Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (332)

Search Parameters:
Keywords = conversion loss reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1780 KiB  
Article
Detoxification of Grape Pomace Contaminated with Ochratoxin A by Thermal–Pressure Treatment in Combination with Lactic Acid Bacteria Fermentation
by Ebenezer Aning-Dei, Jianmei Yu and Salam A. Ibrahim
Microorganisms 2025, 13(9), 1972; https://doi.org/10.3390/microorganisms13091972 (registering DOI) - 23 Aug 2025
Abstract
Grape pomace (GP), a polyphenol-rich byproduct of winemaking, holds considerable health benefits and potential as an antibiotic alternative for livestock animals. However, its utilization is compromised by the contamination of mycotoxins produced by pathogenic molds (with ochratoxin A (OTA) being the most frequently [...] Read more.
Grape pomace (GP), a polyphenol-rich byproduct of winemaking, holds considerable health benefits and potential as an antibiotic alternative for livestock animals. However, its utilization is compromised by the contamination of mycotoxins produced by pathogenic molds (with ochratoxin A (OTA) being the most frequently detected), which pose hidden health risks to both livestock animals and human beings. This study evaluated the efficacy of thermal–pressure treatment (pressure cooking) with and without the addition of acidic and alkaline agents, and the combined thermal-pressure and fermentation with four lactic acid bacteria (LAB) strains, including Lactobacillus bulgaricus (LB6), Lacticaseibacillus paracasei (previously Lactobacillus paracasei) (BAA-52), Lactobacillus acidophilus, and Lactiplantibacillus plantarum (previously Lactobacillus plantarum), on reducing OTA and preserving polyphenols in GP. The study found that pressure cooking alone reduced OTA by approximately 33–35% in 30–45 min. The addition of citric acid (CA) or acetic acid (AA) enhanced OTA reduction to 46.9–55.2% and 51.7–54%, respectively, while preserving more polyphenols, notably anthocyanins. Conversely, pressure cooking with the addition of NaHCO3 facilitated greater OTA reductions (40.4–63%), but concomitantly resulted in substantial polyphenol loss, especially anthocyanins. Fermentation for 24 h with LAB following thermal–pressure treatment resulted in up to 97% OTA reduction for Lc. paracasei, L. acidophilus, and Lp. plantarum strains, which displayed similar high effectiveness in OTA reduction in GP. L. bulgaricus (LB6) was least effective (45%), even after 72 h of fermentation. These findings indicate that home-scale pressure cooking combined with lactic acid fermentation effectively detoxifies OTA-contaminated GP, thus enhancing its safety profile for consumption by livestock animals and humans, despite partial polyphenolic losses. Full article
Show Figures

Figure 1

21 pages, 19398 KiB  
Article
A Non-Isolated High Gain Step-Up DC/DC Converter Based on Coupled Inductor with Reduced Voltage Stresses
by Yuqing Yang, Song Xu, Wei Jiang and Seiji Hashimoto
J. Low Power Electron. Appl. 2025, 15(3), 48; https://doi.org/10.3390/jlpea15030048 - 22 Aug 2025
Abstract
Hybrid electric vehicles (HEVs) have gained significant attention for their superior energy efficiency and are becoming a predominant mode of urban transportation. The DC/DC converter plays a critical role in HEV energy management systems, especially in matching the voltage levels between the battery [...] Read more.
Hybrid electric vehicles (HEVs) have gained significant attention for their superior energy efficiency and are becoming a predominant mode of urban transportation. The DC/DC converter plays a critical role in HEV energy management systems, especially in matching the voltage levels between the battery and DC bus. This paper proposes a novel high-gain DC/DC converter with a wide input voltage range based on coupled inductors. The innovation lies in the integration of a resonant cavity and the simultaneous realization of zero-voltage switching (ZVS) and zero-current switching (ZCS), effectively reducing both voltage/current stresses on the power switches and switching losses. Compared with conventional topologies, the proposed design achieves higher voltage gain without extreme duty cycles, improved conversion efficiency, and enhanced reliability. Detailed operating principles are analyzed, and design conditions for voltage stress reduction, gain extension, and soft switching are derived. The simulation model has been conducted in a PSIM environment, and a 300 W experimental prototype, implemented using a dsPIC33FJ64GS606 digital controller, has been established and demonstrates 93% peak efficiency at a 10 times voltage gain. The performance and practical feasibility of the proposed topology have been evaluated by both simulation and experiments. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

