Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = copper Schiff base complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1722 KiB  
Communication
Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base
by Lizhen Huang, Jingwen Liu, Li Wan, Bojie Li, Xianwei Wang, Silin Kang and Lei Zhu
Materials 2025, 18(13), 3031; https://doi.org/10.3390/ma18133031 - 26 Jun 2025
Viewed by 386
Abstract
This study synthesized two eco-friendly inhibitors—a chitosan–copper metal–organic framework (CS@Cu MOF) and chitosan–Schiff base–Cu complex (Schiff–CS@Cu)—for Q345 steel protection in 3.5% NaCl/1M HCl. Electrochemical and weight loss analyses demonstrated exceptional corrosion inhibition: untreated specimens showed a 25.889 g/(m2·h) corrosion rate, while [...] Read more.
This study synthesized two eco-friendly inhibitors—a chitosan–copper metal–organic framework (CS@Cu MOF) and chitosan–Schiff base–Cu complex (Schiff–CS@Cu)—for Q345 steel protection in 3.5% NaCl/1M HCl. Electrochemical and weight loss analyses demonstrated exceptional corrosion inhibition: untreated specimens showed a 25.889 g/(m2·h) corrosion rate, while 100 mg/L of CS@Cu MOF and Schiff–CS@Cu reduced rates to 2.50 g/(m2·h) (90.34% efficiency) and 1.67 g/(m2·h) (93.56%), respectively. Schiff–CS@Cu’s superiority stemmed from its pyridine–Cu2+ chelation forming a dense coordination barrier that impeded Cl/H+ penetration, whereas CS@Cu MOF relied on physical adsorption and micro-galvanic interactions. Surface characterization revealed that Schiff–CS@Cu suppressed pitting nucleation through chemical coordination, contrasting with CS@Cu MOF’s porous film delaying uniform corrosion. Both inhibitors achieved optimal performance at 100 mg/L concentration. This work establishes a molecular design strategy for green inhibitors, combining metal–organic coordination chemistry with biopolymer modification, offering practical solutions for marine infrastructure and acid-processing equipment protection. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

20 pages, 3248 KiB  
Review
The Antimicrobial Efficacy of Copper Complexes: A Review
by Kwanele Ngece, Vuyolwethu Khwaza, Athandwa M. Paca and Blessing A. Aderibigbe
Antibiotics 2025, 14(5), 516; https://doi.org/10.3390/antibiotics14050516 - 16 May 2025
Cited by 2 | Viewed by 1687
Abstract
The alarming increase in antimicrobial resistance has intensified the search for novel therapeutic agents capable of combating resistant microbial strains. Copper complexes have emerged as promising antimicrobial agents due to their intrinsic redox activity, ability to disrupt microbial membranes, and interactions with vital [...] Read more.
The alarming increase in antimicrobial resistance has intensified the search for novel therapeutic agents capable of combating resistant microbial strains. Copper complexes have emerged as promising antimicrobial agents due to their intrinsic redox activity, ability to disrupt microbial membranes, and interactions with vital biomolecules such as DNA and proteins. This review critically evaluates the antimicrobial potential of copper complexes reported between 2018 and 2025, emphasizing their structural diversity, mechanisms of action, and biological performance against a wide range of bacterial and fungal pathogens. Key findings reveal that Schiff base copper complexes, amino acid derivatives, heterocyclic ligands, and mixed-ligand systems exhibit potent antimicrobial activities, often surpassing standard antibiotics. Mechanistically, copper complexes induce reactive oxygen species (ROS) generation, inhibit enzyme function, cause DNA cleavage, and compromise cell membrane integrity. Furthermore, structure–activity relationship (SAR) analyses indicate that ligand type, coordination geometry, and lipophilicity significantly influence antimicrobial efficacy. Overall, the reviewed studies support the development of copper-based compounds as viable candidates for antimicrobial drug development. This review also identifies current challenges and gaps in knowledge, such as limited in vivo studies and toxicity assessments, which must be addressed to advance these compounds toward clinical application. Full article
(This article belongs to the Special Issue Metal-Based Complexes as Novel Antimicrobial Strategies)
Show Figures

