Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = controllable acoustic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 3088 KiB  
Review
Controlling Sedimentation in Magnetorheological Fluids Through Ultrasound–Magnetic Field Coupling: Multiscale Analysis and Applications
by Annunziata Palumbo and Mario Versaci
Mathematics 2025, 13(15), 2540; https://doi.org/10.3390/math13152540 (registering DOI) - 7 Aug 2025
Abstract
Magnetorheological fluids (MRFs) are multiphase materials whose viscosity can be controlled via magnetic fields. However, particle sedimentation undermines their long-term stability. This review examines stabilization strategies based on the interaction between ultrasonic waves and time-varying magnetic fields, analyzed through advanced mathematical models. The [...] Read more.
Magnetorheological fluids (MRFs) are multiphase materials whose viscosity can be controlled via magnetic fields. However, particle sedimentation undermines their long-term stability. This review examines stabilization strategies based on the interaction between ultrasonic waves and time-varying magnetic fields, analyzed through advanced mathematical models. The propagation of acoustic waves in spherical and cylindrical domains is studied, including effects such as cavitation, acoustic radiation forces, and viscous attenuation. The Biot–Stoll poroelastic model is employed to describe saturated granular media, while magnetic field modulation is investigated as a means to balance gravitational settling. The analysis highlights how acousto-magnetic coupling supports the design of programmable and self-stabilizing intelligent fluids for complex applications. Full article
(This article belongs to the Special Issue Engineering Thermodynamics and Fluid Mechanics)
21 pages, 1209 KiB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Efficient Particle Aggregation Through SSAW Phase Modulation
by Yiming Li, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu and Dongfang Liang
Micromachines 2025, 16(8), 910; https://doi.org/10.3390/mi16080910 - 5 Aug 2025
Abstract
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and [...] Read more.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel. By fully exploiting the degrees of freedom offered by two pairs of interdigital transducers (IDTs) on each substrate, the system enables highly flexible control of microparticles. To explore its capability on particle aggregation, we developed a two-dimensional numerical model to investigate the influence of the SAW phase modulation on the established acoustic fields within the microchannel. Single-particle motion was first examined under the influence of the phase-modulated acoustic fields to form a reference for identifying effective phase modulation strategies. Key parameters, such as the phase changes and the duration of each phase modulation step, were determined to maximize the lateral motion while minimizing undesired vertical motion of the particle. Our dual-sided SSAW configuration, combined with novel dynamic phase modulation strategy, leads to rapid and precise aggregation of microparticles towards a single focal point. This study sheds new light on the design of acoustofluidic devices for efficient spatiotemporal particle concentration. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 - 31 Jul 2025
Viewed by 176
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
Optimal Coherence Length Control in Interferometric Fiber Optic Hydrophones via PRBS Modulation: Theory and Experiment
by Wujie Wang, Qihao Hu, Lina Ma, Fan Shang, Hongze Leng and Junqiang Song
Sensors 2025, 25(15), 4711; https://doi.org/10.3390/s25154711 - 30 Jul 2025
Viewed by 186
Abstract
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, [...] Read more.
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, establishing the first theoretical model that quantitatively links PRBS parameter to coherence length, elucidating the mechanism underlying its suppression of parasitic interference noise. Furthermore, our research findings demonstrate that while reducing the laser coherence length effectively mitigates parasitic interference noise in IFOHs, this reduction also leads to elevated background noise caused by diminished interference visibility. Consequently, the modulation of coherence length requires a balanced optimization approach that not only suppresses parasitic noise but also minimizes visibility-introduced background noise, thereby determining the system-specific optimal coherence length. Through theoretical modeling and experimental validation, we determined that for IFOH systems with a 500 ns delay, the optimal coherence lengths for link fibers of 3.3 km and 10 km are 0.93 m and 0.78 m, respectively. At the optimal coherence length, the background noise level in the 3.3 km system reaches −84.5 dB (re: rad/√Hz @1 kHz), representing an additional noise suppression of 4.5 dB beyond the original suppression. This study provides a comprehensive theoretical and experimental solution to the long-standing contradiction between high laser monochromaticity, stability and appropriate coherence length, establishing a coherence modulation noise suppression framework for hydrophones, gyroscopes, distributed acoustic sensing (DAS), and other fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 9169 KiB  
Article
Dynamic Mission Planning Framework for Collaborative Underwater Operations Using Behavior Trees
by Seunghyuk Choi and Jongdae Jung
J. Mar. Sci. Eng. 2025, 13(8), 1458; https://doi.org/10.3390/jmse13081458 - 30 Jul 2025
Viewed by 235
Abstract
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each [...] Read more.
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each encapsulated in an independent sub-tree to enable modular error handling and seamless phase transitions. The AUV and mothership operate entirely underwater, with real-time docking to a moving platform. An extended Kalman filter (EKF) fuses data from inertial, pressure, and acoustic sensors for accurate navigation and state estimation. At the same time, obstacle avoidance leverages forward-looking sonar (FLS)-based potential field methods to react to unpredictable underwater hazards. The system is implemented on the robot operating system (ROS) and validated in the Stonefish physics engine simulator. Simulation results demonstrate reliable mission execution, successful dynamic docking under communication delays and sensor noise, and robust retrieval from injected faults, confirming the validity and stability of the proposed architecture. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

13 pages, 1009 KiB  
Article
A Statistical Optimization Method for Sound Speed Profiles Inversion in the South China Sea Based on Acoustic Stability Pre-Clustering
by Zixuan Zhang, Ke Qu and Zhanglong Li
Appl. Sci. 2025, 15(15), 8451; https://doi.org/10.3390/app15158451 - 30 Jul 2025
Viewed by 183
Abstract
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine [...] Read more.
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine learning clustering. Disturbance mode principal component analysis is first used to extract characteristic parameters, and then a machine learning clustering algorithm is adopted to pre-classify SSP samples according to acoustic stability. The SSP inversion experimental results show that: (1) the SSP samples of the South China Sea can be divided into three clusters of disturbance modes with statistically significant differences. (2) The regression inversion method based on cluster attribution reduces the average error of SSP inversion for data from 2018 to 1.24 m/s, which is more than 50% lower than what can be achieved with the traditional method without pre-clustering. (3) Transmission loss prediction verification shows that the proposed method can produce highly accurate sound field calculations in environmental assessment tasks. The acoustic stability pre-clustering technology proposed in this study provides an innovative solution for the statistical modeling of marine environment parameters by effectively decoupling the mixed effect of SSP spatiotemporal disturbance patterns. Its error control level (<1.5 m/s) is 37% higher than that of the single empirical orthogonal function regression method, showing important potential in underwater acoustic applications in complex marine dynamic environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

16 pages, 8859 KiB  
Article
Effect of Systematic Errors on Building Component Sound Insulation Measurements Using Near-Field Acoustic Holography
by Wei Xiong, Wuying Chen, Zhixin Li, Heyu Zhu and Xueqiang Wang
Buildings 2025, 15(15), 2619; https://doi.org/10.3390/buildings15152619 - 24 Jul 2025
Viewed by 237
Abstract
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion [...] Read more.
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion process, significantly reducing the measurement accuracy. To systematically evaluate this problem, this study combines numerical simulation with actual measurements in a soundproof room that complies with the ISO 10140 standard, quantitatively analyzes the influence of array system errors on NAH reconstructed sound insulation and acoustic images, and proposes an error correction strategy based on channel transfer function normalization. The research results show that when the array amplitude and phase mismatch mean values are controlled within 5% and 5°, respectively, the deviation of the weighted sound insulation measured by NAH can be controlled within 1 dB, and the error in the key frequency band of building sound insulation (200–1.6k Hz) does not exceed 1.5 dB; when the mismatch mean value increases to 10% and 10°, the deviation of the weighted sound insulation can reach 2 dB, and the error in the high-frequency band (≥1.6k Hz) significantly increases to more than 2.0 dB. The sound image shows noticeable spatial distortion in the frequency band above 250 Hz. After applying the proposed correction method, the NAH measurement results of the domestic microphone array are highly consistent with the weighted sound insulation measured by the standard method, and the measurement difference in the key frequency band is less than 1.0 dB, which significantly improves the reliability and applicability of low-cost equipment in engineering applications. In addition, the study reveals the inherent mechanism of differential amplification of system errors in the propagating wave and evanescent wave channels. It provides quantitative thresholds and operational guidance for instrument selection, array calibration, and error compensation of NAH technology in building sound insulation detection. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 7040 KiB  
Review
Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review
by Linmin Shang, Jianfeng Zhu, Xingxing Huang, Shenjie Gao, Zhengwei Wang and Jian Liu
Processes 2025, 13(7), 2321; https://doi.org/10.3390/pr13072321 - 21 Jul 2025
Viewed by 567
Abstract
With the global transition towards renewable energy, pumped storage has become a pivotal technology for large-scale energy storage, playing an essential role in peak load regulation, frequency control, and ensuring the stability of modern power systems. As the core equipment of pumped storage [...] Read more.
With the global transition towards renewable energy, pumped storage has become a pivotal technology for large-scale energy storage, playing an essential role in peak load regulation, frequency control, and ensuring the stability of modern power systems. As the core equipment of pumped storage power stations, pump-turbines operate under complex and frequently changing conditions. These units are required to switch repeatedly between pumping, generating, and transitional modes, giving rise to significant fluid–structure interactions (FSIs). Such interactions have a profound impact on the operational performance and stability of the units. This review provides a comprehensive summary of current research on FSIs in pump-turbines, encompassing both experimental investigations and numerical simulations. Key topics discussed include internal flow dynamics, vibration and acoustic characteristics, and structural responses such as runner deformation and stress distribution. Various numerical coupling strategies for FSI modeling are also examined in detail. Despite progress in this field, several challenges remain, including the complexity of multidisciplinary coupling, the difficulty in developing and solving accurate models, and limitations in predictive capabilities. This review highlights the critical requirements for advancing FSI research in pump-turbines and identifies gaps in the current literature that warrant further investigation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

14 pages, 2512 KiB  
Article
Research on Two-Stage Data Compression at the Acquisition Node in Remote-Detection Acoustic Logging
by Xiaolong Hao, Yangtao Hu, Bingnan Yan, Hang Hui, Yunxia Chen and Bingqi Zhang
Sensors 2025, 25(14), 4512; https://doi.org/10.3390/s25144512 - 21 Jul 2025
Viewed by 266
Abstract
The substantial volume of data acquired through remote-detection acoustic logging poses a remarkable challenge because of the limited real-time upload speed of the cable, which severely impedes its further application. To address this issue, a two-stage data compression method that was implemented at [...] Read more.
The substantial volume of data acquired through remote-detection acoustic logging poses a remarkable challenge because of the limited real-time upload speed of the cable, which severely impedes its further application. To address this issue, a two-stage data compression method that was implemented at the acquisition node was proposed in this study. This approach includes a field programmable gate array (FPGA)-based hardware system and a two-stage downhole data compression algorithm combining wavelet transform and adaptive differential pulse-code modulation paired with ground decompression software. Finally, the proposed compression method was evaluated using actual logging data. The test results revealed that the overall compression rate of the two-stage compression method was 25.1%. The reconstructed waveforms highly retained the overall shape of the original waveforms, and the severe relative distortion of individual data points did not affect the extraction of the sliding longitudinal, sliding transverse and reflected waveforms. The FPGA compressed 2048 16-bit waveforms in approximately 100 μs with low resource utilization and workload. It considerably outperformed DSP-based pre-transmission compression. Herein, the data compression method at the acquisition node helped in reducing the workload on the master control node and increasing the effective speed of the cable transmission up to 400%, thereby enhancing the remote-detection acoustic logging. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 427
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

22 pages, 12507 KiB  
Article
Research on the Friction Prediction Method of Micro-Textured Cemented Carbide–Titanium Alloy Based on the Noise Signal
by Hao Zhang, Xin Tong and Baiyi Wang
Coatings 2025, 15(7), 843; https://doi.org/10.3390/coatings15070843 - 18 Jul 2025
Viewed by 506
Abstract
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force [...] Read more.
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force for processing quality control. Consequently, investigating the underlying mechanisms that link friction noise and friction is of considerable importance. This study focuses on the friction and wear acoustic signals generated by micro-textured cemented carbide–titanium alloy. A friction testing platform specifically designed for the micro-textured cemented carbide grinding of titanium alloy has been established. Acoustic sensors are employed to capture the acoustic signals, while ultra-depth-of-field microscopy and scanning electron microscopy are utilized for surface analysis. A novel approach utilizing the dung beetle algorithm (DBO) is proposed to optimize the parameters of variational mode decomposition (VMD), which is subsequently combined with wavelet packet threshold denoising (WPT) to enhance the quality of the original signal. Continuous wavelet transform (CWT) is applied for time–frequency analysis, facilitating a discussion on the underlying mechanisms of micro-texture. Additionally, features are extracted from the time domain, frequency domain, wavelet packet, and entropy. The Relief-F algorithm is employed to identify 19 significant features, leading to the development of a hybrid model that integrates Bayesian optimization (BO) and Transformer-LSTM for predicting friction. Experimental results indicate that the model achieves an R2 value of 0.9835, a root mean square error (RMSE) of 0.2271, a mean absolute error (MAE) of 0.1880, and a mean bias error (MBE) of 0.1410 on the test dataset. The predictive performance and stability of this model are markedly superior to those of the BO-LSTM, LSTM–Attention, and CNN–LSTM–Attention models. This research presents a robust methodology for predicting friction in the context of friction and wear of cemented carbide–titanium alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

19 pages, 5255 KiB  
Article
Health Status Assessment of Passenger Ropeway Bearings Based on Multi-Parameter Acoustic Emission Analysis
by Junjiao Zhang, Yongna Shen, Zhanwen Wu, Gongtian Shen, Yilin Yuan and Bin Hu
Sensors 2025, 25(14), 4403; https://doi.org/10.3390/s25144403 - 15 Jul 2025
Viewed by 232
Abstract
This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that [...] Read more.
This study presents a comprehensive investigation of acoustic emission (AE) characteristics for condition monitoring of rolling bearings in passenger ropeway systems. Through controlled laboratory experiments and field validation across multiple operational ropeways, we establish an optimized AE-based diagnostic framework. Key findings demonstrate that resonant VS150-RIC sensors outperform broadband sensors in defect detection, showing greater energy response at characteristic frequencies for inner race defects. The RMS parameter emerges as a robust diagnostic indicator, with defective bearings exhibiting periodic peaks and higher mean RMS values. Field tests reveal progressive RMS escalation preceding visible damage, enabling predictive maintenance. Furthermore, we develop a novel Paligemma LLM model for automated wear detection using AE time-domain images. The research validates the AE technology’s superiority over conventional vibration methods for low-speed bearing monitoring, providing a scientifically grounded approach for safety-critical ropeway maintenance. Full article
(This article belongs to the Special Issue Sensor-Based Condition Monitoring and Non-Destructive Testing)
Show Figures

Figure 1

24 pages, 7102 KiB  
Article
Comparing a New Passive Lining Method for Jet Noise Reduction Using 3M™ Nextel™ Ceramic Fabrics Against Ejector Nozzles
by Alina Bogoi, Grigore Cican, Laurențiu Cristea, Daniel-Eugeniu Crunțeanu, Constantin Levențiu and Andrei-George Totu
Technologies 2025, 13(7), 295; https://doi.org/10.3390/technologies13070295 - 9 Jul 2025
Viewed by 610
Abstract
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three [...] Read more.
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three nozzle configurations, baseline, ejector, and Nextel-treated, were evaluated under realistic operating conditions using traditional and advanced acoustic diagnostics applied to data from a five-microphone circular array. The results show that while the ejector provides superior directional suppression and low-frequency redistribution, making it ideal for far-field noise control, it maintains high total energy levels and requires structural modifications. In contrast, the Nextel lining achieves comparable reductions in overall noise, especially in high-frequency ranges, while minimizing structural impact and promoting spatial energy dissipation. Analyses in both the time-frequency and spatial–spectral domains demonstrate that the Nextel configuration not only lowers acoustic energy but also disrupts coherent noise patterns, making it particularly effective for near-field protection in compact propulsion systems. A POD analysis further shows that NEXTEL more evenly distributes energy across mid-order modes, indicating its role in smoothing spatial variations and dampening localized acoustic concentrations. According to these results, ceramic fabric linings offer a lightweight, cost-effective solution for reducing the high noise levels typically associated with drones and UAVs powered by small turbojets. When combined with ejectors, they could enhance acoustic suppression in compact propulsion systems where space and weight are critical. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

17 pages, 988 KiB  
Article
A Low-Complexity Versatile Beamforming Method for Multiple Parametric Arrays
by Haokang Shi, Jie Shi, Bo Fan and Haoyang Zhang
Acoustics 2025, 7(2), 37; https://doi.org/10.3390/acoustics7020037 - 18 Jun 2025
Viewed by 463
Abstract
The application of multiple parametric arays (MPAs) has been increasingly prominent in recent years due to the high directivity of parametric arrays. However, existing beamforming methods for MPAs are limited to special scenarios, such as narrow-edged beamforming, or have high complexity, such as [...] Read more.
The application of multiple parametric arays (MPAs) has been increasingly prominent in recent years due to the high directivity of parametric arrays. However, existing beamforming methods for MPAs are limited to special scenarios, such as narrow-edged beamforming, or have high complexity, such as requiring numerous acoustic transfer function (ATF) identifications. This paper proposes a low-complexity versatile beamforming method based on the transitive relationship among ATFs. For N parametric arrays, the number of identified ATFs can be reduced from N2 to N through interpolation and flipping. Moreover, by neglecting the less affected part in the acoustic field structure, the number of identified ATFs can be reduced to less than N. On the basis of ATF matrix estimated, the desired acoustic field can be generated by optimizing the emission weight coefficient. The accuracy of ATF estimation is verified through the precise reconstruction of the acoustic field. Even when the number of identified ATFs does not exceed N, the desired acoustic field of different types of beam patterns can be formed correctly. The beamforming effects of MPAs confirm the low-complexity and versatility of the proposed method, offering a highly feasible solution for acoustic field control. Full article
Show Figures

Figure 1

Back to TopTop