17 pages, 2117 KiB  
Article
Fruit and Vegetable Loss in Markets in the North of Lebanon: Drivers, Challenges, and Prevention
by Nathalie Pano, Kostas Karantininis, Nada Nehme, Jalal Halwani, Jihane Karameh, Fatima Abou Abbass and Aziz Mikhael
Resources 2025, 14(8), 132; https://doi.org/10.3390/resources14080132 - 21 Aug 2025
Abstract
Food loss and waste are critical global issues, particularly in developing economies where they exacerbate food insecurity and environmental degradation. This study focuses on fruit and vegetable loss (FVL) in retail and wholesale markets in North Lebanon, a region marked by socio-economic challenges [...] Read more.
Food loss and waste are critical global issues, particularly in developing economies where they exacerbate food insecurity and environmental degradation. This study focuses on fruit and vegetable loss (FVL) in retail and wholesale markets in North Lebanon, a region marked by socio-economic challenges and infrastructural deficiencies. The research aims to identify the underlying drivers of FVL, assess current management practices, and identify aspects impacting it. Data was collected through surveys of seventy wholesalers and retailers employing descriptive statistics and multinomial logistic regression for analysis. The findings reveal that 85.7% of the sample generate little or no FVL. Being a retailer or wholesaler, operating on a small or large scale, or being open 24/7 or part-time does not affect FVL. Conversely, inadequate display and storage, hot weather, and pricing practices significantly impact FVL. The market faces challenges such as low consumer purchasing capacity, financial difficulties, legal constraints, and lack of knowledge. Various practices are used to prevent FVL, including strategic supply chain decisions, price reductions, and donations to charities. The study underscores the need for improved infrastructure, financial support, and regulatory frameworks to mitigate FVL, thereby enhancing food security and environmental sustainability in North Lebanon. Full article
Show Figures

Figure 1

20 pages, 1238 KiB  
Review
Stefan Flow in Char Combustion: A Critical Review of Mass Transfer and Combustion Differences Between Air-Fuel and Oxy-Fuel Conditions
by Wenfei Bao, Zongwei Gan, Yuzhong Li and Yan Ma
Energies 2025, 18(16), 4347; https://doi.org/10.3390/en18164347 - 15 Aug 2025
Viewed by 327
Abstract
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been [...] Read more.
Fuel combustion is a crucial process in energy utilization. As a key bulk transport mechanism, Stefan flow significantly affects heat and mass transfer during char combustion. However, its physical nature and engineering implications have long been underestimated, and no systematic review has been conducted. This paper presents a comprehensive review of Stefan flow in char combustion, with a focus on its impact on mass transfer and combustion behavior under both air-fuel and oxy-fuel conditions. It also highlights the critical role of Stefan flow in enhancing energy conversion efficiency and optimizing carbon capture processes. The analysis reveals that Stefan flow has been widely neglected in traditional combustion models, resulting in significant errors in calculated mass transfer coefficients (up to 21% in air-fuel combustion and as high as 74% in oxy-fuel combustion). This long-overlooked deviation severely compromises the accuracy of combustion efficiency predictions and model reliability. In oxy-fuel combustion, the gasification reaction (C + CO2 = 2CO) induces a much stronger outward Stefan flow, reducing CO2 transport by up to 74%, weakening local CO2 enrichment, and substantially increasing the energy cost of carbon capture. In contrast, the oxidation reaction (2C + O2 = 2CO) results in only an 18% reduction in O2 transport. Stefan flow hinders the inward mass transfer of O2 and CO2 toward the char surface and increases heat loss during combustion, resulting in reduced reaction rates and lower particle temperatures. These effects contribute to incomplete fuel conversion and diminished thermal efficiency. Simulation studies that neglect Stefan flow produce significant errors when predicting combustion characteristics, particularly under oxy-fuel conditions. The impact of Stefan flow on energy balance is more substantial in the kinetic/diffusion-controlled regime than in the diffusion-controlled regime. This review is the first to clearly identify Stefan flow as the fundamental physical mechanism responsible for the differences in combustion behavior between air-fuel and oxy-fuel environments. It addresses a key gap in current research and offers a novel theoretical framework for improving low-carbon combustion models, providing important theoretical support for efficient combustion and clean energy conversion. Full article
Show Figures