Figure 1

29 pages, 7203 KiB  
Article
New Cu(II), Cu(I) and Ag(I) Complexes of Phenoxy-Ketimine Schiff Base Ligands: Synthesis, Structures and Antibacterial Activity
by Miriam Caviglia, Zhenzhen Li, Carlo Santini, Jo’ Del Gobbo, Cristina Cimarelli, Miao Du, Alessandro Dolmella and Maura Pellei
Molecules 2025, 30(9), 1893; https://doi.org/10.3390/molecules30091893 - 24 Apr 2025
Cited by 1 | Viewed by 869
Abstract
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag [...] Read more.
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag in their +1 oxidation state, the lipophilic triphenylphosphine (PPh3) and the hydrophilic 1,3,5-triaza-7-phosphaadamantane (PTA) were selected as co-ligands in the syntheses of the Cu(I) and Ag(I) complexes. All compounds were characterized by CHN analysis, NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS); the molecular structure of the copper(II) complex [Cu(LBSPh)2] was also determined by single-crystal X-ray diffraction. Finally, the antibacterial activity of the metal complexes, the Schiff base ligands and phosphane co-ligands, were assessed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). Full article
Show Figures

Graphical abstract

15 pages, 1528 KiB  
Article
Anti-Cancer Stem Cell Properties of Square Planar Copper(II) Complexes with Vanillin Schiff Base Ligands
by Yihan Wang, Kuldip Singh, Chunxin Lu and Kogularamanan Suntharalingam
Molecules 2025, 30(7), 1636; https://doi.org/10.3390/molecules30071636 - 6 Apr 2025
Viewed by 650
Abstract
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast [...] Read more.
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast cancer stem cells (CSCs). Redox-modulating metal complexes have been used to perturb the redox balance in breast CSCs and effect cell death. Here, we sought to expand this promising class of anti-breast CSC agents. Specifically, we report the synthesis, and anti-breast CSC properties of a series of copper(II) complexes bearing regioisomeric vanillin Schiff base ligands (14). X-ray crystallography studies show that the copper(II) complexes 14 adopt square planar geometries with the copper(II) centre coordinated to two vanillin Schiff base ligands. The most effective copper(II) complex within the series 4 displays low micromolar potency towards breast CSCs, up to 4.6-fold higher than salinomycin and cisplatin. Mechanistic studies indicate that copper(II) complex 4 elevates reactive oxygen species levels in breast CSCs, leading to activation of the JNK/p38 pathway and caspase-dependent apoptosis. Overall, this work expands the library of anti-breast CSC copper(II) complexes and provides insight into their mode of action. Full article
Show Figures

Figure 1

16 pages, 4666 KiB  
Article
Studies on the Effect of Diamine Elongation in Copper(II) Complexes with NNO Tridentate Schiff Base Ligands
by Chiara Canovi, Francesco Genua, Kevin D’Addazio, Lara Gigli, Alessandra Forni, Petr Michálek, Mauro Carcelli, Dominga Rogolino and Luca Rigamonti
Inorganics 2025, 13(3), 94; https://doi.org/10.3390/inorganics13030094 - 19 Mar 2025
Viewed by 767
Abstract
The copper(II) complexes of general formula [Cu(GL2H,H)(Cl)] (A4A6, G = NO2, H and OMe, respectively), bearing NNO tridentate Schiff base ligands (GL2H,H) derived from the mono-condensation of 1,3-diaminopropane [...] Read more.
The copper(II) complexes of general formula [Cu(GL2H,H)(Cl)] (A4A6, G = NO2, H and OMe, respectively), bearing NNO tridentate Schiff base ligands (GL2H,H) derived from the mono-condensation of 1,3-diaminopropane and G-substituted salicylaldehydes, are here reported. The elongation of the diamine with one additional carbon atom with respect to the triad derived from ethylenediamine [Cu(GL1H,H)(Cl)] (A1A3, G = NO2, H and OMe, respectively) led to different synthetic procedures, with the difficult isolation of A6 that could be obtained only in few crystals suitable for X-ray diffractions. Operating in acidic conditions to promote the coordination of chloride and expulsion of pyridine from the complex [Cu(GL2H,H)(py)](ClO4) (G = NO2) allows for obtaining A4. On the other hand, structural rearrangement occurs when G = H, yielding the dinuclear species [Cu2(μ-saltn)(HL2H,H)](ClO4)⋅0.5MeOH (D5⋅0.5MeOH) instead of the desired A5, which can be obtained by avoiding the use of HCl and operating in the excess of LiCl. Finally, A4 and A5 were investigated as cytotoxic agents against malignant (MDA-MB-231 and 22-Rv1) and healthy (HaCaT) cell lines, and the ability of the most promising A5 to be internalized and interact with cellular targets was studied. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Italy)
Show Figures

Graphical abstract

17 pages, 7695 KiB  
Article
High-Temperature X-Ray Crystal Structure Analysis of Schiff Base Cu(II) and Ni(II) Complexes and Data Statistics
by Anna Okui, Rin Tsuchiya, Daisuke Nakane, Takashiro Akitsu and Toby J. Blundell
Molecules 2025, 30(6), 1289; https://doi.org/10.3390/molecules30061289 - 13 Mar 2025
Cited by 1 | Viewed by 711
Abstract
In this study, single crystals of previously reported Schiff base copper (II) (Cu) and nickel (II) (Ni) complexes were synthesized; a structural analysis was performed using data measured at high temperatures, 298 K and 410 K; and CIF and [...] Read more.
In this study, single crystals of previously reported Schiff base copper (II) (Cu) and nickel (II) (Ni) complexes were synthesized; a structural analysis was performed using data measured at high temperatures, 298 K and 410 K; and CIF and electron density maps were obtained. The purpose of this study was to examine the accuracy of high-temperature measurements in X-ray crystal structure analyses and the details of atomic movement. Various data (statistics such as standard deviation) obtained from the structural analysis, such as the lattice constants, temperature factors, and electron density in cases without phase transitions, were compared. In addition, the anisotropic temperature factors were statistically processed. In the electron density map, the electron density tended to decrease at high temperatures. Looking at the two-dimensional fingerprint plot constructed from the Hirshfeld surface analysis, the intermolecular interactions between chlorine atoms and hydrogen atoms in the Cu changed significantly with the temperature change. In addition, the change in the anisotropic temperature factor of chlorine was significant. Moreover, a difference was observed in the analytical data at room temperature and high temperatures, which is thought to be useful for creating a model of temperature dependence. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

19 pages, 2802 KiB  
Review
Anticancer and Antimicrobial Activity of Copper(II) Complexes with Fluorine-Functionalized Schiff Bases: A Mini-Review
by María Esther Moreno-Narváez, Lucero González-Sebastián, Raúl Colorado-Peralta, Viviana Reyes-Márquez, Luz Ofelia Franco-Sandoval, Adriana Romo-Pérez, Jesús Antonio Cruz-Navarro, Ivone Vanessa Mañozca-Dosman, Alberto Aragón-Muriel and David Morales-Morales
Inorganics 2025, 13(2), 38; https://doi.org/10.3390/inorganics13020038 - 26 Jan 2025
Cited by 1 | Viewed by 1891
Abstract
In recent years, metallodrugs have emerged as captivating and promising compounds in the fields of cancer therapy and antimicrobial agents. While noble metals have shown remarkable biological activity, increasing interest lies in utilizing more abundant and cost-effective metals in medicinal chemistry. This is [...] Read more.
In recent years, metallodrugs have emerged as captivating and promising compounds in the fields of cancer therapy and antimicrobial agents. While noble metals have shown remarkable biological activity, increasing interest lies in utilizing more abundant and cost-effective metals in medicinal chemistry. This is primarily due to their pivotal role in biological processes and their lower cost compared to precious metals. Among these, copper(II) complexes have emerged with promising applications in medicine. Notably, copper compounds bearing Schiff bases stand out as innovative metallodrugs. They exhibit intriguing cytotoxic properties against a wide range of cancer cell lines, while also demonstrating inhibitory effects on prevalent bacterial and fungal strains. Nevertheless, research into Cu(II) complexes with Schiff bases remains of paramount interest. One strategic avenue to bolster their biological activity involves the introduction of fluorine groups into the ligands. This approach has demonstrated a significant augmentation in efficacy and selectivity, particularly in targeting cancer cells and microbial pathogens, because fluorine incorporation can improve metabolic stability and cellular uptake. This further reinforces the therapeutic potential of these metallodrugs. Thanks to these promising outcomes, research into the development of Cu(II) complexes with fluorinated Schiff bases is advancing significantly. This holds immense potential for progressing the field of medicinal chemistry, with the aim of addressing unmet clinical needs in both cancer therapy and antimicrobial treatment. This review comprehensively explores the latest advancements in Cu(II) complexes bearing fluorinated Schiff bases, encompassing diverse coordination modes. It delves into their scope and applications in cytotoxic evaluations, as well as their efficacy as antimicrobial and antifungal agents. Full article
(This article belongs to the Special Issue Current Advances in Coordination and Bioinorganic Chemistry)
Show Figures

Graphical abstract

13 pages, 7211 KiB  
Article
Electrochemical Sensor for Cu(II) Based on Carbon Nanotubes Functionalized with a Rationally Designed Schiff Base
by Alejandro Tamborelli, Michael López Mujica, Gustavo Servetti, Diego Venegas-Yazigi, Patricio Hermosilla-Ibáñez, Pablo Dalmasso and Gustavo Rivas
Chemosensors 2025, 13(2), 35; https://doi.org/10.3390/chemosensors13020035 - 25 Jan 2025
Cited by 1 | Viewed by 1034
Abstract
This work proposes a new strategy for the electrochemical quantification of Cu(II) using glassy carbon electrodes (GCEs) modified with a nanohybrid of multiwall carbon nanotubes (MWCNTs) non-covalently functionalized with a rationally designed Schiff base containing different groups (SB-dBA). The principle of sensing was [...] Read more.
This work proposes a new strategy for the electrochemical quantification of Cu(II) using glassy carbon electrodes (GCEs) modified with a nanohybrid of multiwall carbon nanotubes (MWCNTs) non-covalently functionalized with a rationally designed Schiff base containing different groups (SB-dBA). The principle of sensing was the complexation of Cu(II) by the Schiff base that supports the MWCNTs at the open-circuit potential, followed by a reduction step at −0.600 V and further linear sweep anodic stripping voltammetry (LSASV) in a 0.200 M acetate buffer solution of pH 5.00. The linear range goes from 10 to 200 μg L−1, with a sensitivity of (0.79 ± 0.07) µA L µg−1 (R2 = 0.991), a detection limit of 3.3 μg L−1, and a reproducibility of 8.0% for the same nanohybrid (nine electrodes) and 9.0% for four different nanohybrids. The proposed sensor was very selective for Cu(II) even in the presence of Pb(II), Fe(II), As(III), Cr(III), Cd(II), and Hg(II), and it was successfully used for the quantification of Cu(II) in different water samples (tap, groundwater, and river) without any pretreatment. Full article
(This article belongs to the Special Issue Carbon Nanotubes for Electrochemical Sensing: Sensors and Platforms)
Show Figures

Figure 1

17 pages, 5286 KiB  
Article
Synthesis, Urease Inhibition, Molecular Docking, and Optical Analysis of a Symmetrical Schiff Base and Its Selected Metal Complexes
by Samuel Bonne, Muhammad Saleem, Muhammad Hanif, Joseph Najjar, Salahuddin Khan, Muhammad Zeeshan, Tehreem Tahir, Anser Ali, Changrui Lu and Ting Chen
Molecules 2024, 29(20), 4899; https://doi.org/10.3390/molecules29204899 - 16 Oct 2024
Cited by 3 | Viewed by 2158
Abstract
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking [...] Read more.
Designing and developing small organic molecules for use as urease inhibitors is challenging due to the need for ecosystem sustainability and the requirement to prevent health risks related to the human stomach and urinary tract. Moreover, imaging analysis is widely utilized for tracking infections in intracellular and in vivo systems, which requires drug molecules with emissive potential, specifically in the low-energy region. This study comprises the synthesis of a Schiff base ligand and its selected transition metals to evaluate their UV/fluorescence properties, inhibitory activity against urease, and molecular docking. Screening of the symmetrical cage-like ligand and its metal complexes with various eco-friendly transition metals revealed significant urease inhibition potential. The IC50 value of the ligand for urease inhibition was 21.80 ± 1.88 µM, comparable to that of thiourea. Notably, upon coordination with transition metals, the ligand–nickel and ligand–copper complexes exhibited even greater potency than the reference compound, with IC50 values of 11.8 ± 1.14 and 9.31 ± 1.31 µM, respectively. The ligand–cobalt complex exhibited an enzyme inhibitory potential comparable with thiourea, while the zinc and iron complexes demonstrated the least activity, which might be due to weaker interactions with the investigated protein. Meanwhile, all the metal complexes demonstrated a pronounced optical response, which could be utilized for fluorescence-guided targeted drug delivery applications in the future. Molecular docking analysis and IC50 values from in vitro urease inhibition screening showed a trend of increasing activity from compounds 7d to 7c to 7b. Enzyme kinetics studies using the Lineweaver–Burk plot indicated mixed-type inhibition against 7c and non-competitive inhibition against 7d. Full article
Show Figures

Figure 1

18 pages, 2650 KiB  
Article
Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line
by Bianka Oboňová, Jindra Valentová, Miroslava Litecká, Ľudmila Pašková, Jana Hricovíniová, Andrea Bilková, František Bilka, Branislav Horváth and Ladislav Habala
Int. J. Mol. Sci. 2024, 25(17), 9166; https://doi.org/10.3390/ijms25179166 - 23 Aug 2024
Cited by 4 | Viewed by 1621
Abstract
Several novel copper (II) complexes of reduced Schiff bases containing fluoride substituents were prepared and structurally characterized by single-crystal X-ray diffraction. The complexes exhibited diverse structures, with the central atom in distorted tetrahedral geometry. The biological effects of the products were evaluated, specifically [...] Read more.
Several novel copper (II) complexes of reduced Schiff bases containing fluoride substituents were prepared and structurally characterized by single-crystal X-ray diffraction. The complexes exhibited diverse structures, with the central atom in distorted tetrahedral geometry. The biological effects of the products were evaluated, specifically their cytotoxicity, antimicrobial, and antiurease activities, as well as affinity for albumin (BSA) and DNA (ct-DNA). The complexes showed marked cytotoxic activities in the HepG2 hepatocellular carcinoma cell line, considerably higher than the standard cisplatin. The cytotoxicity depended significantly on the substitution pattern. The best activity was observed in the complex with a trifluoromethyl group in position 4 of the benzene ring—the dichloro[(±)-trans-N,N′-bis-(4-trifluoromethylbenzyl)-cyclohexane-1,2-diamine]copper (II) complex, whose activity (IC50 28.7 μM) was higher than that of the free ligand and markedly better than the activity of the standard cisplatin (IC50 336.8 μM). The same complex also showed the highest antimicrobial effect in vitro. The affinity of the complexes towards bovine serum albumin (BSA) and calf thymus DNA (ct-DNA) was established as well, indicating only marginal differences between the complexes. In addition, all complexes were shown to be excellent inhibitors of the enzyme urease, with the IC50 values in the lower micromolar region. Full article
(This article belongs to the Special Issue Novel Metal Complexes for Biomedical Applications)
Show Figures

Figure 1

21 pages, 4771 KiB  
Article
Experimental and Computational Studies on the Interaction of DNA with Hesperetin Schiff Base CuII Complexes
by Federico Pisanu, Anna Sykula, Giuseppe Sciortino, Feliu Maseras, Elzbieta Lodyga-Chruscinska and Eugenio Garribba
Int. J. Mol. Sci. 2024, 25(10), 5283; https://doi.org/10.3390/ijms25105283 - 13 May 2024
Cited by 5 | Viewed by 1942
Abstract
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) [...] Read more.
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and theoretically. UV–Vis studies indicate that the ligands and complexes exhibit hypochromism, which suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds with CT-DNA, in the range (2.3–9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-based potential drugs, suggesting that π–π stacking interaction due to the presence of the aromatic rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O, N, S), instead of (O, N, NH2). The docking studies indicate that the intercalative is preferred over the minor groove binding to CT-DNA with the order [Cu(L1H2am)(AcO)] > [Cu(L2H2am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2am)(AcO)], in line with the experimental Kb constants, obtained from the UV–Vis spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2am)(AcO)] is larger than [Cu(L1H2am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers, and donor sets are possible for a metal complex, a computational approach should be recommended to predict the type and strength of binding to DNA and, in general, to macromolecules. Full article
Show Figures

Figure 1

13 pages, 2791 KiB  
Article
Verification of the Inverse Scale Effect Hypothesis on Viscosity and Diffusion by Azo-Amino Acid Schiff Base Copper Complexes
by Yoshitora Wadayama, Ai Kaneda, Taiga Imae, Daisuke Nakane and Takashiro Akitsu
J. Compos. Sci. 2024, 8(5), 177; https://doi.org/10.3390/jcs8050177 - 10 May 2024
Viewed by 1254
Abstract
Microdroplets generated in microfluidic devices are attracting attention as a new chemical reaction field and are expected to improve reactivity. One of the effects of microscaling is that the ratio of the force that acts on the diffusion and movement of substances to [...] Read more.
Microdroplets generated in microfluidic devices are attracting attention as a new chemical reaction field and are expected to improve reactivity. One of the effects of microscaling is that the ratio of the force that acts on the diffusion and movement of substances to gravity is different from that of ordinary solvents. Recently, we proposed a hypothesis for determining reaction acceleration through micro-miniaturization: If a reaction is inhibited by setting the volume and viscosity of the solution to conditions that are unfavorable to the reaction on a normal scale, that reaction can be promoted in microfluidics. Therefore, for the purpose of this verification, (1) we used an amino acid Schiff base copper(II) complex with an azobenzene group to demonstrate the polarization-induced orientation in a polymer film (the redirection that is mechanically maintained in a soft matter matrix). Numerical data on optical anisotropy parameters were reported. (2) When the reaction is confirmed to be promoted in laminar flow in a microfluidic device and its azo derivative, a copper(II) complex is used to increase the solvent viscosity or diffusion during synthesis on a normally large scale. We will obtain and discuss data on the investigation of changing the solvent volume as a region. The range of experimental conditions for volume and viscosity did not lead to an improvement in synthetic yield, nor did (3) the comparison of solvents and viscosity for single-crystal growth of amino acid Schiff base copper(II) complexes having azobenzene groups. A solvent whose viscosity was measured was used, but microcrystals were obtained using the diffusion method. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

18 pages, 5623 KiB  
Review
Dendritic Pyridine–Imine Copper Complexes as Metallo-Drugs
by Régis Laurent, Valérie Maraval, Vania Bernardes-Génisson and Anne-Marie Caminade
Molecules 2024, 29(8), 1800; https://doi.org/10.3390/molecules29081800 - 16 Apr 2024
Cited by 5 | Viewed by 1815
Abstract
Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. [...] Read more.
Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine–imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers. Full article
(This article belongs to the Special Issue Recent Advances in Metallo-Drugs)
Show Figures

Figure 1

13 pages, 3169 KiB  
Article
A Dinuclear Copper(II) Complex Electrochemically Obtained via the Endogenous Hydroxylation of a Carbamate Schiff Base Ligand: Synthesis, Structure and Catalase Activity
by Sandra Fernández-Fariña, Isabel Velo-Heleno, Laura Rodríguez-Silva, Marcelino Maneiro, Ana M. González-Noya and Rosa Pedrido
Int. J. Mol. Sci. 2024, 25(4), 2154; https://doi.org/10.3390/ijms25042154 - 10 Feb 2024
Viewed by 1286
Abstract
In the present work, we report a neutral dinuclear copper(II) complex, [Cu2(L1)(OH)], derived from a new [N,O] donor Schiff base ligand L1 that was formed after the endogenous hydroxylation of an initial carbamate Schiff base H2L [...] Read more.
In the present work, we report a neutral dinuclear copper(II) complex, [Cu2(L1)(OH)], derived from a new [N,O] donor Schiff base ligand L1 that was formed after the endogenous hydroxylation of an initial carbamate Schiff base H2L coordinated with copper ions in an electrochemical cell. The copper(II) complex has been fully characterized using different techniques, including X-ray diffraction. Direct current (DC) magnetic susceptibility measurements were also performed at variable temperatures, showing evidence of antiferromagnetic behavior. Its catalase-like activity was also tested, demonstrating that this activity is affected by temperature. Full article
Show Figures

Figure 1

14 pages, 2345 KiB  
Article
Aminoquinoline-Based Tridentate (NNN)-Copper Catalyst for C–N Bond-Forming Reactions from Aniline and Diazo Compounds
by Mohsen Teimouri, Selvam Raju, Edward Acheampong, Allison N. Schmittou, Bruno Donnadieu, David O. Wipf, Brad S. Pierce, Sean L. Stokes and Joseph P. Emerson
Molecules 2024, 29(3), 730; https://doi.org/10.3390/molecules29030730 - 5 Feb 2024
Cited by 3 | Viewed by 2502
Abstract
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C–N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with [...] Read more.
A new tridentate Cu2+ complex based on (E)-1-(pyridin-2-yl)-N-(quinolin-8-yl)methanimine (PQM) was generated and characterized to support the activation of diazo compounds for the formation of new C–N bonds. This neutral Schiff base ligand was structurally characterized to coordinate with copper(II) in an equatorial fashion, yielding a distorted octahedral complex. Upon characterization, this copper(II) complex was used to catalyze an efficient and cost-effective protocol for C–N bond formation between N-nucleophiles and copper carbene complexes arising from the activation of diazo carbonyl compounds. A substrate scope of approximately 15 different amine-based substrates was screened, yielding 2° or 3° amine products with acceptable to good yields under mild reaction conditions. Reactivity towards phenol and thiophenol were also screened, showing relatively weak C–O or C–S bond formation under optimized conditions. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop