Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = continuous-wave mode-locked

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3909 KB  
Article
VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers
by Nikolay N. Ledentsov, Nikolay Ledentsov, Vitaly A. Shchukin, Alexander N. Ledentsov, Oleg Yu. Makarov, Ilya E. Titkov, Markus Lindemann, Thomas de Adelsburg Ettmayer, Nils C. Gerhardt, Martin R. Hofmann, Xin Chen, Jason E. Hurley, Hao Dong and Ming-Jun Li
Photonics 2025, 12(10), 1037; https://doi.org/10.3390/photonics12101037 - 21 Oct 2025
Abstract
Substantial improvements in the performance of optical interconnects based on multi-mode fibers are required to support emerging single-channel data transmission rates of 200 Gb/s and 400 Gb/s. Future optical components must combine very high modulation bandwidths—supporting signaling at 100 Gbaud and 200 Gbaud—with [...] Read more.
Substantial improvements in the performance of optical interconnects based on multi-mode fibers are required to support emerging single-channel data transmission rates of 200 Gb/s and 400 Gb/s. Future optical components must combine very high modulation bandwidths—supporting signaling at 100 Gbaud and 200 Gbaud—with reduced spectral width to mitigate chromatic-dispersion-induced pulse broadening and increased brightness to further restrict flux-confining area in multi-mode fibers and thereby increase the effective modal bandwidth (EMB). A particularly promising route to improved performance within standard oxide-confined VCSEL technology is the introduction of multiple isolated or optically coupled oxide-confined apertures, which we refer to collectively as multi-aperture (MA) VCSEL arrays. We show that properly designed MA VCSELs exhibit narrow emission spectra, narrow far-field profiles and extended intrinsic modulation bandwidths, enabling longer-reach data transmission over both multi-mode (MMF) and single-mode fibers (SMF). One approach uses optically isolated apertures with lateral dimensions of approximately 2–3 µm arranged with a pitch of 10–12 µm or less. Such devices demonstrate relaxation oscillation frequencies of around 30 GHz in continuous-wave operation and intrinsic modulation bandwidths approaching 50 GHz. Compared with a conventional single-aperture VCSELs of equivalent oxide-confined area, MA designs can reduce the spectral width (root mean square values < 0.15 nm), lower series resistance (≈50 Ω) and limit junction overheating through more efficient multi-spot heat dissipation at the same total current. As each aperture lases in a single transverse mode, these devices exhibit narrow far-field patterns. In combination with well-defined spacing between emitting spots, they permit tailored restricted launch conditions in MMFs, enhancing effective modal bandwidth. In another MA approach, the apertures are optically coupled such that self-injection locking (SIL) leads to lasing in a single supermode. One may regard one of the supermodes as acting as a master mode controlling the other one. Streak-camera studies reveal post-pulse oscillations in the SIL regime at frequencies up to 100 GHz. MA VCSELs enable a favorable combination of wavelength chirp and chromatic dispersion, extending transmission distances over MMFs beyond those expected for zero-chirp sources and supporting transfer bandwidths up to 60 GHz over kilometer-length SMF links. Full article
Show Figures

Figure 1

12 pages, 5562 KB  
Article
Random Search Algorithm-Assisted Automatic Mode-Locked Fiber Lasers
by Penghui Yang, Yanrong Song, Lin Mao and Ruyue You
Photonics 2025, 12(10), 1028; https://doi.org/10.3390/photonics12101028 - 16 Oct 2025
Viewed by 157
Abstract
Automatic mode-locking is a crucial approach for achieving ultrashort pulses in fiber lasers. Here, a random search algorithm was developed, and an automatic mode-locked laser was constructed. Numerical simulations of an automatic mode-locked Yb-doped fiber laser were conducted, and both continuous-wave, as well [...] Read more.
Automatic mode-locking is a crucial approach for achieving ultrashort pulses in fiber lasers. Here, a random search algorithm was developed, and an automatic mode-locked laser was constructed. Numerical simulations of an automatic mode-locked Yb-doped fiber laser were conducted, and both continuous-wave, as well as mode-locked pulse states, were successfully obtained. The laser utilized a squeezer-type electrically controlled polarization controller to adjust the mode-locking states and enabled the controllable output of 532.71 fs dissipative solitons and 23.87 ps noise-like pulses, with search times of 14.19 s and 2.37 s, respectively. The center wavelengths were 1034 nm and 1038 nm, with signal-to-noise ratios of 63.1 dBm and 51.2 dBm, respectively. This work effectively addresses the polarization state drift caused by temperature and vibration, enhancing the laser’s environmental adaptability through adaptive monitoring. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application: 2nd Edition)
Show Figures

Figure 1

21 pages, 3171 KB  
Review
Self-Mode-Locking and Frequency-Modulated Comb Semiconductor Disk Lasers
by Arash Rahimi-Iman
Photonics 2025, 12(7), 677; https://doi.org/10.3390/photonics12070677 - 5 Jul 2025
Viewed by 1039
Abstract
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing [...] Read more.
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing conditions—thereby suggesting a reduced reliance on a semiconductor saturable-absorber mirror (the SESAM) in the cavity. Self-mode-locked (SML) VECSELs with sub-ps pulse durations were reported repeatedly. This motivated investigations on a Kerr-lensing type effect acting as an artificial saturable absorber. So-called Z-scan and ultrafast beam-deflection experiments were conducted to emphasize the role of nonlinear lensing in the chip for pulse formation. Recently, in addition to allowing stable ultrashort pulsed operation, self-starting mode-locked operation gave rise to another emission regime related to frequency comb formation. While amplitude-modulated combs relate to signal peaks in time, providing a so-called pulse train, a frequency-modulated comb is understood to cause quasi continuous-wave output with its sweep of instantaneous frequency over the range of phase-locked modes. With gain-bandwidth-enhanced chips, as well as with an improved understanding of the impacts of dispersion and nonlinear lensing properties and cavity configurations on the device output, an enhanced employment of SML VECSELs is to be expected. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

19 pages, 10165 KB  
Article
Experimental Guide for Compact Bow-Tie Femtosecond Solid-State Laser Development
by Vinícius Pereira Pinto, Giovana Trevisan Nogueira, Fátima Maria Mitsue Yasuoka and Jarbas Caiado de Castro Neto
Photonics 2025, 12(6), 548; https://doi.org/10.3390/photonics12060548 - 29 May 2025
Cited by 1 | Viewed by 798
Abstract
Bow-tie cavity configurations have gained significant attention due to their efficacy in facilitating stable resonator operation for applications requiring short pulse operation and high repetition rate pulses, offering versatility and reliability. While there is an extensive body of literature addressing the theoretical aspects [...] Read more.
Bow-tie cavity configurations have gained significant attention due to their efficacy in facilitating stable resonator operation for applications requiring short pulse operation and high repetition rate pulses, offering versatility and reliability. While there is an extensive body of literature addressing the theoretical aspects and applications of this laser configuration, there exists a gap in practical insights and systematic approaches guidance pertaining to the development and precision alignment of this laser type. The paper achieves this by compiling a range of analytical and optimization techniques for the bow-tie cavity configuration and delineating the necessary steps for the optimization required for continuous wave operation. This ultimately leads to the attainment of the pulsed regime through the Kerr Lens Mode-locking technique, offering a detailed account of the development, optimization, and performance evaluation of a Ti:Sapphire femtosecond laser cavity, using dispersion-compensating mirrors to produce a low-energy pulse of 1 nJ, a high repetition rate of 1 GHz, and a short pulse duration of 61 fs. This work can be useful for researchers and engineers seeking to embark on the development of compact and high-performance femtosecond lasers for a spectrum of applications, encompassing biomedical imaging, laser-assisted surgery, spectroscopy, and optical frequency combs. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

20 pages, 6782 KB  
Article
Accelerating Millimeter-Wave Imaging: Automating Glow Discharge Detector Focal Plane Arrays with Chirped FMCW Radar for Rapid Measurement and Instrumentation Applications
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Electronics 2025, 14(9), 1819; https://doi.org/10.3390/electronics14091819 - 29 Apr 2025
Viewed by 635
Abstract
This article presents an innovative integration of Glow Discharge Detector Focal Plane Arrays (GDD FPA) with Chirped Frequency Modulated Continuous Wave (FMCW) Radar, enhancing millimeter-wave (MMW) imaging. The cost-effective FPA design using GDDs as pixel elements forms the foundation of the system. We [...] Read more.
This article presents an innovative integration of Glow Discharge Detector Focal Plane Arrays (GDD FPA) with Chirped Frequency Modulated Continuous Wave (FMCW) Radar, enhancing millimeter-wave (MMW) imaging. The cost-effective FPA design using GDDs as pixel elements forms the foundation of the system. We investigate MMW effects on GDD discharge currents via basic data acquisition (DAQ) and implement a scanning mechanism with a step motor for sub-pixel imaging. The setup integrates an MMW source, optical components, a timer/counter, and an 8 × 8 FPA with 64 GDD, operating in electrical detection modes and processing signals using Fast Fourier Transform (FFT) algorithms. Recent advancements in millimeter-wave imaging have focused on improving image resolution and acquisition speed through various techniques, including lock-in amplifiers and electrical detection methods. However, these methods introduce complexity, cost, and extended acquisition times. Our approach mitigates these challenges by implementing a simplified FPA design that eliminates the need for external signal conditioning elements, providing faster and more efficient image acquisition. The primary contributions include significant improvements in the speed and automation of image acquisition achieved through a coordinated control mechanism for efficient row scanning. Compared to previous generations of GDD FPAs, this system achieves a notable reduction in image acquisition time by up to 75%, while maintaining high fidelity. These enhancements make the system particularly suitable for time-sensitive applications. Additionally, future research directions include the incorporation of 3D imaging using FMCW radar. Results from the FMCW measurements using the single GDD circuit demonstrate the system’s ability to accurately capture and process MMW radiation, even at low intensities. The combined strengths of GDD FPA and chirped FMCW radar underscore the system’s effectiveness in MMW detection, laying the groundwork for advanced MMW imaging capabilities across diverse applications. Full article
Show Figures

Figure 1

8 pages, 1555 KB  
Communication
Tunable All-Fiber Femtosecond Electro-Optic Optical Frequency Comb Operating at 1.5 μm
by Aiguo Zhang, Ke Dai, Lin Huang, Liwen Sheng, Zhiming Liu, Yudong Cui, Xiang Hao and Yusheng Zhang
Photonics 2025, 12(4), 311; https://doi.org/10.3390/photonics12040311 - 28 Mar 2025
Viewed by 955
Abstract
We propose and demonstrate a tunable femtosecond electro-optic optical frequency comb by shaping a continuous-wave seed laser in an all-fiber configuration. The seed laser, operating at 1.5 μm, is first cascade-phase-modulated and subsequently de-chirped to generate low-contrast pulses of approximately 8 ps at [...] Read more.
We propose and demonstrate a tunable femtosecond electro-optic optical frequency comb by shaping a continuous-wave seed laser in an all-fiber configuration. The seed laser, operating at 1.5 μm, is first cascade-phase-modulated and subsequently de-chirped to generate low-contrast pulses of approximately 8 ps at a repetition rate of 5.95 GHz. These pulses are then refined into clean, high-quality picosecond pulses using a Mamyshev regenerator. The generated source is further amplified using an erbium–ytterbium-doped fiber amplifier operating in a highly nonlinear regime, yielding output pulses compressed to around 470 fs. Tunable continuously across a 5.7~6 GHz range with a 1 MHz resolution, the picosecond pulses undergo nonlinear propagation in the final amplification stage, leading to output pulses that can be further compressed to a few hundred femtoseconds. By using a tunable bandpass filter, the center wavelength and spectral bandwidth can be flexibly tuned. This system eliminates the need for mode-locked cavities, simplifying conventional ultrafast electro-optic combs by relying solely on phase modulation, while delivering femtosecond pulses at multiple-gigahertz repetition rates. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

14 pages, 2519 KB  
Review
Developments of Waveguide Lasers by Femtosecond Laser Direct–Writing Technology
by Yang Zhang, Boyan Yu, Zihao Zhang, Xinghao Duan and Junli Wang
Photonics 2024, 11(9), 803; https://doi.org/10.3390/photonics11090803 - 28 Aug 2024
Cited by 4 | Viewed by 4630
Abstract
Waveguide lasers have the advantages of miniature and compact structure and have broad application prospects in photonic integration and on–chip laboratories. The development of femtosecond laser direct–writing technology makes the processing of transparent materials more flexible and controllable. This paper mainly introduces a [...] Read more.
Waveguide lasers have the advantages of miniature and compact structure and have broad application prospects in photonic integration and on–chip laboratories. The development of femtosecond laser direct–writing technology makes the processing of transparent materials more flexible and controllable. This paper mainly introduces a waveguide laser based on femtosecond laser direct–writing technology. Firstly, the applications of femtosecond laser direct–writing technology in an optical waveguide are introduced, including the principles of femtosecond laser direct–writing technology, common optical wave scanning methods, and types of optical waveguides. After that, we summarize the development of a waveguide continuous–wave laser, a Q–switched laser and a mode–locked laser from visible to mid–infrared wavebands and analyze some new representative work. Finally, we explain the difficulty of compensating for dispersion in pulse waveguide lasers and summarize some new ideas that have been proposed to solve the problem. Full article
(This article belongs to the Special Issue New Perspectives in Ultrafast Intense Laser Science and Technology)
Show Figures

Figure 1

11 pages, 2194 KB  
Article
Buried Depressed-Cladding Waveguides Inscribed in Nd3+ and Yb3+ Doped CLNGG Laser Crystals by Picosecond-Laser Beam Writing
by Gabriela Croitoru, Florin Jipa, Madalin Greculeasa, Alin Broasca, Flavius Voicu, Lucian Gheorghe and Nicolaie Pavel
Materials 2024, 17(8), 1758; https://doi.org/10.3390/ma17081758 - 11 Apr 2024
Cited by 2 | Viewed by 1584
Abstract
Buried depressed-cladding waveguides were fabricated in 0.7-at.% Nd:Ca3Li0.275Nb1.775Ga2.95O12 (Nd:CLNGG) and 7.28-at.% Yb:CLNGG disordered laser crystals grown by Czochralski method. Circular waveguides with 100 μm diameters were inscribed in both crystals with picosecond (ps) laser [...] Read more.
Buried depressed-cladding waveguides were fabricated in 0.7-at.% Nd:Ca3Li0.275Nb1.775Ga2.95O12 (Nd:CLNGG) and 7.28-at.% Yb:CLNGG disordered laser crystals grown by Czochralski method. Circular waveguides with 100 μm diameters were inscribed in both crystals with picosecond (ps) laser pulses at 532 nm of 0.15 μJ energy at 500 kHz repetition rate. A line-by-line writing technique at 1 mm/s scanning speed was used. Laser emission at 1.06 μm (with 0.35 mJ pulse energy) and at 1.03 μm (with 0.16 mJ pulse energy) was obtained from the waveguide inscribed in Nd:CLNGG and Yb:CLNGG, respectively, employing quasi-continuous wave pumping with fiber-coupled diode lasers. The waveguide realized in RE3+-doped CLNGG crystals using ps-laser pulses at high repetition rates could provide Q-switched or mode-locked miniaturized lasers for a large number of photonic applications. Full article
Show Figures

Figure 1

11 pages, 2164 KB  
Article
Prompt Analysis and Design for Passively Mode-Locked Solid-State Lasers with Semiconductor Saturable Absorbers
by Pin-Wen Cheng, Yu-Hsin Hsu, Hsing-Chih Liang, Kai-Feng Huang and Yung-Fu Chen
Photonics 2024, 11(1), 8; https://doi.org/10.3390/photonics11010008 - 22 Dec 2023
Viewed by 2261
Abstract
The critical pump power for achieving passively continuous-wave mode-locking in a solid-state laser is analytically derived from the spatially dependent rate equations and the criterion for the intracavity pulse energy. A prompt way is proposed to straightforwardly design the cavity for passively mode-locked [...] Read more.
The critical pump power for achieving passively continuous-wave mode-locking in a solid-state laser is analytically derived from the spatially dependent rate equations and the criterion for the intracavity pulse energy. A prompt way is proposed to straightforwardly design the cavity for passively mode-locked solid-state lasers. Complete experiments are performed to demonstrate the proposed cavity design and, simultaneously, to verify the theoretical model for the critical pump powers. It is interestingly observed that even though a larger modulation depth causes a higher critical pump power, it can generate a shorter pulse width in return. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications)
Show Figures

Figure 1

10 pages, 2252 KB  
Article
Continuous-Wave and Mode-Locked Operation of an In-Band Pumped Tm,Ho,Lu:CaGdAlO4 Laser
by Huangjun Zeng, Wenze Xue, Robert T. Murray, Weidong Chen, Zhongben Pan, Li Wang, Chen Cui, Pavel Loiko, Xavier Mateos, Uwe Griebner and Valentin Petrov
Appl. Sci. 2023, 13(23), 12927; https://doi.org/10.3390/app132312927 - 3 Dec 2023
Cited by 2 | Viewed by 1947
Abstract
We investigate in-band pumping of a Tm,Ho,Lu:CaGdAlO4 laser using a Raman-shifted Er-fiber laser (1678 nm), in the continuous-wave (CW) and mode-locked (ML) regimes. A maximum output power of 524 mW is obtained in the CW regime with a 5% output coupler at [...] Read more.
We investigate in-band pumping of a Tm,Ho,Lu:CaGdAlO4 laser using a Raman-shifted Er-fiber laser (1678 nm), in the continuous-wave (CW) and mode-locked (ML) regimes. A maximum output power of 524 mW is obtained in the CW regime with a 5% output coupler at an absorbed pump power of 2.04 W, corresponding to a slope efficiency of 27.9%. A maximum CW wavelength tuning range of 160 nm at the zero level, from 1984 to 2144 nm, is obtained with a 0.2% output coupler. In the ML regime, pumping with 5.5 W (unpolarized), the average output power (0.2% output coupler) reaches 148 mW at a repetition rate of ~96 MHz. The output spectrum is centered at 2071.5 nm with a FWHM of 21.5 nm (σ-polarization). The pulse duration amounts to 218 fs (time-bandwidth product equal to 0.327). Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

10 pages, 483 KB  
Communication
Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror
by Xiang Zhang, Yong Shen, Xiaokang Tang, Qu Liu and Hongxin Zou
Photonics 2023, 10(3), 261; https://doi.org/10.3390/photonics10030261 - 1 Mar 2023
Cited by 6 | Viewed by 4043
Abstract
From the perspective of the differential phase delay experienced by the two counterpropagating optical fields, the self-starting of the mode-locked fiber laser with a non-linear amplifying loop mirror (NALM) is theoretically studied. Although it is generally believed that NALM shows a saturable absorption [...] Read more.
From the perspective of the differential phase delay experienced by the two counterpropagating optical fields, the self-starting of the mode-locked fiber laser with a non-linear amplifying loop mirror (NALM) is theoretically studied. Although it is generally believed that NALM shows a saturable absorption effect on both continuous wave (CW) light and pulses, we find a counter-intuitive fact that cross-phase modulation (XPM) leads to opposite signs of differential non-linear phase shifts (NPSs) in these two cases, resulting in inverse saturable absorption (ISA) during the pulse formation process. The ISA is not helpful for the self-starting of laser mode-locking and can be alleviated by introducing a non-reciprocal phase shifter into the fiber loop. These results are helpful for optimizing the design of NALM and lowering the self-starting threshold of the high-repetition-rate mode-locked fiber laser. Full article
(This article belongs to the Special Issue Ultrafast Laser Systems)
Show Figures

Figure 1

9 pages, 3267 KB  
Article
Revealing the Evolution from Q-Switching to Mode-Locking in an Erbium-Doped Fiber Laser Using Tungsten Trioxide Saturable Absorber
by Xin Tan, Ya Liu, Yongkang Zheng, Zewu Xie and Guoqing Hu
Photonics 2022, 9(12), 962; https://doi.org/10.3390/photonics9120962 - 10 Dec 2022
Cited by 4 | Viewed by 3811
Abstract
Passively Q-switching and mode-locking technologies can generate short pulses with durations that differ by several orders of magnitude widely used in different applications. Recently, Q-switching and mode-locking realized in an identical laser cavity with saturable absorbers was reported. The analysis of pulse conversion [...] Read more.
Passively Q-switching and mode-locking technologies can generate short pulses with durations that differ by several orders of magnitude widely used in different applications. Recently, Q-switching and mode-locking realized in an identical laser cavity with saturable absorbers was reported. The analysis of pulse conversion is helpful for us to further understand the pulse dynamics of a laser. In this paper, the pulse evolution from Q-switching, Q-switched mode-locking to mode-locking, is demonstrated by using a tungsten trioxide saturable absorber in a ring-cavity erbium-doped fiber laser. Firstly, self-started Q-switching at 1563 nm is observed, the repetition rate continuously increases, and the duration decreases when the pump power increased. Then, with an adjusting intra-cavity state of polarization under a high pump power level, stable Q-switched mode-locking pulses evolved from Q-switching, are observed. The amplitude of the emerged pulse sequence with a period of 36.8 ns, determined by cavity length, is modulated by the Q-switched envelope with the period of 10.3 μs. By optimizing the intracavity polarization carefully, stable continuous wave mode-locking operation is achieved eventually. To the best of our knowledge, this is the first experimental demonstration of Q-switching and mode-locking, respectively, in an identical transition-metal-oxides-based pulsed fiber laser without modification of cavity structure. Full article
Show Figures

Figure 1

17 pages, 8175 KB  
Article
Dynamics Simulation of Self-Mode-Locking in a Semiconductor Disk Laser Using Delay Differential Equations
by Tao Wang, Renjiang Zhu, Cunzhu Tong, Yunjie Liu and Peng Zhang
Photonics 2022, 9(11), 859; https://doi.org/10.3390/photonics9110859 - 13 Nov 2022
Cited by 4 | Viewed by 2285
Abstract
Self-mode-locked semiconductor disk lasers possess compact resonant cavity and stable construction. These devices have a wide application prospect because of their picosecond to sub-picosecond pulse width, excellent beam quality and tailorable emission wavelength. In this paper, dynamics simulations of self-mode-locking in a semiconductor [...] Read more.
Self-mode-locked semiconductor disk lasers possess compact resonant cavity and stable construction. These devices have a wide application prospect because of their picosecond to sub-picosecond pulse width, excellent beam quality and tailorable emission wavelength. In this paper, dynamics simulations of self-mode-locking in a semiconductor disk laser are performed by using delay differential equations for the first time. The corresponding conditions of different modality of mode-locking, including Q-switched mode-locking, continuous-wave mode-locking and harmonic mode-locking are calculated, and their dynamics evolution processes are presented. We also analyze the characteristics of the three different mode-locking modalities and summarize their overall dynamics evolution tendency. This kind of numerical simulation and analysis provides an understanding of the dynamics process of self-mode-locking, and may be referenced for related experiments. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

10 pages, 4196 KB  
Article
All-Fiber High-Energy Mode-Locked Ytterbium-Doped Fiber Laser with Bismuth Telluride Nanosheet Saturable Absorber
by Hazlihan Haris, Malathy Batumalay, Tan Sin Jin, Ahmad Razif Muhammad, Arni Munira Markom, Muhamad Hakim Izani, Megat Muhammad Ikhsan Megat Hasnan and Ismail Saad
Crystals 2022, 12(11), 1507; https://doi.org/10.3390/cryst12111507 - 24 Oct 2022
Cited by 10 | Viewed by 4265
Abstract
Utilizing bismuth telluride (Bi2Te3) nanosheet saturable absorbers (SA), a remarkable source of continuous-wave infrared radiation known for its high efficiency and wide range of accessible wavelengths, has been successfully developed. The mode-locking bright pulses have a repetition frequency of [...] Read more.
Utilizing bismuth telluride (Bi2Te3) nanosheet saturable absorbers (SA), a remarkable source of continuous-wave infrared radiation known for its high efficiency and wide range of accessible wavelengths, has been successfully developed. The mode-locking bright pulses have a repetition frequency of 9.5 MHz and a pulse width of 0.6 ps at a power level of 203.5 mW. The optical spectrum has its center at 1050.23 nm and delivers pulse energies of 2.13 nJ and output power of 20.3 mW. Using a straightforward 18 m long ring design and a laser cavity with a −19.9 ps2/km dispersion, a 44 dB signal-to-noise ratio (SNR) was achieved to demonstrate the pulse’s strong stability. Full article
(This article belongs to the Special Issue Advances in Optical Fibers, Devices and Applications)
Show Figures

Figure 1

17 pages, 5653 KB  
Article
Superconducting Sub-Terahertz Oscillator with Continuous Frequency Tuning
by Maxim E. Paramonov, Lyudmila V. Filippenko, Fedor V. Khan, Oleg S. Kiselev and Valery P. Koshelets
Appl. Sci. 2022, 12(17), 8904; https://doi.org/10.3390/app12178904 - 5 Sep 2022
Cited by 2 | Viewed by 2501
Abstract
The development and approbation of a superconducting local oscillator based on a long Josephson junction made it possible to create a fully superconducting integrated receiver in sub-terahertz frequency range, which was successfully tested both on board a high-altitude balloon and in the laboratory. [...] Read more.
The development and approbation of a superconducting local oscillator based on a long Josephson junction made it possible to create a fully superconducting integrated receiver in sub-terahertz frequency range, which was successfully tested both on board a high-altitude balloon and in the laboratory. In order to expand the frequency range of a superconducting integrated local oscillator, it is necessary to ensure the continuous tuning of its frequency at an arbitrary bias current, including a so-called resonant mode regime. The resonant mode regime takes place for high-quality tunnel junctions with low leakage; in this regime, stable generation is possible only at Fiske steps, the distance in frequency between which is tens of GHz. A method for suppressing resonances has been proposed and implemented; this method is based on the introduction of normal metal layers into the region near the long Josephson junction. Modeling of the propagation of electromagnetic waves in the proposed integrated structure was carried out; experimental samples were fabricated, and their comprehensive study was performed. The complete suppression of resonances and the possibility of the continuous tuning of the frequency of a superconducting local oscillator in the range of 200–700 GHz have been demonstrated. The linewidth of the FFO radiation does not exceed 15 MHz over the entire frequency range, which makes it possible to implement the phase locked loop mode in an integrated receiver intended for spectral studies. Full article
(This article belongs to the Special Issue Applied Superconducting Electronics)
Show Figures

Figure 1

Back to TopTop