Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,299)

Search Parameters:
Keywords = controlled spreading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13770 KiB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 (registering DOI) - 3 Aug 2025
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

21 pages, 7677 KiB  
Article
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao and Tongyu Xu
Agriculture 2025, 15(15), 1673; https://doi.org/10.3390/agriculture15151673 (registering DOI) - 2 Aug 2025
Abstract
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to [...] Read more.
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to achieve effective identification of rice blast. The DCFM model extracted spectral features using successive projection algorithm (SPA), random frog (RFrog), and competitive adaptive reweighted sampling (CARS), and extracted spatial features from spectral images using MobileNetV2 combined with the convolutional block attention module (CBAM). Then, these features were fused using the feature fusion adaptive conditioning module in DCFM and input into the fully connected layer for disease identification. The results show that the model combining spectral and spatial features was superior to the classification models based on single features for rice blast detection, with OA and Kappa higher than 90% and 88%, respectively. The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. Overall, this study enables the early and accurate identification of rice blast, providing a rapid and reliable method for rice disease monitoring and management. It also offers a valuable reference for the detection of other crop diseases. Full article
Show Figures

Figure 1

21 pages, 2436 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 (registering DOI) - 1 Aug 2025
Viewed by 18
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 (registering DOI) - 1 Aug 2025
Viewed by 95
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 61
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

11 pages, 415 KiB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 (registering DOI) - 31 Jul 2025
Viewed by 166
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

18 pages, 7265 KiB  
Case Report
New Neonatal and Prenatal Approach to Home Therapy with Amoxicillin, Rifaximin, and Anti-Inflammatory Drugs for Pregnant Women with COVID-19 Infections—Monitoring of Fetal Growth as a Prognostic Factor: A Triple Case Series (N.A.T.H.A.N.)
by Carlo Brogna, Grazia Castellucci, Elrashdy M. Redwan, Alberto Rubio-Casillas, Luigi Montano, Gianluca Ciammetti, Marino Giuliano, Valentina Viduto, Mark Fabrowski, Gennaro Lettieri, Carmela Marinaro and Marina Piscopo
Biomedicines 2025, 13(8), 1858; https://doi.org/10.3390/biomedicines13081858 - 30 Jul 2025
Viewed by 328
Abstract
Background: Since the COVID-19 pandemic, managing acute infections in symptomatic individuals, regardless of vaccination status, has been widely debated and extensively studied. Even more concerning, however, is the impact of COVID-19 on pregnant women—especially its effects on fetuses and newborns. Several studies have [...] Read more.
Background: Since the COVID-19 pandemic, managing acute infections in symptomatic individuals, regardless of vaccination status, has been widely debated and extensively studied. Even more concerning, however, is the impact of COVID-19 on pregnant women—especially its effects on fetuses and newborns. Several studies have documented complications in both expectant mothers and their infants following infection. Methods: In our previous works, we provided scientific evidence of the bacteriophage behavior of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). This demonstrated that a well-defined combination of two antibiotics, amoxicillin and rifaximin, is associated with the same statistics for subjects affected by severe cases of SARS-CoV-2, regardless of vaccination status. We considered the few cases in the literature regarding the management of pregnancies infected with SARS-CoV-2, as well as previous data published in our works. In this brief case series, we present two pregnancies from the same unvaccinated mother—one prior to the COVID-19 pandemic and the other during the spread of the Omicron variant—as well as one pregnancy from a mother vaccinated against COVID-19. We describe the management of acute maternal infection using a previously published protocol that addresses the bacteriophage and toxicological mechanisms associated with SARS-CoV-2. Results: The three pregnancies are compared based on fetal growth and ultrasound findings. This report highlights that, even in unvaccinated mothers, timely and well-guided management of symptomatic COVID-19 can result in positive outcomes. In all cases, intrauterine growth remained within excellent percentiles, and the births resulted in optimal APGAR scores. Conclusions: This demonstrates that a careful and strategic approach, guided by ultrasound controls, can support healthy pregnancies during SARS-CoV-2 infection, regardless of vaccination status. Full article
Show Figures

Figure 1

15 pages, 610 KiB  
Review
Exploring the Diversity and Distribution of Medico-Veterinary Fungal Diseases in Africa: Harnessing a Multisectoral One Health Strategy for Cost-Effective Prevention and Preparedness
by Ayman Ahmed, Nouh Saad Mohamed and Emmanuel Edwar Siddig
J. Fungi 2025, 11(8), 569; https://doi.org/10.3390/jof11080569 - 30 Jul 2025
Viewed by 234
Abstract
The diversity and distribution of medical and veterinary-relevant fungal diseases in Africa underscore the critical need for a multisectoral One Health strategy to enhance cost-effective preparedness and prevention. This review explores the geographic spread and epidemiology of key medical and veterinary fungi, including [...] Read more.
The diversity and distribution of medical and veterinary-relevant fungal diseases in Africa underscore the critical need for a multisectoral One Health strategy to enhance cost-effective preparedness and prevention. This review explores the geographic spread and epidemiology of key medical and veterinary fungi, including Emergomyces, Blastomyces, Coccidioides, Cryptococcus, Dermatophytes, Histoplasma, Sporothrix, Talaromyces, Paracoccidioides, Aspergillus, and Malassezia. Evidence indicates that many of these infections remain underdiagnosed and underreported, especially in vulnerable immunocompromised populations, due to limited surveillance, diagnostic capacity, and awareness. The increasing prevalence of these diseases, often in tandem with rising HIV rates and environmental changes, highlights the urgent need for coordinated efforts across human, animal, and environmental health sectors. Implementing comprehensive, multisectoral interventions—focused on enhancing diagnostic capabilities, public awareness, surveillance, and cross-sector collaboration—is vital for effective prevention and control of these emerging fungal threats in Africa. Full article
Show Figures

Figure 1

21 pages, 4014 KiB  
Article
Optimized Mortar Formulations for 3D Printing: A Rheological Study of Cementitious Pastes Incorporating Potassium-Rich Biomass Fly Ash Wastes
by Raúl Vico Lujano, Luis Pérez Villarejo, Rui Miguel Novais, Pilar Hidalgo Torrano, João Batista Rodrigues Neto and João A. Labrincha
Materials 2025, 18(15), 3564; https://doi.org/10.3390/ma18153564 - 30 Jul 2025
Viewed by 244
Abstract
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining [...] Read more.
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining plasticizer (APA) to optimize the rheological behavior, hydration kinetics, and structural performance of mortars tailored for extrusion-based 3D printing. The results demonstrate that BFAK enhances the yield stress and thixotropy increases, contributing to improved structural stability after extrusion. In parallel, the APA adjusts the viscosity and facilitates material flow through the nozzle. Isothermal calorimetry reveals that BFAK modifies the hydration kinetics, increasing the intensity and delaying the occurrence of the main hydration peak due to the formation of secondary sulfate phases such as Aphthitalite [(K3Na(SO4)2)]. This behavior leads to an extended setting time, which can be modulated by APA to ensure a controlled processing window. Flowability tests show that BFAK reduces the spread diameter, improving cohesion without causing excessive dispersion. Calibration cylinder tests confirm that the formulation with 1.5% APA and 2% BFAK achieves the maximum printable height (35 cm), reflecting superior buildability and load-bearing capacity. These findings underscore the novelty of combining BFAK and APA as a strategy to overcome current rheological limitations in digital construction. The synergistic effect between both additives provides tailored fresh-state properties and structural reliability, advancing the development of a sustainable SMC and printable cementitious materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 246
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Demographic Parameters and Life History Traits of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) Influenced by Different Temperatures and Two Types of Food
by Mohammed M. E. Elmoghazy, Eslam Kamal Fahmy, Tagwa Salah Ahmed Mohammed Ali, Mohamed El-Sherbiny, Rasha Hamed Al-Serwi, Moaz Abulfaraj and Dalia M. A. Elsherbini
Insects 2025, 16(8), 777; https://doi.org/10.3390/insects16080777 - 29 Jul 2025
Viewed by 306
Abstract
Studying the nutritional ecology of Neoseiulus cucumeris (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history [...] Read more.
Studying the nutritional ecology of Neoseiulus cucumeris (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history and demographic parameters of the predator mite N. cucumeris. Mite cultures in the laboratory were developed using Tetranychus urticae Koch, and N. cucumeris was collected from field plants. The developmental stages of N. cucumeris fed on date palm pollen and the immature stages of T. urticae were investigated in a laboratory setting at different temperatures. Our research revealed that N. cucumeris readily accepted both food types at all the tested temperatures. The developmental stages and adult longevity of N. cucumeris, both female and male, decreased dramatically when the temperature increased from 18 °C to 34 °C. The net reproductive rate (R0) reached its greatest values of 22.52 and 9.72 offspring/individual at 26 °C, and the intrinsic rate of increase (rm) reached its maximum values of 0.17 and 0.13 day−1 at 34 °C and minimum of 0.12 and 0.10 day−1 at 18 °C, when fed on date palm pollen and immature stages of T. urticae, respectively. Conversely, the average generation time (T) showed a notable reduction from 22.48 to 16.48 and 20.88 to 16.76 days, accompanied by an upsurge in temperature from 18 °C to 34 °C, when fed on date palm pollen and immature stages of T. urticae, respectively. The finite rate of growth (λ) exhibited distinct variations, reaching its highest value at 34 °C, 26 °C, and 18 °C when fed on date palm pollen and immature stages of T. urticae, respectively. From these results, we can conclude that N. cucumeris was successfully fed date palm pollen as an alternate source of nourishment. In addition, the immature stages of T. urticae are suitable as food sources for N. cucumeris because they shorten the mean generation time. Therefore, the success of mass-rearing the predator mite N. cucumeris on a different, less expensive diet, such as date palm pollen, and determining the most suitable temperature for it has increased its spread as a biocontrol agent. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 790 KiB  
Review
A Review of Avian Influenza Virus Exposure Patterns and Risks Among Occupational Populations
by Huimin Li, Ruiqi Ren, Wenqing Bai, Zhaohe Li, Jiayi Zhang, Yao Liu, Rui Sun, Fei Wang, Dan Li, Chao Li, Guoqing Shi and Lei Zhou
Vet. Sci. 2025, 12(8), 704; https://doi.org/10.3390/vetsci12080704 - 28 Jul 2025
Viewed by 353
Abstract
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through [...] Read more.
Avian influenza viruses (AIVs) pose significant risks to occupational populations engaged in poultry farming, livestock handling, and live poultry market operations due to frequent exposure to infected animals and contaminated environments. This review synthesizes evidence on AIV exposure patterns and risk factors through a comprehensive analysis of viral characteristics, host dynamics, environmental influences, and human behaviors. The main routes of transmission include direct animal contact, respiratory contact during slaughter/milking, and environmental contamination (aerosols, raw milk, shared equipment). Risks increase as the virus adapts between species, survives longer in cold/wet conditions, and spreads through wild bird migration (long-distance transmission) and live bird trade (local transmission). Recommended control measures include integrated animal–human–environment surveillance, stringent biosecurity measures, vaccination, and education. These findings underscore the urgent need for global ‘One Health’ collaboration to assess risk and implement preventive measures against potentially pandemic strains of influenza A viruses, especially in light of undetected mild/asymptomatic cases and incomplete knowledge of viral evolution. Full article
Show Figures

Figure 1

17 pages, 515 KiB  
Review
The Epidemiology of Syphilis Worldwide in the Last Decade
by Francois Rosset, Valentina Celoria, Sergio Delmonte, Luca Mastorino, Nadia Sciamarrelli, Sara Boskovic, Simone Ribero and Pietro Quaglino
J. Clin. Med. 2025, 14(15), 5308; https://doi.org/10.3390/jcm14155308 - 28 Jul 2025
Viewed by 473
Abstract
Background/Objectives: Syphilis, a re-emerging global public health issue, has shown increasing incidence over the past decade, particularly among key populations such as men who have sex with men (MSM), people living with HIV, and pregnant women. This narrative review aimed to synthesize global [...] Read more.
Background/Objectives: Syphilis, a re-emerging global public health issue, has shown increasing incidence over the past decade, particularly among key populations such as men who have sex with men (MSM), people living with HIV, and pregnant women. This narrative review aimed to synthesize global epidemiological trends of syphilis from 2015 to 2025, with a focus on surveillance gaps, regional disparities, and structural determinants. Methods: A broad narrative approach was used to collect and analyze epidemiological data from 2015 to 2025. The literature was retrieved from databases (PubMed, Scopus) and official reports from the WHO, CDC, and ECDC. Included materials span observational studies, surveillance reports, and modeling data relevant to global trends and public health responses. Results: Globally, syphilis incidence has increased, with notable surges in North America, Europe, and Asia. MSM remain disproportionately affected, while congenital syphilis is resurging even in high-income countries. Low- and middle-income countries report persistent burdens, especially among women of reproductive age, often exacerbated by limited screening and surveillance infrastructure. The COVID-19 pandemic disrupted syphilis-related services and further exacerbated underreporting, hindering timely detection and response efforts. Surveillance systems vary widely in their completeness and quality, which significantly hinders global data comparability and coordinated public health responses. Conclusions: Despite its curability, syphilis continues to spread due to fragmented prevention strategies, inequities in access to care, and insufficient surveillance. Strengthening diagnostic access, integrating prevention efforts into broader health systems, and addressing social determinants are essential. Improved surveillance, equitable access, and innovation—including diagnostics and potential vaccine research—are critical to controlling the global syphilis epidemic. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

31 pages, 10161 KiB  
Review
Tracking the Spatial and Functional Dispersion of Vaccine-Related Canine Distemper Virus Genotypes: Insights from a Global Scoping Review
by Mónica G. Candela, Adrian Wipf, Nieves Ortega, Ana Huertas-López, Carlos Martínez-Carrasco and Pedro Perez-Cutillas
Viruses 2025, 17(8), 1045; https://doi.org/10.3390/v17081045 - 27 Jul 2025
Viewed by 249
Abstract
Canine morbillivirus (CDV), the cause of canine distemper, is a pathogen affecting many hosts. While modified live virus (MLV) vaccines are crucial for controlling the disease in dogs, cases of vaccine-related infections have been found in both domestic and wild animals. Specifically, the [...] Read more.
Canine morbillivirus (CDV), the cause of canine distemper, is a pathogen affecting many hosts. While modified live virus (MLV) vaccines are crucial for controlling the disease in dogs, cases of vaccine-related infections have been found in both domestic and wild animals. Specifically, the America-1 and Rockborn-like vaccine genotypes are concerning due to their spread and ability to transmit between different species. This study conducted a review and analysis of molecular detections of these strains in various carnivores (domestic, captive, synanthropic, and wild species). This study used a conceptual model considering host ecology and the domestic–wild interface to evaluate plausible transmission connections over time using Linear Directional Mean (LDM) and Weighted Mean Centre (WMC) methods. Statistical analyses examined the relationship between how likely a strain is to spread and factors like host type and vaccination status. The findings showed that the America-1 genotype spread in a more organised way, with domestic dogs being the main source and recipient, bridging different environments. Synanthropic mesocarnivores also played this same role, with less intensity. America-1 was most concentrated in the North Atlantic and Western Europe. In contrast, the Rockborn-like strain showed a more unpredictable and restricted spread, residual circulation from past use rather than ongoing spread. Species involved in vaccine-related infections often share characteristics like generalist behaviour, social living, and a preference for areas where domestic animals and wildlife interact. We did not find a general link between a host vaccination status and the likelihood of the strain spreading. The study emphasised the ongoing risk of vaccine-derived strains moving from domestic and synanthropic animals to vulnerable wild species, supporting the need for improved vaccination approaches. Mapping these plausible transmission routes can serve as a basis for targeted surveillance, not only of vaccine-derived strains, but of any other circulating genotype. Full article
(This article belongs to the Special Issue Canine Distemper Virus)
Show Figures

Figure 1

21 pages, 12045 KiB  
Article
Combating Environmental Antimicrobial Resistance Using Bacteriophage Cocktails Targeting β-Lactam-Resistant High-Risk Clones of Klebsiella pneumoniae and Escherichia coli in Wastewater: A Strategy for Treatment and Reuse
by María D. Zapata-Montoya, Lorena Salazar-Ospina and Judy Natalia Jiménez
Water 2025, 17(15), 2236; https://doi.org/10.3390/w17152236 - 27 Jul 2025
Viewed by 374
Abstract
Wastewater is a hotspot for the spread of antimicrobial resistance (AR); therefore, bacteriophages offer a promising biocontrol alternative to overcome the limitations of conventional disinfection. This study evaluated the efficacy of bacteriophages and cocktails for the biocontrol of carbapenem-resistant Klebsiella pneumoniae (CR-Kp [...] Read more.
Wastewater is a hotspot for the spread of antimicrobial resistance (AR); therefore, bacteriophages offer a promising biocontrol alternative to overcome the limitations of conventional disinfection. This study evaluated the efficacy of bacteriophages and cocktails for the biocontrol of carbapenem-resistant Klebsiella pneumoniae (CR-Kp) (CG258 and ST307) and Escherichia coli producers of extended-spectrum β-lactamases (ESBL-Ec) (ST131) in simulated wastewater. A synthetic wastewater matrix was prepared in which bacterial viability and bacteriophage stability were assessed for 72 h. CR-Kp or ESBL-Ec strain were treated with individual bacteriophages or phage-cocktails (dosed in different ways) and bacterial loads were monitored for 54 h. The Klebsiella phages FKP3 and FKP14 eliminated 99% (−2.9 Log) of CR-Kp-CG258 at 54 h, and FKP10 reduced 99% (−2.15 Log) of the CR-Kp-ST307 strains. The Klebsiella phage-cocktail in a single dose reduced to 99.99% (−4.12 Log) of the CR-Kp-CG258 at 36 h. Coliphage FEC1 reduced to 2.12 Log (99%) of ESBL-Ec-blaCTX-M-G9, and FEC2 and FEC4 reduced approximately 1 Log (90%) of ESBL-Ec-blaCTX-M-G9 and blaCTX-M-G1. The coliphage cocktail increased the reduction up to 2.2 Logarithms. This study provides evidence supporting the use of bacteriophage cocktails for the control of resistant bacteria in wastewater, a sustainable intervention to mitigate the spread of AR and support water reuse safety. Full article
Show Figures

Graphical abstract

Back to TopTop