Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = copper-manganese oxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3882 KiB  
Article
Performance of Low-Cost Energy Dense Mixed Material MnO2-Cu2O Cathodes for Commercially Scalable Aqueous Zinc Batteries
by Gautam G. Yadav, Malesa Sammy, Jungsang Cho, Megan N. Booth, Michael Nyce, Jinchao Huang, Timothy N. Lambert, Damon E. Turney, Xia Wei and Sanjoy Banerjee
Batteries 2025, 11(8), 291; https://doi.org/10.3390/batteries11080291 - 1 Aug 2025
Viewed by 175
Abstract
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making [...] Read more.
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making it a promising anode material for the development of highly energy dense batteries. However, the advancement of Zn-based battery systems is hindered by the limited availability of cathode materials that simultaneously offer high theoretical capacity, long-term cycling stability, and affordability. In this work, we present a new mixed material cathode system, comprising of a mixture of manganese dioxide (MnO2) and copper oxide (Cu2O) as active materials, that delivers a high theoretical capacity of ~280 mAh/g (MnO2 + Cu2O active material) (based on the combined mass of MnO2 and Cu2O) and supports stable cycling for >200 cycles at 1C. We further demonstrate the scalability of this novel cathode system by increasing the electrode size and capacity, highlighting its potential for practical and commercial applications. Full article
Show Figures

Figure 1

18 pages, 755 KiB  
Article
Oxidative Stress and Psychiatric Symptoms in Wilson’s Disease
by Grażyna Gromadzka, Agata Karpińska, Tomasz Krzysztof Szafrański and Tomasz Litwin
Int. J. Mol. Sci. 2025, 26(14), 6774; https://doi.org/10.3390/ijms26146774 - 15 Jul 2025
Viewed by 303
Abstract
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene. While hepatic manifestations are frequent, psychiatric symptoms occur in up to 30% of patients and may precede neurological signs. This study was the first to [...] Read more.
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene. While hepatic manifestations are frequent, psychiatric symptoms occur in up to 30% of patients and may precede neurological signs. This study was the first to assess the relationship between oxidative stress, selected genetic polymorphisms, and psychiatric symptoms in WD. A total of 464 patients under the care of the Institute of Psychiatry and Neurology in Warsaw were studied. Genotyping for GPX1 (rs1050450), SOD2 (rs4880), and CAT (rs1001179) was performed, along with biochemical analyses of copper metabolism, oxidative DNA, lipid and protein damage, and systemic antioxidant capacity. Among the most important observations are the following: the homozygous GPX1 rs1050450 TT and SOD2 rs4880 CC genotypes were associated with the lowest prevalence of psychiatric symptoms. The CAT rs1001179 TT genotype was linked to a delayed onset of psychiatric symptoms by 6.0–8.5 years. Patients with or without psychiatric symptoms did not differ significantly in saliva 8-OHdG, total antioxidant capacity, serum glutathione (GSH), catalase, and MnSOD; however, patients reporting psychiatric symptoms had significantly higher prostaglandin F2α 8-epimer (8-iso-PGF2α) concentrations and tended to have lower serum glutathione peroxidase (Gpx) concentrations compared to those without such symptoms. Our data firstly provide consistent evidence that oxidative stress balance associated with copper overload in the CNS may be associated with CNS damage and the development of psychiatric symptoms of WD. In particular, our findings of increased oxidative lipid damage together with decreased Gpx activity indirectly suggest that damage to neuronal membrane lipids, which may be potentially related to abnormalities in GSH metabolism, may have an etiological role in CNS damage and related symptoms. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 11303 KiB  
Article
Hierarchical Manganese-Doped Nickel–Cobalt Oxide Electrodes with Graphene for Use as High-Energy-Density Supercapacitors
by Kuan-Ching Lee, Guan-Ting Pan, Thomas Chung-Kuang Yang, Po-Cheng Shen, Kuan Lun Pan, Timm Joyce Tiong, Aleksandar N. Nikoloski and Chao-Ming Huang
Surfaces 2025, 8(3), 43; https://doi.org/10.3390/surfaces8030043 - 25 Jun 2025
Viewed by 394
Abstract
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples [...] Read more.
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples also increase. The microstructure of these samples evolves into hierarchical vertical flake structures. Cyclic voltammetry measurements conducted within the potential range of 0–1.2 V reveal that the electrode with the highest graphene content achieves the highest specific capacitance, approximately 475 F/g. Furthermore, it exhibits excellent cycling durability, maintaining 95.0% of its initial capacitance after 10,000 cycles. The superior electrochemical performance of the graphene-enhanced, manganese-doped nickel–cobalt oxide electrode is attributed to the synergistic contributions of the hierarchical G@MNCO structure, the three-dimensional Cu foam current collector, and the binder-free fabrication process. These features promote quicker electrolyte ion diffusion into the electrode material and ensure robust adhesion of the active materials to the current collector. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

19 pages, 5133 KiB  
Article
Comparative Metagenomics Reveals Microbial Diversity and Biogeochemical Drivers in Deep-Sea Sediments of the Marcus-Wake and Magellan Seamounts
by Chengcheng Li, Bailin Cong, Wenquan Zhang, Tong Lu, Ning Guo, Linlin Zhao, Zhaohui Zhang and Shenghao Liu
Microorganisms 2025, 13(7), 1467; https://doi.org/10.3390/microorganisms13071467 - 24 Jun 2025
Viewed by 575
Abstract
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through [...] Read more.
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through metagenomic sequencing and genome-resolved analysis, we revealed that Proteobacteria (33.18–40.35%) dominated the bacterial communities, while Thaumarchaeota (5.98–10.86%) were the predominant archaea. Metagenome-assembled genomes uncovered 117 medium-quality genomes, 81.91% of which lacked species-level annotation, highlighting uncultured diversity. In the Nazuna seamount, which is located in the Marcus-Wake seamount region, microbiomes exhibited heightened autotrophic potential via the 3-hydroxypropionate cycle and dissimilatory nitrate reduction, whereas in the Magellan seamounts regions, nitrification and organic nitrogen metabolism were prioritized. Sulfur oxidation genes dominated Nazuna seamount microbes, with 33 MAGs coupling denitrification to sulfur redox pathways. Metal resistance genes for tellurium, mercury, and copper were prevalent, alongside habitat-specific iron transport systems. Cross-feeding interactions mediated by manganese, reduced ferredoxin, and sulfur–metal integration suggested adaptive detoxification strategies. This study elucidates how deep-sea microbes partition metabolic roles and evolve metal resilience mechanisms across geographical niches. It also supports the view that microbial community structure and metabolic function across seamount regions are likely influenced by the geomorphological features of the seamounts. Full article
Show Figures

Figure 1

16 pages, 1240 KiB  
Article
The Effect of Zinc Oxide Nanoparticles on the Quantitative and Qualitative Traits of Scutellaria baicalensis Georgi in In Vitro Culture
by Anna Krzepiłko, Roman Prażak, Agata Święciło and Jacek Gawroński
Int. J. Mol. Sci. 2025, 26(12), 5836; https://doi.org/10.3390/ijms26125836 - 18 Jun 2025
Viewed by 329
Abstract
Zinc oxide nanoparticles (ZnONPs) are increasingly used in agriculture to stimulate plant growth and development, including under in vitro culture conditions. However, there is limited data on the effects of ZnONPs on the micropropagation of Scutellaria baicalensis Georgi. The pharmacological properties of this [...] Read more.
Zinc oxide nanoparticles (ZnONPs) are increasingly used in agriculture to stimulate plant growth and development, including under in vitro culture conditions. However, there is limited data on the effects of ZnONPs on the micropropagation of Scutellaria baicalensis Georgi. The pharmacological properties of this species make it a valuable medicinal plant. In Poland, it does not occur naturally but is cultivated for the production of herbal material. In vitro micropropagation is an effective method for obtaining genetically uniform plantlets. The aim of this study was to evaluate the effects of various concentrations of ZnONPs on growth parameters and the content of mineral nutrients, phenolic compounds, antioxidants, and photosynthetic pigments in Scutellaria baicalensis cultured in vitro. Shoot tip explants were cultured on MS medium supplemented with 1.0 mg dm−3 BA and 0.1 mg dm−3 IBA, together with ZnONPs at concentrations of 0 (control), 10, 20, 30, and 40 mg dm−3. The results showed that ZnONPs at concentrations of 10–20 mg dm−3 had no statistically significant effect on shoot or root development or on fresh weight gain. However, higher concentrations (30 and 40 mg dm−3) had a significantly negative impact on the number and length of shoots and roots, as well as on biomass accumulation. ZnONPs at 10–20 mg dm−3 significantly increased the content of potassium, calcium, magnesium, iron, and zinc in regenerated multi-shoot plantlets. A strong positive correlation (r = 0.951) was observed between ZnONP concentration and zinc accumulation in the plantlets. The levels of manganese and copper were not significantly different from the control. Plantlets treated with 30–40 mg dm−3 ZnONPs had significantly lower levels of calcium, iron, manganese, and copper. Those grown at 30 mg dm−3 had the highest potassium and magnesium levels, while plantlets exposed to 40 mg dm−3 had the highest zinc content. The total phenolic content and antioxidant activity (measured using ABTS and DPPH assays) were significantly higher in ZnONP-treated plantlets compared to the control. In contrast, the levels of chlorophyll a, chlorophyll b, total chlorophyll (a + b), and carotenoids were significantly lower in plants treated with ZnONPs. A strong negative correlation was found between ZnONP concentration and photosynthetic pigment content, while the ZnONP concentration was positively correlated with total phenolic content and antioxidant activity (ABTS+ and DPPH). Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles)
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
Electrocatalytical Nitrite Oxidation via Manganese and Copper Oxides on Carbon Screen-Printed Electrode
by Roberta Farina, Silvia Scalese, Alessandra Alberti, Stefania Maria Serena Privitera, Giuseppe Emanuele Capuano, Domenico Corso, Giuseppe Andrea Screpis, Serena Concetta Rita Reina, Guglielmo Guido Condorelli, Maria Anna Coniglio and Sebania Libertino
Sensors 2025, 25(12), 3764; https://doi.org/10.3390/s25123764 - 16 Jun 2025
Viewed by 488
Abstract
Nitrite (NO2) has long been recognized as a contaminant of concern due to its detrimental effects on both human health and the environment. As a result, there is a continuing need to develop sensitive, real-time, low-cost, and portable systems for [...] Read more.
Nitrite (NO2) has long been recognized as a contaminant of concern due to its detrimental effects on both human health and the environment. As a result, there is a continuing need to develop sensitive, real-time, low-cost, and portable systems for the accurate detection of trace levels of NO2 in drinking water. We present a novel, low-cost, and easy-to-fabricate amperometric sensor designed for detecting low concentrations of NO2 in drinking water. The fabrication technique involves the electrodeposition of manganese and copper oxides onto a carbon working electrode. CuO and MnO2 act synergistically as efficient catalysts for the electrooxidation of nitrite to nitrate (NO3) thanks to their complementary redox properties. The resulting sensor exhibits high catalytic activity toward the electrooxidation of NO2, with a sensitivity of 10.83 μA/µM, a limit of detection (LOD) of 0.071 µM, and a good linear dynamic concentration range (0.2–60 µM). The sensor’s performance was evaluated against potential interfering analytes (NO3, Cl, NH4+, and NH2Cl), all of which showed negligible interference. Reproducibility (maximum standard deviation 2.91%) and repeatability (usable up to three times) were also evaluated. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

22 pages, 2379 KiB  
Review
Actual Data on Essential Trace Elements in Parkinson’s Disease
by Cristina Popescu, Constantin Munteanu, Aura Spînu, Ioana Andone, Roxana Bistriceanu, Ruxandra Postoiu, Andreea Suciu, Sebastian Giuvara, Andreea-Iulia Vlădulescu-Trandafir, Sorina Maria Aurelian, Nadina Liana Pop, Vlad Ciobanu and Gelu Onose
Nutrients 2025, 17(11), 1852; https://doi.org/10.3390/nu17111852 - 29 May 2025
Viewed by 1068
Abstract
Sola dosis facit venenum” (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson’s disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, [...] Read more.
Sola dosis facit venenum” (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson’s disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, such as iron, zinc, copper, manganese, and selenium, in the pathogenesis and, consequently, as potential therapeutic targets of PD. A comprehensive literature search was conducted for articles published between 1 January 2023 and 31 December 2024. Out of an initial pool of 1231 identified studies, 63 met the methodological eligibility criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. All potentially eligible interventional and observational studies were initially assessed using the Physiotherapy Evidence Database (PEDro) scale, which is commonly employed for evaluating the internal validity and statistical interpretability of clinical trials and rehabilitation-focused studies. Following the qualitative assessment using the PEDro scale, 18 studies were ultimately selected based on their scientific relevance and methodological rigor. To supplement the PEDro scoring, which is designed primarily for individual trials, we applied the AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist for the evaluation of the included systematic reviews or meta-analyses. The included studies employed a variety of clinical, postmortem, and experimental models to investigate trace-element concentrations and their mechanistic roles in PD. The findings revealed consistent patterns of iron accumulation in the substantia nigra, zinc’s bidirectional effects on oxidative stress and autophagy, copper-induced α-synuclein aggregation, and the neuroprotective role of selenium via antioxidant pathways. Manganese was associated with mitochondrial dysfunction and neuroinflammation. Essential trace-element disturbances contribute to PD pathology through interconnected mechanisms involving redox imbalance, protein misfolding, and impaired cellular homeostasis. These elements may serve as both biomarkers and potential therapeutic tools, warranting further investigation into personalized metal-based interventions for PD. Full article
(This article belongs to the Special Issue Trace Minerals in Human Health: Hot Topics and Information Update)
Show Figures

Figure 1

18 pages, 2959 KiB  
Article
Evaluating Performance of Metal-Organic Complexes as Electrodes in Hydrogen Peroxide Fuel Cells
by Faraz Alderson, Raveen Appuhamy and Stephen Andrew Gadsden
Energies 2025, 18(10), 2598; https://doi.org/10.3390/en18102598 - 17 May 2025
Viewed by 348
Abstract
With increasing energy demands, fuel cells are a popular avenue for portability and low waste emissions. Hydrogen fuel cells are popular due to their potential output power and clean waste. However, due to storage and transport concerns, hydrogen peroxide fuel cells are a [...] Read more.
With increasing energy demands, fuel cells are a popular avenue for portability and low waste emissions. Hydrogen fuel cells are popular due to their potential output power and clean waste. However, due to storage and transport concerns, hydrogen peroxide fuel cells are a promising alternative. Although they have a lower output potential compared to hydrogen fuel cells, peroxide can act as both the oxidizing and reducing agent, simplifying the structure of the cell. In addition to reducing the complexity, hydrogen peroxide is stable in liquid form and can be stored in less demanding methods. This paper investigates chelated metals as electrode material for hydrogen peroxide fuel cells. Chelated metal complexes are ring-like structures that form from binding organic or inorganic compounds with metal ions. They are used in medical imaging, water treatment, and as catalysts for reactions. Copper(II) phthalocyanine, phthalocyanine green, poly(copper phthalocyanine), bis(ethylenediamine)copper(II) hydroxide, iron(III) ferrocyanine, graphene oxide decorated with Fe3O4, zinc phthalocyanine, magnesium phthalocyanine, manganese(II) phthalocyanine, cobalt(II) phthalocyanine are investigated as electrode materials for peroxide fuel cells. In this study, the performance of these materials is evaluated using cyclic voltammetry. The voltammograms are compared, as well as observations are made during the materials’ use to measure their effectiveness as electrode material. There has been limited research comparing the use of these chelated metals in the context of hydrogen peroxide fuel cells. Through this research, the goal is to further the viability of hydrogen peroxide fuel cells. Poly(copper phthalocyanine) and graphene oxide doped with iron oxides had strong redox catalytic activity for use in acidic peroxide single-compartment fuel cells, where the poly(copper phthalocyanine) electrode compound generated the highest peak power density of 7.92 mW/cm2 and cell output potential of 0.634 V. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

22 pages, 6000 KiB  
Article
Identifying the Phytotoxicity of Biosynthesized Metal Oxide Nanoparticles and Their Impact on Antioxidative Enzymatic Activity in Maize Under Drought Stress
by Hafiz Muhammad Rizwan, Usman Shafqat, Aneeza Ishfaq, Fatima Batool, Faisal Mahmood, Qitao Su, Nimra Yaseen, Tehziba Raza and Faizah Amer Altihani
Plants 2025, 14(7), 1075; https://doi.org/10.3390/plants14071075 - 1 Apr 2025
Cited by 1 | Viewed by 1011
Abstract
Maize (Zea mays L.), an important crop used for animal feed and human consumption, is currently threatened by water shortage. Recently, the usage of nanomaterials has attracted worldwide attention due to their applications in various fields. This research aimed to evaluate the [...] Read more.
Maize (Zea mays L.), an important crop used for animal feed and human consumption, is currently threatened by water shortage. Recently, the usage of nanomaterials has attracted worldwide attention due to their applications in various fields. This research aimed to evaluate the comparative efficacy of different metal oxide nanoparticles for mitigating drought stress in maize. Iron oxide, manganese oxide, and copper nanoparticles were biosynthesized from the leaf extract of Conocarpus erectus L. and characterized via UV-Vis, XRD, FTIR, and SEM. The synthesized nanomaterials were initially optimized at different concentrations (0, 25, 50, 75, and 100 ppm). The optimized doses of each nanoparticle were then applied to maize plants under different drought stress levels (50% FC, 75% FC, and 100% FC). Compared to the control, the application of nanomaterials significantly improved the growth parameters of the maize by 30% at 50% FC, 27% at 75% FC, and 26% at 100% FC. The chlorophyll content also improved significantly at different levels of drought stress by 35%, 32%, and 29% as compared to the control, respectively. The antioxidants (CAT, POD, SOD, and APX) also improved significantly at different levels of drought by 37%, 34%, and 31%, as compared to control, respectively. Moreover, the use of nanoparticles resulted in a significant decrease in cellular oxidative stress (MDA, H2O2) parameters by 23% at 50%FC, 26% at 75% FC, and 27% at 100% FC. Biosynthesized FeO NPs, MnO NPs, and Cu NPs have demonstrated significant potential in mitigating drought stress in maize, suggesting a promising approach to enhance crop performance under water-limited conditions. Further research is recommended to explore the long-term impacts and practical applications of these findings in sustainable agriculture. Full article
Show Figures

Figure 1

18 pages, 11715 KiB  
Article
Interaction of Manganese-Doped Copper Oxide Nano-Platelets with Cells: Biocompatibility and Anticancer Activity Assessment
by Ioan-Ovidiu Pană, Alexandra Ciorîță, Sanda Boca, Simona Guțoiu, Irina Kacso, Maria Olimpia Miclăuș, Oana Grad, Ana Maria Raluca Gherman, Cristian Leostean and Maria Suciu
Biomimetics 2025, 10(4), 203; https://doi.org/10.3390/biomimetics10040203 - 26 Mar 2025
Viewed by 717
Abstract
Understanding cellular interaction with nanomaterials represents a subject of great interest for the validation of new diagnostic and therapeutic tools. A full characterization of a designed product includes the evaluation of its impact on specific biological systems, including the study of cell behavior [...] Read more.
Understanding cellular interaction with nanomaterials represents a subject of great interest for the validation of new diagnostic and therapeutic tools. A full characterization of a designed product includes the evaluation of its impact on specific biological systems, including the study of cell behavior as a response to that particular interaction. Copper and copper-based nanoparticles (CuO NPs) have emerged as valuable building blocks for various biomedical applications such as antibacterial and disinfecting agents for infectious diseases, and the evaluation of the metabolism of food, including the iron required for proteins and enzymes or as drug delivery systems in cancer therapy. In this study, the biological impact of manganese-doped crystalline copper oxide (CuO:Mn) nano-platelets on human normal BJ fibroblasts and human A375 skin melanoma was assessed. The particles were synthesized at room temperature via the hydrothermal method. A complete physicochemical characterization of the materials was performed by employing various techniques including X-ray diffraction, electron microscopy, X-Ray photoelectron spectroscopy, and dynamic light scattering. Morphological investigations revealed a flat structure with nearly straight edges, with sizes spanning in the nanometer range. XRD analysis confirmed the formation of the CuO phase with good crystallinity, while XPS provided insights into the Mn doping. The findings indicate that nano-platelets interact with cells actively by mediating essential molecular processes. The exogenous manganese triggers increased MnSOD production in mitochondria, compensating ROS produced by external stress factors (Cu2+ ions), and mimics the endogenous SODs production, which compensates internal ROS production as it normally results from cell biochemistry. The effect is differentiated in normal cells compared to malignant cells and deserves investigation. Full article
Show Figures

Figure 1

12 pages, 226 KiB  
Article
The Influence of Maternal Diet in Late Pregnancy on Malondialdehyde and Cortisol Levels in Maternal and Cord Blood
by Mai Quynh Nguyen, Kinuyo Munakata, Midori Natsume, Yoshitaka Nakamura, Hiroshi Miyabayashi, Nobuhiko Nagano and Ichiro Morioka
Nutrients 2025, 17(6), 1077; https://doi.org/10.3390/nu17061077 - 19 Mar 2025
Viewed by 855
Abstract
Background/Objectives: Research suggests that diet influences oxidative stress status in pregnant women and is related to their stress and depressive symptoms. This study aimed to investigate how maternal diet during late pregnancy affects oxidative stress status, maternal stress, depression, and fetal physical development. [...] Read more.
Background/Objectives: Research suggests that diet influences oxidative stress status in pregnant women and is related to their stress and depressive symptoms. This study aimed to investigate how maternal diet during late pregnancy affects oxidative stress status, maternal stress, depression, and fetal physical development. Methods: This study included 58 mother–child pairs. Dietary intake, depressive symptoms, and clinical information were obtained through questionnaires and clinical records. Maternal and cord blood concentrations of malondialdehyde (MDA), paraoxonase-1, platelet activating factor-acetylhydrolase, and cortisol were measured using spectrophotometric and enzyme-linked immunosorbent assays. Results: Maternal serum MDA levels were inversely associated with nut consumption (β = −0.40, p = 0.01) and positively associated with vitamin B2 (β = 2.43, p = 0.04) and manganese intake (β = 0.44, p = 0.02). Fruit consumption was positively associated with Center for Epidemiologic Studies Depression Scale score (β = 0.35, p = 0.03). Intakes of beans (β = −3.37, p = 0.04), vitamin B1 (β = −738.92, p = 0.04), vitamin B6 (β = −562.21, p = 0.04), vitamin C (β = −4.75, p = 0.009), iron (β = −106.63, p = 0.03), and copper (β = −863.31, p = 0.01) were inversely associated with maternal serum cortisol level, whereas dairy intake (β = 1.45, p = 0.003) showed a positive association. Cord plasma cortisol levels were inversely associated with the consumption of other vegetables (β = −2.89, p = 0.02). Conclusions: The findings encourage further research towards the refinement of dietary guidelines for pregnant women and recommendations for expecting mothers. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Graphical abstract

16 pages, 8820 KiB  
Article
Understanding the Role of Active Lattice Oxygen in CO Oxidation Catalyzed by Copper-Doped Mn2O3@MnO2
by Hao Zhang, Tan Meng, Min Zhang, Pengyi Zhang, Peizhe Sun, Huinan Li and Yangyang Yu
Molecules 2025, 30(4), 865; https://doi.org/10.3390/molecules30040865 - 13 Feb 2025
Viewed by 736
Abstract
Although the hopcalite catalyst, primarily composed of manganese oxide and copper oxide, has been extensively studied for carbon monoxide (CO) elimination, there remains significant potential to optimize its structure and activity. Herein, Cu-doped Mn3O2@MnO2 catalysts featuring highly exposed [...] Read more.
Although the hopcalite catalyst, primarily composed of manganese oxide and copper oxide, has been extensively studied for carbon monoxide (CO) elimination, there remains significant potential to optimize its structure and activity. Herein, Cu-doped Mn3O2@MnO2 catalysts featuring highly exposed interfacial regions were prepared. The correlation between interfacial exposure and catalytic activity indicates that the interfacial region serves as the active site for CO catalytic oxidation. The characteristic adsorption of CO by Cu species significantly enhances the catalytic activity of the catalyst. And XPS and ICP-OES analyses reveal that Cu ions coexist in both the interlayer and lattice of δ-MnO2. Furthermore, XPS analysis was employed to quantify the average oxidation state (AOS) of Mn and the molar ratios of oxygen species, demonstrating that both surface-adsorbed oxygen and surface lattice oxygen act as reactive oxygen species in the catalytic reaction, playing a crucial role in CO oxidation. Notably, the surface reactive oxygen species influence the adsorption of CO onto Cu species, and the replenishment of these reactive species is identified as the rate-limiting step in the CO catalytic oxidation process. Full article
Show Figures

Graphical abstract

16 pages, 4896 KiB  
Communication
Fiber Fabry–Perot Sensor Based on Ion-Imprinted Sodium Alginate/Graphene Oxide Hydrogel for Copper Ion Detection Using Vernier Effect
by Ning Wang, Shiqi Liu, Liang Xu, Longjiao Wang, Ming He, Chuanjie Lei and Linyufan Xiao
Sensors 2025, 25(3), 920; https://doi.org/10.3390/s25030920 - 3 Feb 2025
Viewed by 991
Abstract
This work proposes an optical fiber copper ion sensor, which is fabricated by an ion-imprinted sodium alginate/graphene oxide (SA/GO) hydrogel and single-mode fiber (SMF). This sensing Fabry–Perot Interferometer (FPI) achieves −1.98 nm/(mg/L) sensitivity with 0.998 linearity. To achieve higher sensitivity, we add a [...] Read more.
This work proposes an optical fiber copper ion sensor, which is fabricated by an ion-imprinted sodium alginate/graphene oxide (SA/GO) hydrogel and single-mode fiber (SMF). This sensing Fabry–Perot Interferometer (FPI) achieves −1.98 nm/(mg/L) sensitivity with 0.998 linearity. To achieve higher sensitivity, we add a reference FPI to create a Vernier effect. We achieve 19.58 nm/mg/L sensitivity and 0.989 linearity at a concentration range of 0 mg/L–1.4 mg/L. It was 9.9 times higher than that of a single-sensing FPI. The experimental results also demonstrate that when the FSR values of two FPIs are closer, the higher response sensitivity is achieved. The sensor also has good measurement repeatability and dynamic response. In addition, the experimental results of response selectivity show that its response sensitivity to copper ions is significantly higher than other six types of ions, including iron ions, lead ions, magnesium ions, manganese ion, zinc ions, chromium ions. The copper ion is also mixed with six types of ions to deeply investigate the response selectivity. Good response selectivity and cross-responding are demonstrated by experimental results. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 7402 KiB  
Article
Heavy Metal Tolerance and Accumulation Potential of a Rare Coastal Species, Anthyllis vulneraria subsp. maritima
by Una Andersone-Ozola, Astra Jēkabsone, Andis Karlsons, Anita Osvalde, Lidia Banaszczyk, Ineta Samsone and Gederts Ievinsh
Stresses 2025, 5(1), 6; https://doi.org/10.3390/stresses5010006 - 15 Jan 2025
Cited by 2 | Viewed by 1031
Abstract
The aim of the present study was to explore heavy metal tolerance and accumulation potential in Anthyllis vulneraria subsp. maritima plants from coastal sand dunes in controlled conditions. Plants were established from seeds collected in coastal sand dunes and cultivated in substrates in [...] Read more.
The aim of the present study was to explore heavy metal tolerance and accumulation potential in Anthyllis vulneraria subsp. maritima plants from coastal sand dunes in controlled conditions. Plants were established from seeds collected in coastal sand dunes and cultivated in substrates in greenhouse conditions. A gradual treatment with CdCl2, PbOAc, CuSO4, MnSO4, and ZnSO4 was performed until three final concentrations for each metal were reached. The number of leaves, their biomass, and biomass of roots were negatively affected by increasing concentrations of lead (Pb) and manganese (Mn) in substrate, but no negative effect was evident for cadmium (Cd), copper (Cu), and zinc (Zn). Visible effects of metal toxicity were evident for Pb-treated plants (appearance of thinner leaves, yellowing of older leaves), as well as for Mn-treated plants (reduced leaf size, curled leaves, red leaf venation). There was a significant decrease in water content in old leaves at high Pb and increasing Mn concentration, indicating accelerated leaf senescence. Increase in polyphenol oxidase activity in leaves was evident in all the plants treated with heavy metals. In contrast, an increase in peroxidase activity was evident only for plants treated with 50 and 100 mg L−1 Cd, 500 mg L−1 Pb, 200–1000 mg L−1 Mn, and 500 mg L−1 Zn. Metal accumulation potential for Cd and Cu was the highest in the roots, but for Pb, Mn, and Zn, more metal accumulated in old leaves. It can be concluded that A. vulneraria subsp. maritima plants are tolerant to high Cd, Cu, and Zn, but moderately susceptible to Pb and Mn. However, oxidative enzyme activity cannot be unequivocally used as a specific indicator of metal tolerance. In respect to phytoremediation potential, the plants have very good accumulation capacity for Pb, Mn, and Zn. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

30 pages, 7226 KiB  
Article
Non-Stoichiometric BaxMn0.7Cu0.3O3 Perovskites as Catalysts for CO Oxidation: Optimizing the Ba Content
by Álvaro Díaz-Verde, Emerson Luiz dos Santos Veiga, Héctor Beltrán-Mir, María José Illán-Gómez and Eloísa Cordoncillo-Cordoncillo
Nanomaterials 2025, 15(2), 103; https://doi.org/10.3390/nano15020103 - 10 Jan 2025
Cited by 1 | Viewed by 1119
Abstract
In this work, a series of BaxMn0.7Cu0.3O3 samples (x: 1, 0.9, 0.8, and 0.7, BxMC) was synthesized, characterized, and used as catalysts for CO oxidation reaction. All formulations were active for CO oxidation in the tested [...] Read more.
In this work, a series of BaxMn0.7Cu0.3O3 samples (x: 1, 0.9, 0.8, and 0.7, BxMC) was synthesized, characterized, and used as catalysts for CO oxidation reaction. All formulations were active for CO oxidation in the tested conditions. A correlation between the electrical conductivity, obtained by impedance spectroscopy, and the reducibility of the samples, obtained by H2-TPR, was observed. The Ba0.8Mn0.7Cu0.3O3 composition (B0.8MC) showed the best catalytic performance (comparable to that of the 1% Pt/Al2O3 reference sample) during tests conducted under conditions similar to those found in the exhaust gases of current gasoline engines. The characterization data suggest the simultaneous presence of a high Mn(IV)/Mn(III) surface ratio, oxygen vacancies, and reduced copper species, these two latter being key properties for ensuring a high CO conversion percentage as both are active sites for CO oxidation. The reaction temperature and the reactant atmosphere composition seem to be the most important factors for achieving a good catalytic performance, as they strongly determine the location and stability of the reduced copper species. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop