Kucharzyk, K.H.; Darlington, R.; Benotti, M.; Deeb, R.; Hawley, E. Novel Treatment Technologies for PFAS Compounds: A Critical Review. J. Environ. Manag. 2017, 204, 757–764. [Google Scholar] [CrossRef]
- Xu, L.; Cui, H.; Zheng, X.; Liang, J.; Xing, X.; Yao, L.; Chen, Z.; Zhou, J. Adsorption of Cu2+ to Biomass Ash and Its Modified Product. Water Sci. Technol. 2018, 2017, 115–125. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A Review of Densified Solid Biomass for Energy Production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- ISO 17225-6:2021; Solid Biofuels—Fuel Specifications and Classes—Part 6: Graded Non-Woody Pellets. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Sgarbossa, A.; Costa, C.; Menesatti, P.; Antonucci, F.; Pallottino, F.; Zanetti, M.; Grigolato, S.; Cavalli, R. Colorimetric Patterns of Wood Pellets and Their Relations with Quality and Energy Parameters. Fuel 2014, 137, 70–76. [Google Scholar] [CrossRef]
- Meier, S.; Rector, L.R.; Allen, G.; Hopke, P.K.; Chandrasekaran, S.R.; Lin, L. Elemental Analysis of Wood Fuels; New York State Energy and Development Authority: Albany, NY, USA, 2013; pp. 1–46. [Google Scholar]
- Noman, H.; Rana, D.; Rana, K. Influence of Sulphur and Zinc Levels and Zinc Solubilizer on Productivity, Economics and Nutrient Uptake in Groundnut (Arachis Hypogaea). Indian J. Agron. 2015, 60, 301–306. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Sun, W.; Sun, Y.; Wu, K. Effects of Different Biomass Feedstocks on the Pelleting Process and Pellet Qualities. Sustain. Energy Technol. Assess. 2024, 69, 103912. [Google Scholar] [CrossRef]
- Kamperidou, V. Quality Analysis of Commercially Available Wood Pellets and Correlations between Pellets Characteristics. Energies 2022, 15, 2865. [Google Scholar] [CrossRef]
- Zafari, A.; Kianmehr, M. Effect of Raw Material Properties and Die Geometry on the Density of Biomass Pellets from Composted Municipal Solid Waste. Bioresources 2012, 7, 4704–4714. [Google Scholar] [CrossRef]
- Liu, Z.; Mi, B.; Jiang, Z.; Fei, B.; Cai, Z.; Liu, X. Improved Bulk Density of Bamboo Pellets as Biomass for Energy Production. Renew. Energy 2016, 86, 1–7. [Google Scholar] [CrossRef]
- Styks, J.; Knapczyk, A.; Łapczyńska-Kordon, B. Effect of Compaction Pressure and Moisture Content on Post-Agglomeration Elastic Springback of Pellets. Materials 2021, 14, 879. [Google Scholar] [CrossRef]
- Elniski, A.; Dongre, P.; Bujanovic, B.M. Lignin Use in Enhancing the Properties of Willow Pellets. Forests 2023, 14, 2041. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A Review of Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application. Biofuels Bioprod. Biorefin. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Hann, D.; Strazisar, J. Influence of Particle Size Distribution, Moisture Content, and Particle Shape on the Flow Properties of Bulk Solids. Instrum. Sci. Technol. 2007, 35, 571–584. [Google Scholar] [CrossRef]
Pellets | Color Parameters (-) | |||
---|---|---|---|---|
L* | a* | b* | ||
Sawdust | 61.71 e | 5.93 f | 22.13 e | 13.1 a |
Soybean | 52.92 d | 4.48 e | 18.82 d | 13.1 a |
Corn stover | 49.69 c | 4.51 e | 18.23 d | 12.5 b |
Eggplant | 40.67 b | 2.44 c | 15.36 c | 18.7 c |
Tomato vine | 40.94 b | 0.35 a | 16.15 c | 20.4 d |
Summer squash | 36.28 a | 0.83 b | 14.18 b | 18.0 c |
Cucumber | 36.55 a | 3.01 d | 10.41 a | 20.2 d |
Pr > F (Model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Significant | Yes | Yes | Yes | Yes |
Inorganic Elements | Ground Foliage Samples | Correlations With | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Corn | Soybean | Tomato | Eggplant | Cucumber | Summer Squash | Sawdust | L* | a* | b* | |
Si | 9237 d | 3861 c | 806 ab | 1138 b | 17,526 e | 18,116 e | 230 a | −0.424 | −0.357 | −0.602 |
P | 1233 b | 1279 b | 2799 d | 2383 c | 5255 e | 5430 f | 928 a | −0.743 | −0.744 | −0.821 |
S | 422 b | 372 b | 5709 e | 1771 c | 1785 c | 2208 d | 51 a | −0.592 | −0.857 | −0.435 |
Cl | 2999 e | 303 b | 3102 f | 2156 d | 2087 c | 10,850 g | 70 a | −0.610 | −0.659 | −0.815 |
K | 11,065 b | 12,386 c | 15,188 d | 23,542 f | 24,190 g | 16,948 e | 569 a | −0.894 | −0.618 | −0.748 |
Ca | 3930 b | 11,263 c | 38,473 f | 23,095 d | 32,636 e | 56,363 g | 1395 a | −0.811 | −0.921 | −0.874 |
Fe | 346 cd | 428 d | 148 ab | 246 bc | 2146 f | 1957 e | 71 a | −0.497 | −0.447 | −0.654 |
Cu | 31 e | 34 f | 22 d | 15 a | 20 c | 17 b | 30 e | 0.861 | 0.694 | 0.787 |
Zn | 5 a | 7 b | 40 f | 24 c | 36 e | 30 d | 5 a | −0.804 | −0.912 | −0.688 |
Mn | 23 a | 22 a | 40 b | 19 a | 64 c | 70 d | 68 cd | 0.052 | −0.173 | −0.145 |
Ti | 37 d | 65 e | 18 b | 28 c | 311 g | 222 f | 8 a | −0.454 | −0.397 | −0.574 |
Properties | Ground Foliage Samples | Correlations With | |||||||
---|---|---|---|---|---|---|---|---|---|
Corn | Soybean | Tomato | Eggplant | Cucumber | Summer Squash | Sawdust | Pellet Density (g/cm3) | Pellet Durability (%) | |
Pellet Density (g/cm3) | 1.19 b | 1.24 c | 1.32 d | 1.14 a | 1.48 e | 1.51 f | 1.22 c | 1 | 0.647 |
Pellet Durability (%) | 92.3 d | 77.2 b | 97.0 ef | 47.2 a | 98.1 f | 94.2 de | 87.2 c | 0.647 | 1 |
Extractive (%, db) | 5.67 c | 1.49 a | 4.79 b | 4.36 b | 1.82 a | 1.70 a | 2.17 a | −0.508 | −0.135 |
Lignin (%, db) | 18.53 f | 15.42 d | 16.20 e | 12.36 c | 9.38 b | 5.61 a | 29.17 g | −0.621 | −0.011 |
GCV (MJ/kg, db) | 17.2 cd | 17.5 d | 14.8 b | 16.7 c | 14.3 b | 13.6 a | 21.0 e | −0.707 | −0.275 |
Ash (%) | 5.5 b | 6.8 c | 18.3 e | 14.5 d | 25.3 f | 33.6 g | 0.3 a | 0.833 | 0.253 |
C/O ratio (-) | 0.953 b | 0.964 b | 0.795 d | 0.836 c | 0.640 e | 0.455 f | 1.158 a | −0.805 | −0.237 |
TD (g/cm3) | 1.239 e | 1.398 d | 1.424 b | 1.242 e | 1.412 c | 1.489 a | 1.395 d | 0.783 | 0.582 |
BD (kg/m3) | 107.7 a | 200.2 d | 259.9 e | 196.4 c | 259.5 e | 289.0 f | 186.9 b | 0.790 | 0.265 |
D50 (mm) | 0.71 b | 0.67 c | 0.61 d | 0.69 b | 0.65 c | 0.59 e | 0.85 a | −0.559 | −0.190 |
AR (-) | 0.32 a | 0.37 a | 0.39 a | 0.45 a | 0.32 a | 0.40 a | 0.33 a | −0.018 | −0.150 |
Deq (mm) | 1.92 ab | 1.90 ab | 1.25 a | 1.22 a | 1.87 ab | 2.09 ab | 2.60 a | −0.113 | −0.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholami Banadkoki, O.; Sokhansanj, S.; Lau, A.; Arunachalam, S.; Smith, D. The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops. Energies 2025, 18, 1969. https://doi.org/10.3390/en18081969
Gholami Banadkoki O, Sokhansanj S, Lau A, Arunachalam S, Smith D. The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops. Energies. 2025; 18(8):1969. https://doi.org/10.3390/en18081969
Chicago/Turabian StyleGholami Banadkoki, Omid, Shahab Sokhansanj, Anthony Lau, Selvakumari Arunachalam, and Donald Smith. 2025. "The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops" Energies 18, no. 8: 1969. https://doi.org/10.3390/en18081969
APA StyleGholami Banadkoki, O., Sokhansanj, S., Lau, A., Arunachalam, S., & Smith, D. (2025). The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops. Energies, 18(8), 1969. https://doi.org/10.3390/en18081969