Figure 1

23 pages, 3860 KiB  
Article
Alteromonas nitratireducens sp. nov., a Novel Nitrate-Reducing Bacterium Isolated from Marine Sediments, and the Evolution of Nitrate-Reducing Genes in the Genus Alteromonas
by Ying-Li Chang, Jia-Xi Li, Xing-Chen Wang, Yang Li, Yun-Fei Cao, Xiang-Wen Duan, Cong Sun, Can Chen and Lin Xu
Microorganisms 2025, 13(8), 1888; https://doi.org/10.3390/microorganisms13081888 - 13 Aug 2025
Viewed by 433
Abstract
Nitrate reduction serves as a pivotal process in the global nitrogen cycle, playing a crucial role in natural ecosystems and industrial applications. Although the genus Alteromonas is not traditionally regarded as a nitrate reducer, several Alteromonas strains have recently been found to be [...] Read more.
Nitrate reduction serves as a pivotal process in the global nitrogen cycle, playing a crucial role in natural ecosystems and industrial applications. Although the genus Alteromonas is not traditionally regarded as a nitrate reducer, several Alteromonas strains have recently been found to be capable of doing so. However, the evolutionary trajectory of this capability remains undiscovered. In this study, 32 bacterial strains were isolated and cultivated from the tidal flat sediment in Hangzhou Bay and classified into the classes Cytophagia (n = 2), Alphaproteobacteria (n = 2), Gammaproteobacteria (n = 17), Flavobacteriia (n = 5), and Bacilli (n = 6). One nitrate-reducing strain, designated as CYL-A6T, was identified by polyphasic taxonomy and proposed as a novel Alteromonas species. Genomic analysis reveals that seven Alteromonas genomes encode the dissimilatory nitrate reduction genes narGHI. Evolutionary analysis showed that these three nitrate-reducing genes were present in the early common ancestor of the genus Alteromonas, while gene loss events occurred in the subsequent evolution. With the loss of nitrate-reducing genes in the ancestry nodes, a wide variety of genes related to energy production and conversion, as well as carbohydrate, nucleotide, coenzyme, and inorganic ion metabolism, were gained in those nodes, which enabled Alteromonas members to utilize diverse substrates for increased energy production. This study enhances the understanding of microbial diversity in marine tidal flat sediments, proposes a novel nitrate-reducing species of the genus Alteromonas, and highlights the ecological diversification and ecological niche breadth in the evolution of the microbial metabolic network. Full article
Show Figures

Figure 1

21 pages, 65608 KiB  
Article
Saline Peatland Degradation in the Mezzano Lowland: 66 Years of Agricultural Impacts on Carbon and Soil Biogeochemistry
by Aaron Sobbe, Valentina Brombin, Enzo Rizzo and Gianluca Bianchini
Land 2025, 14(8), 1621; https://doi.org/10.3390/land14081621 - 9 Aug 2025
Viewed by 290
Abstract
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical [...] Read more.
The conversion of wetlands into croplands often leads to significant losses of peat soil salinity and soil organic matter (SOM), though quantifying these changes is challenging due to limited historical data. In this study, we compared current soil physicochemical properties with rare historical data from the Mezzano Lowland (ML) in Northeastern Italy, a former wetland drained over 60 years ago. The transformation, which affected approximately 18,100 hectares, was achieved through the construction of a network of drainage canals and pumping stations capable of removing large volumes of water, enabling intensive agricultural use. Results showed a marked decrease in electrical conductivity (EC) and sulphate concentration, indicating extensive salt leaching from the upper peat soil layers. EC dropped from historical values up to 196 mS/cm (1967–1968) to a current maximum of 4.93 mS/cm, while sulphate levels declined by over 90%. SOM also showed significant depletion, especially in deeper layers (50–100 cm), with losses ranging from 50 to 60 wt%, due to increased aeration and microbial activity post-drainage. These climatic and environmental changes, including a marked reduction in soil salinity and sulphate concentrations due to prolonged leaching, have likely shifted the Mezzano Lowland from a carbon sink to a net source of CO2 and CH4 by promoting microbial processes that enhance methane production under anaerobic conditions. To detect residual peat layers, we used Ground-Penetrating Radar (GPR), which, combined with soil sampling, proved effective for tracking long-term peat soil changes. This approach can inform sustainable land management strategies to prevent further carbon loss and maintain peat soil stability. Full article
Show Figures

Figure 1

15 pages, 8949 KiB  
Article
Protein Expression of TXNIP in the Dopaminergic Neurons of Subjects with Parkinson’s Disease: Evidence from a Pilot Study
by Francesca A. Schillaci, Giuseppe Lanza, Maria Grazia Salluzzo, Raffaele Ferri and Michele Salemi
Life 2025, 15(8), 1252; https://doi.org/10.3390/life15081252 - 7 Aug 2025
Viewed by 342
Abstract
Parkinson’s disease (PD) is a progressive, multisystemic α-synucleinopathy, recognized as the second most prevalent neurodegenerative disorder globally. Its neuropathology is characterized by the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta (SNpc), and the intraneuronal accumulation of α-synuclein-forming Lewy bodies. [...] Read more.
Parkinson’s disease (PD) is a progressive, multisystemic α-synucleinopathy, recognized as the second most prevalent neurodegenerative disorder globally. Its neuropathology is characterized by the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta (SNpc), and the intraneuronal accumulation of α-synuclein-forming Lewy bodies. Oxidative stress is a key contributor to PD pathogenesis. Thioredoxin-interacting protein (TXNIP) is a crucial regulator of cellular redox balance, inhibiting the antioxidant function of thioredoxin. This pilot study aimed to investigate the protein expression and localization of TXNIP in the SNpc of PD patients compared to healthy controls. We performed immunohistochemical analyses on 12 post-mortem human brain sections (formalin-fixed, paraffin-embedded) from six subjects with PD and six healthy controls. The study was performed on PD subjects with Braak stage 6. Our findings revealed that in control samples, TXNIP protein was distinctly and closely associated with neuromelanin (NM) pigment within the cytoplasm of SNpc dopaminergic neurons. Conversely, in PD samples, there was a markedly weak cytoplasmic expression of TXNIP, and critically, this association with NM pigment was absent. Furthermore, PD samples exhibited a significant reduction in both dopaminergic neurons and NM content, consistent with advanced disease. These findings, which mirror previous transcriptomic data showing TXNIP gene under-expression in the same subjects, suggest that altered TXNIP expression and localization in SNpc dopaminergic neurons are features of late-stage PD, potentially reflecting neuronal dysfunction and loss. Full article
(This article belongs to the Special Issue Regulation of Cellular Signaling Pathways in the Metabolic Syndrome)
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 381
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

21 pages, 2472 KiB  
Article
Threats and Opportunities for Biodiversity Conservation and Sustainable Use in the Buffer Zones of National Parks in the Brazilian Cerrado
by Ana Cristina da Silva Soares, Edson Eyji Sano, Fabiana de Góis Aquino and Tati de Almeida
Sustainability 2025, 17(14), 6597; https://doi.org/10.3390/su17146597 - 19 Jul 2025
Viewed by 596
Abstract
In recent decades, the Brazilian Cerrado has faced rapid land conversion, resulting in the loss of approximately half of its original vegetation cover. Most existing conservation units within the biome are increasingly threatened by the expansion of land use around their boundaries. The [...] Read more.
In recent decades, the Brazilian Cerrado has faced rapid land conversion, resulting in the loss of approximately half of its original vegetation cover. Most existing conservation units within the biome are increasingly threatened by the expansion of land use around their boundaries. The establishment of buffer zones with land use regulations may protect biodiversity within these protected areas. In this study, we evaluated and ranked the 10 km buffer zones of 15 national parks (NPs) located in the Cerrado biome, identifying their priority for biodiversity conservation and sustainable land use interventions. The analysis considered the following data: land use and land cover change from 2012 to 2020, extent of natural vegetation fragments, presence or absence of state and municipal conservation units within the buffer zones, and drainage density. Two multicriteria analysis methods, the analytic hierarchy process and the weighted linear combination, were applied to classify the buffer zones into five levels of threat: very high, high, moderate, low, and very low. Among the 15 buffer zones analyzed, 11 were classified as having high to very high priority for conservation actions. The buffer zones surrounding the Serra da Bodoquena, Emas, Canastra, and Brasília NPs were ranked as having very high priority. Between 2012 and 2020, the most severe reductions in ecological connectivity were observed in the buffer zones of Grande Sertão Veredas (44.5%), Nascentes do Rio Parnaíba (40.4%), and Serra das Confusões (36.7%). Given the relatively high proportion of natural vegetation in the buffer zones located in the northern Cerrado, we recommend prioritizing conservation efforts in this region. In contrast, in the southern portion of the biome, where land occupation is more intense, strategies should focus on promoting environmentally sustainable land use practices. Full article
Show Figures

Figure 1

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 934
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

13 pages, 2498 KiB  
Article
Evaluation of Dynamic On-Resistance and Trapping Effects in GaN on Si HEMTs Using Rectangular Gate Voltage Pulses
by Pasquale Cusumano, Alessandro Sirchia and Flavio Vella
Electronics 2025, 14(14), 2791; https://doi.org/10.3390/electronics14142791 - 11 Jul 2025
Cited by 1 | Viewed by 492
Abstract
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, [...] Read more.
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, dynamic RON is always higher than in DC, a behavior known as current collapse. To study how short-time dynamics of charge trapping and release affects RON we use rectangular 0–5 V gate voltage pulses with durations in the 1 μs to 100 μs range. Measurements are first carried out for single pulses of increasing duration, and it is found that RON depends on both pulse duration and drain current ID, being higher at shorter pulse durations and lower ID. For a train of five pulses, RON decreases with pulse number, reaching a steady state after a time interval of 100 μs. The response to a five pulses train is compared to that of a square-wave signal to study the time evolution of RON toward a dynamic steady state. The DC RON is also measured, and it is a factor of ten smaller than dynamic RON at the same ID. This confirms that a reduction in trapped charges takes place in DC as compared to the square-wave switching operation. Additional off-state stress tests at VDS = 55 V reveal the presence of residual surface traps in the drain access region, leading to four times increase in RON in comparison to pristine devices. Finally, the dynamic RON is also measured by the double-pulse test (DPT) technique with inductive load, giving a good agreement with results from single-pulse measurements. Full article
Show Figures

Figure 1

31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 328
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 1851 KiB  
Article
Effects of Ethanol–Gasoline Blends on the Performance and Emissions of a Vehicle Spark-Ignition Engine
by Maciej Gajewski, Szymon Wyrąbkiewicz and Jerzy Kaszkowiak
Energies 2025, 18(13), 3466; https://doi.org/10.3390/en18133466 - 1 Jul 2025
Viewed by 754
Abstract
This article presents experimental results related to the influence of bioethanol content in fuel blends on the performance and emissions of a spark-ignition engine. Tests were conducted for six ethanol–gasoline mixtures (ranging from 0% to 100% ethanol) under three engine control strategies: factory [...] Read more.
This article presents experimental results related to the influence of bioethanol content in fuel blends on the performance and emissions of a spark-ignition engine. Tests were conducted for six ethanol–gasoline mixtures (ranging from 0% to 100% ethanol) under three engine control strategies: factory settings, a fuel dose increased by 10%, and a fuel dose increased by 20%—both with an ignition timing adjustment of +3°. Measurements included engine power and torque, as well as emissions of CO, CO2, HC, O2, and particulate matter, all performed under a full engine load. The results revealed the strong dependence of engine behavior on ethanol content. Increasing the ethanol concentration significantly reduced CO and HC emissions, as well as markedly lowering particulate emissions—particularly at 30% ethanol. Conversely, pure ethanol led to substantial reductions in power (up to 28%) and torque (up to 32%) compared to conventional gasoline. Adjustments to the fuel dose and ignition timing partially mitigated these losses. Emissions of CO2 and oxygen content in exhaust gases varied depending on the blend, highlighting the complex nature of the combustion process. The findings contribute to the understanding of renewable fuel behavior in SI engines and underscore the influence of both fuel composition and control strategies on performance and emission characteristics. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

29 pages, 17376 KiB  
Article
A Study on the Thermal and Moisture Transfer Characteristics of Prefabricated Building Wall Joints in the Inner Mongolia Region
by Liting He and Dezhi Zou
Buildings 2025, 15(13), 2197; https://doi.org/10.3390/buildings15132197 - 23 Jun 2025
Viewed by 255
Abstract
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection [...] Read more.
Prefabricated components inevitably generate numerous assembly joints during installation, with each 1 mm increase in joint width correlating to a 15–20% elevation in the annual occurrence frequency of the frost formation risk. In the Inner Mongolia Region, the water migration at wall connection interfaces during winter significantly exacerbates freeze–thaw damage due to persistent thermal gradients. A coupled heat–moisture transfer model incorporating gas–liquid–solid phase transitions was developed, with the liquid moisture content and temperature gradient as dual driving forces. A validation against internationally recognized BS EN 15026:2007 benchmark cases confirmed the model robustness. The prefabricated sandwich insulation walls reconstructed with region-specific volcanic ash materials underwent a comparative evaluation of temperature and relative humidity distributions under varied winter conditions. Furthermore, we analyze and assess the potential for freezing at connection points and identify the specific areas at risk. Synergistic effects between assembly gaps and indoor–outdoor environmental interactions on wall performance degradation were systematically assessed. The results indicated that, across all working conditions, both the temperature and relative humidity at each wall measurement point underwent periodic variations influenced by the outdoor environment. These fluctuations decreased in amplitude from the exterior to the interior, accompanied by a noticeable delay effect. Specifically, at Section 2, the wall temperatures at points B2–B8 were higher compared to those at A2–A8 of Section 1. The relative humidity gradient remained relatively stable at each measurement point, while the temperature fluctuation amplitude was smaller by 2.58 ± 0.3 °C compared to Section 1. Under subfreezing conditions, Section 1 demonstrates a marked reduction in relative humidity (Cases 1-3 and 2-3) compared to reference cases, which is indicative of internal ice crystallization. Conversely, Section 2 maintains higher relative humidity values under identical therma. These findings suggest that prefabricated building joints significantly impact indoor and outdoor wall temperatures, potentially increasing the indoor heat loss and accelerating temperature transfer during winter. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 13487 KiB  
Article
Evaluating Carbon Sink Responses to Multi-Scenario Land Use Changes in the Dianchi Lake Basin: An Integrated PLUS-InVEST Model Approach
by Zhenheng Gao, Quanli Xu, Shu Wang, Qihong Ren and Youyou Li
Agriculture 2025, 15(12), 1286; https://doi.org/10.3390/agriculture15121286 - 14 Jun 2025
Viewed by 516
Abstract
Land use and land cover changes are critical drivers of terrestrial carbon stock dynamics, as they alter native vegetation and land-based production activities. Scenario-based simulation of land use and carbon stock evolution offer valuable insights into the carbon sink potential of different development [...] Read more.
Land use and land cover changes are critical drivers of terrestrial carbon stock dynamics, as they alter native vegetation and land-based production activities. Scenario-based simulation of land use and carbon stock evolution offer valuable insights into the carbon sink potential of different development strategies and support low-carbon land planning. We focus on the Dianchi Basin, integrating a Markov-PLUS land use simulation with the InVEST carbon assessment model to examine carbon stock changes from 2000 to 2030 under three scenarios: natural development and cropland and ecological protections. Results indicate that from 2000 to 2020, the region experienced significant urbanization, with cropland decreasing and forest land expanding. Forests contributed the most to the total carbon storage, followed by cropland. The total carbon stock initially increased but experienced a marked decline from 2010 to 2020, aa trend expected to continue, largely attributable to the transformation of cropland and grassland into construction land, as well as the conversion of forest into cropland. By 2030, carbon stock trajectories would vary across scenarios. Both the natural development and cropland protection scenarios resulted in carbon loss, whereas the ecological protection scenario increased carbon storage and reversed the declining trend. Spatially, carbon stock distribution in the basin exhibits strong heterogeneity, with higher values in the periphery and lower values in the urban center. We reveal the spatio-temporal characteristics of carbon stock change and the carbon consequences of land use policies, providing scientific evidence to support land use restructuring, carbon sink enhancement, and regional carbon emission reduction under the dual-carbon goals of China. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop