Developments of Waveguide Lasers by Femtosecond Laser Direct–Writing Technology
Abstract
:1. Introduction
2. Femtosecond Laser Direct–Writing Technology in Optical Waveguide
3. Development of Femtosecond Laser Direct–Writing Optical Waveguide Laser
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bae, J.E.; Loiko, P.; Normani, S.; Brasse, G.; Benayad, A.; Braud, A.; Camy, P. Er:LiYF4 planar waveguide laser at 2.8 μm. Appl. Phys. Lett. 2024, 125, 081101. [Google Scholar] [CrossRef]
- Waeselmann, S.H.; Rüter, C.E.; Kip, D.; Kränkel, C.; Huber, G. Nd:sapphire channel waveguide laser. Opt. Mater. Express 2017, 7, 2361–2367. [Google Scholar] [CrossRef]
- Kurilchik, S.V.; Prentice, J.J.; Eason, R.W.; Mackenzie, J.I. Characterisation and laser performance of a Yb:LuAG double–clad planar waveguide grown by pulse laser deposition. Appl. Phys. B 2019, 125, 201. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, J.; Che, L.; Wang, S.; Meng, H.; Liu, X. Buried Optical Waveguide in Photo–Thermo–Refractive Glass by Ion Exchange Technology. IEEE Photonics Technol. Lett. 2023, 35, 793–796. [Google Scholar] [CrossRef]
- Xiang, B.; Ren, X.; Ruan, S.; Wang, L.; Yan, P.; Han, H.; Wang, M.; Yin, J. Visible to near–infrared supercontinuum generation in yttrium orthosilicate bulk crystal and ion implanted planar waveguide. Sci. Rep. 2016, 6, 31612. [Google Scholar] [CrossRef]
- Jia, Y.C.; Wang, S.X.; Chen, F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: Fabrication and application. Opto–Electron. Adv. 2020, 3, 190042. [Google Scholar] [CrossRef]
- Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 1996, 21, 1729–1731. [Google Scholar] [CrossRef]
- Hu, H.; Lu, F.; Chen, F.; Shi, B.-R.; Wang, K.-M.; Shen, D.-Y. Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation. J. Appl. Phys. 2001, 89, 5224–5226. [Google Scholar] [CrossRef]
- Yevnin, M.; Atar, G.; Čampelj, S.; Lenardič, B.; Kaplan, N.; Sherman, V.; Gvishi, R.; Sfez, B.; Eger, D. Low–Loss Waveguides by Planar Modified Chemical Vapor Deposition. J. Light. Technol. 2020, 38, 792–796. [Google Scholar] [CrossRef]
- Wu, P.; He, S.; Liu, H. Annular waveguide lasers at 1064 nm in Nd:YAG crystal produced by femtosecond laser inscription. Appl. Opt. 2018, 57, 5420–5424. [Google Scholar] [CrossRef]
- Izawa, T.; Nakagome, H. Optical waveguide formed by electrically induced migration of ions in glass plates. Appl. Phys. Lett. 1972, 21, 584–586. [Google Scholar] [CrossRef]
- Alzahrani, A.S.; Pintori, G.; Sglavo, V.M. Conventional and electric field–assisted ion exchange on glass–ceramics for dental applications. J. Eur. Ceram. Soc. 2021, 41, 5341–5348. [Google Scholar] [CrossRef]
- Gibbons, J.F. Ion implantation in semiconductors–Part I: Range distribution theory and experiments. Proc. IEEE 1968, 56, 295–319. [Google Scholar] [CrossRef]
- He, F.; Liao, Y.; Lin, J.; Song, J.; Qiao, L.; Cheng, Y.; Sugioka, K. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass. Sensors 2014, 14, 19402–19440. [Google Scholar] [CrossRef]
- Sugioka, K.; Xu, J.; Wu, D.; Hanada, Y.; Wang, Z.; Cheng, Y.; Midorikawa, K. Femtosecond laser 3D micromachining: A powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab. A Chip. 2014, 14, 3447–3458. [Google Scholar] [CrossRef]
- Rethfeld, B.; Sokolowski-Tinten, K.; von der Linde, D.; Anisimov, S.I. Timescales in the response of materials to femtosecond laser excitation. Appl. Phys. A 2004, 79, 767–769. [Google Scholar] [CrossRef]
- Ams, M.; Marshall, G.D.; Dekker, P.; Dubov, M.; Mezentsev, V.K.; Bennion, I.; Withford, M.J. Investigation of Ultrafast Laser–Photonic Material Interactions: Challenges for Directly Written Glass Photonics. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1370–1381. [Google Scholar] [CrossRef]
- Correa, D.S.; Almeida, J.M.P.; Almeida, G.F.B.; Cardoso, M.R.; De Boni, L.; Mendonça, C.R. Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces. Photonics 2017, 4, 8. [Google Scholar] [CrossRef]
- Gross, S.; Dubov, M.; Withford, M.J. On the use of the Type I and II scheme for classifying ultrafast laser direct–write photonics. Opt. Express 2015, 23, 7767–7770. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, Y.; Chen, F. Femtosecond laser–induced optical waveguides in crystalline garnets: Fabrication and application. Opt. Laser Technol. 2023, 164, 109528. [Google Scholar] [CrossRef]
- Thomson, R.R.; Campbell, S.; Blewett, I.J.; Kar, A.K.; Reid, D.T. Optical waveguide fabrication in z–cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 2006, 88, 111109. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Thomson, R.R.; Beecher, S.J.; Psaila, N.D.; Bookey, H.T.; Kar, A.K. Ultrafast laser inscription of near–infrared waveguides in polycrystalline ZnSe. Opt. Lett. 2010, 35, 4036–4038. [Google Scholar] [CrossRef]
- Reichert, F.; Calmano, T.; Müller, S.; Marzahl, D.T.; Metz, P.W.; Huber, G. Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides. Opt. Lett. 2013, 38, 2698–2701. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, F.; Vázquez de Aldana, J.R. Near–infrared lasers and self–frequency–doubling in Nd:YCOB cladding waveguides. Opt. Express 2013, 21, 11562–11567. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Nie, W.; Romero, C.; Aldana, J.R.V.d.; Chen, F. Femtosecond–Laser–Written S–Curved Waveguide in Nd:YAP Crystal: Fabrication and Multi–Gigahertz Lasing. J. Light. Technol. 2020, 38, 6845–6852. [Google Scholar] [CrossRef]
- Grivas, C.; Ismaeel, R.; Corbari, C.; Huang, C.-C.; Hewak, D.W.; Lagoudakis, P.; Brambilla, G. Generation of Multi–Gigahertz Trains of Phase–Coherent Femtosecond Laser Pulses in Ti:Sapphire Waveguides. Laser Photonics Rev. 2018, 12, 1800167. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Mu, W.; Ren, Y.; Jia, Z.; Fu, X.; Sun, X.; Jia, Y. Dual–wavelength self–Q–switched mode–locked waveguide lasers based on Nd:LGGG cladding waveguides. Opt. Mater. Express 2022, 12, 854–862. [Google Scholar] [CrossRef]
- Calmano, T.; Kränkel, C.; Huber, G. Laser oscillation in Yb:YAG waveguide beam–splitters with variable splitting ratio. Opt. Lett. 2015, 40, 1753–1756. [Google Scholar] [CrossRef]
- Liu, H.; Aldana, J.R.V.d.; Hong, M.; Chen, F. Femtosecond Laser Inscribed Y–Branch Waveguide in Nd:YAG Crystal: Fabrication and Continuous–Wave Lasing. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 227–230. [Google Scholar] [CrossRef]
- Jia, Y.; He, R.; Vázquez de Aldana, J.R.; Liu, H.; Chen, F. Femtosecond laser direct writing of few–mode depressed–cladding waveguide lasers. Opt. Express 2019, 27, 30941–30951. [Google Scholar] [CrossRef]
- Peng, Y.-P.; Zou, X.; Bai, Z.; Leng, Y.; Jiang, B.; Jiang, X.; Zhang, L. Mid–infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing. Sci. Rep. 2015, 5, 18365. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Cheng, C.; Vázquez de Aldana, J.R.; Castillo, G.R.; Rabes, B.d.R.; Tan, Y.; Jaque, D.; Chen, F. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci. Rep. 2014, 4, 5988. [Google Scholar] [CrossRef]
- Bae, J.E.; Park, T.G.; Kifle, E.; Mateos, X.; Aguiló, M.; Díaz, F.; Romero, C.; Rodríguez Vázquez de Aldana, J.; Lee, H.; Rotermund, F. Carbon nanotube Q–switched Yb:KLuW surface channel waveguide lasers. Opt. Lett. 2020, 45, 216–219. [Google Scholar] [CrossRef]
- Li, S.-L.; Ye, Y.-K.; Wang, H.-L. Cladding waveguide lasers in femtosecond laser written Nd:KGW waveguides. Opt. Mater. 2020, 110, 110517. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Z.; Yang, Y.; Wang, Y.; Han, X.; Lau, K.Y.; Wu, Z.; Zou, C.; Zhang, Y.; Xu, B.; et al. 3D Laser Writing of Low–Loss Cross–Section–Variable Type–I Optical Waveguide Passive/Active Integrated Devices in Single Crystals. Adv. Mater. 2024, 36, 2404493. [Google Scholar] [CrossRef] [PubMed]
- Taccheo, S.; Della Valle, G.; Osellame, R.; Cerullo, G.; Chiodo, N.; Laporta, P.; Svelto, O.; Killi, A.; Morgner, U.; Lederer, M.; et al. Er:Yb–doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett. 2004, 29, 2626–2628. [Google Scholar] [CrossRef]
- Baiocco, D.; Lopez-Quintas, I.; Vázquez de Aldana, J.R.; Tonelli, M.; Tredicucci, A. High efficiency diode–pumped Pr:LiLuF4 visible lasers in femtosecond–laser–written waveguides. Opt. Express 2024, 32, 9767–9776. [Google Scholar] [CrossRef]
- Calmano, T.; Siebenmorgen, J.; Reichert, F.; Fechner, M.; Paschke, A.-G.; Hansen, N.-O.; Petermann, K.; Huber, G. Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region. Opt. Lett. 2011, 36, 4620–4622. [Google Scholar] [CrossRef]
- Grivas, C.; Corbari, C.; Brambilla, G.; Lagoudakis, P.G. Tunable, continuous–wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses. Opt. Lett. 2012, 37, 4630–4632. [Google Scholar] [CrossRef]
- Choi, S.Y.; Calmano, T.; Rotermund, F.; Kränkel, C. 2–GHz carbon nanotube mode–locked Yb:YAG channel waveguide laser. Opt. Express 2018, 26, 5140–5145. [Google Scholar] [CrossRef]
- Hakobyan, S.; Wittwer, V.J.; Hasse, K.; Kränkel, C.; Südmeyer, T.; Calmano, T. Highly efficient Q–switched Yb:YAG channel waveguide laser with 5.6 W of average output power. Opt. Lett. 2016, 41, 4715–4718. [Google Scholar] [CrossRef] [PubMed]
- Siebenmorgen, J.; Calmano, T.; Petermann, K.; Huber, G. Highly efficient Yb:YAG channel waveguide laser written with a femtosecond–laser. Opt. Express 2010, 18, 16035–16041. [Google Scholar] [CrossRef]
- Jia, Y.; Vázquez de Aldana, J.R.; Chen, F. Efficient waveguide lasers in femtosecond laser inscribed double–cladding waveguides of Yb:YAG ceramics. Opt. Mater. Express 2013, 3, 645–650. [Google Scholar] [CrossRef]
- Calmano, T.; Siebenmorgen, J.; Hellmig, O.; Petermann, K.; Huber, G. Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing. Appl. Phys. B 2010, 100, 131–135. [Google Scholar] [CrossRef]
- Jia, Y.; Cheng, C.; Aldana, J.R.V.d.; Chen, F. Three–Dimensional Waveguide Splitters Inscribed in Nd:YAG by Femtosecond Laser Writing: Realization and Laser Emission. J. Light. Technol. 2016, 34, 1328–1332. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, N.; Yang, J.; Chen, F.; Vázquez de Aldana, J.R.; Lu, Q. Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription. Opt. Express 2011, 19, 12503–12508. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jia, Y.; Chen, F.; Vázquez de Aldana, J.R. Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses. Opt. Mater. Express 2013, 3, 278–283. [Google Scholar] [CrossRef]
- Tan, Y.; Rodenas, A.; Chen, F.; Thomson, R.R.; Kar, A.K.; Jaque, D.; Lu, Q. 70% slope efficiency from an ultrafast laser–written Nd:GdVO4 channel waveguide laser. Opt. Express 2010, 18, 24994–24999. [Google Scholar] [CrossRef]
- Pavel, N.; Salamu, G.; Jipa, F.; Zamfirescu, M. Diode–laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond–laser writing technique. Opt. Express 2014, 22, 23057–23065. [Google Scholar] [CrossRef]
- Ren, Y.; Dong, N.; Macdonald, J.; Chen, F.; Zhang, H.; Kar, A.K. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing. Opt. Express 2012, 20, 1969–1974. [Google Scholar] [CrossRef]
- Liu, H.; An, Q.; Chen, F.; Vázquez de Aldana, J.R.; del Rosal Rabes, B. Continuous–wave lasing at 1.06μm in femtosecond laser written Nd:KGW waveguides. Opt. Mater. 2014, 37, 93–96. [Google Scholar] [CrossRef]
- Okhrimchuk, A.G.; Obraztsov, P.A. 11–GHz waveguide Nd:YAG laser CW mode–locked with single–layer graphene. Sci. Rep. 2015, 5, 11172. [Google Scholar] [CrossRef]
- Nie, W.; Cheng, C.; Jia, Y.; Romero, C.; Vázquez de Aldana, J.R.; Chen, F. Dual–wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing. Opt. Lett. 2015, 40, 2437–2440. [Google Scholar] [CrossRef] [PubMed]
- Kifle, E.; Mateos, X.; de Aldana, J.R.V.; Ródenas, A.; Loiko, P.; Choi, S.Y.; Rotermund, F.; Griebner, U.; Petrov, V.; Aguiló, M.; et al. Femtosecond–laser–written Tm:KLu(WO4)2 waveguide lasers. Opt. Lett. 2017, 42, 1169–1172. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, Z.; Xiong, Y.; Liu, H.; Gao, S.; Ren, Y.; Zhao, X.; Liu, F.; Jia, Y.; Chen, F. Tm,Ho:YLF waveguide lasers at 2.05 µm. Opt. Lett. 2024, 49, 1977–1980. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, S.; Chen, Z.; Sun, X.; Liu, H.; Jia, Y.; Chen, F. Femtosecond laser direct writing of compact Tm:YLF waveguide lasers. Opt. Laser Technol. 2023, 167, 109786. [Google Scholar] [CrossRef]
- Ayevi, B.; Morova, Y.; Tonelli, M.; Sennaroglu, A. Er3+:YLiF4 channeled waveguide laser near 2.7–2.8 μm fabricated by femtosecond laser inscription. Opt. Lett. 2024, 49, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Baiocco, D.; Lopez-Quintas, I.; Vázquez de Aldana, J.R.; Tonelli, M.; Tredicucci, A. Comparative Performance Analysis of Femtosecond–Laser–Written Diode–Pumped Pr:LiLuF4 Visible Waveguide Lasers. Photonics 2023, 10, 377. [Google Scholar] [CrossRef]
- Baiocco, D.; Lopez-Quintas, I.; de Aldana, J.R.V.; Tonelli, M.; Tredicucci, A. Thermal analysis of diode–pumped femtosecond–laser–written Pr:LiLuF4 waveguide lasers. Opt. Laser Technol. 2025, 180, 111499. [Google Scholar] [CrossRef]
- Kim, M.H.; Calmano, T.; Choi, S.Y.; Lee, B.J.; Baek, I.H.; Ahn, K.J.; Yeom, D.-I.; Kränkel, C.; Rotermund, F. Monolayer graphene coated Yb:YAG channel waveguides for Q–switched laser operation. Opt. Mater. Express 2016, 6, 2468–2474. [Google Scholar] [CrossRef]
- Ponarina, M.V.; Okhrimchuk, A.G.; Rybin, M.G.; Smayev, M.P.; Obraztsova, E.D.; Smirnov, A.V.; Zhluktova, I.V.; Kamynin, V.A.; Dolmatov, T.V.; Bukin, V.V.; et al. Dual–wavelength generation of picosecond pulses with 9.8 GHz repetition rate in Nd:YAG waveguide laser with graphene. Quantum Electron. 2019, 49, 365. [Google Scholar] [CrossRef]
- Liu, K.; Dong, Y.; Zhang, Z.; Duan, X.; Guo, R.; Zhai, Z.; Wang, J. MHz repetition rate femtosecond radially polarized vortex laser direct writing Yb:CaF2 waveguide laser operating in continuous–wave and pulse regimes. Nanophotonics 2024, 13, 9–18. [Google Scholar] [CrossRef]
- Bae, J.E.; Mateos, X.; Aguiló, M.; Díaz, F.; Vázquez de Aldana, J.R.; Romero, C.; Lee, H.; Rotermund, F. Transition of pulse operation from Q–switching to continuous–wave mode–locking in a Yb:KLuW waveguide laser. Opt. Express 2020, 28, 18027–18034. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Cheng, C.; Yu, H.; Chen, F. 6.5 GHz Q–switched mode–locked waveguide lasers based on two–dimensional materials as saturable absorbers. Opt. Express 2018, 26, 11321–11330. [Google Scholar] [CrossRef]
- Ams, M.; Dekker, P.; Gross, S.; Withford, M.J. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses. Nanophotonics 2017, 6, 743–763. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, B.; Sun, X.; Jia, Y.; Chen, F. 1.8–μm laser operation based on femtosecond–laser direct written Tm:YVO4 cladding waveguides. Opt. Express 2023, 31, 16560–16569. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, F. Compact solid–state waveguide lasers operating in the pulse regime: A review [Invited]. Chin. Opt. Lett. 2019, 17, 012302. [Google Scholar]
Gain media | Working Wavelength (nm) | Cavity Configuration | Lasing Threshold (mW) | Maximum Output Power (mW) | Slope Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Pr,Mg:SrAl12O19 | 525.3 | dual–line | 1088 | 36 | – | [23] |
Pr:LiLuF4 | 604 | ear–like cadding | – | 278 | 40 | [37] |
Pr:SrAl12O19 | 643.9 | dual–line | 190 | 28.1 | 8 | [38] |
Ti:sapphire | 798.5 | dual–line | 84 | 143 | 23.5 | [39] |
Yb:YAG | 1030 | cadding | 43 | 410 | 15.2 | [40] |
dual–line | – | 5.7 W | 78 | [41] | ||
dual–line | – | 765 | 75 | [42] | ||
double–cladding | – | 80.2 | 62.9 | [43] | ||
Y–branch dual–line | 271 | 2.29 W | 52 | [28] | ||
Nd:YAG | 1064 | Y–branch cladding | – | 231 | 22 | [29] |
dual–line | 63 | 1.29 | 59 | [44] | ||
1 × 4 splitters | 90 | 217 | 22 | [45] | ||
Nd:GGG | 1061 | dual–line | 29 | 11 | 25 | [46] |
1063 | cladding | 270 | 209 | 44.4 | [47] | |
Nd:GdVO4 | 1063.6 | dual–line | – | 256 | 70 | [48] |
Nd:YVO4 | 1064 | cladding | – | 1.5 | 28 | [49] |
1065 | cladding | 59 | 443 | 57 | [30] | |
Nd:LuVO4 | 1066.4 | dual–line | 98 | 30 | 14 | [50] |
Nd:KGW | 1065 | dual–line | 141 | 33 | 52.3 | [51] |
1067 | cladding | 140 | 198.5 | 39.4 | [52] | |
Nd:YAP | 1064 and 1079 | cladding | 243 | 199.8 | 33.4 | [53] |
Er–Yb co–doped phosphate glass | 1533.5 | Type–I | 335 | 1.7 | 2 | [36] |
Tm:Klu(WO4)2 | 1912 | cladding | 21 | 46 | 15.2 | [54] |
Tm,Ho:YLF | 2050 | cladding | 181 | 47.5 | 20.1 | [55] |
Ho:YLF | 1877 | cladding | 107.1 | – | 19 | [56] |
Cr:ZnS | 2244 | spiral cladding | 29.17 | 78 | 8.6 | [31] |
Er:YliF4 | 2808 | cladding | – | 66 | 19.6 | [57] |
Material | Working Wavelength (nm) | SA | Cavity Configuration | Operation Regime | Repetition Rate | Pulse Duration | Slope Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|---|
Ti:sapphire | 798.5 | graphene | Dual line | CWML | 21.25 GHz | 41.4 fs | – | [26] |
Yb:YAG | 1030 | SWCNT–SAM | Dual line | CWML | 2.08 GHz | 1.89 ps | 11.3 | [40] |
SESAM | Dual line | Q–switched | 5.4 MHz | 11 ns | 74 | [41] | ||
Yb:KLuW | 1040 | SWCNTs | Surface cladding | Q–switched | 1.16 MHz | 88.5 ns | 61 | [33] |
Yb:KLuW | 1042.3 | SWCNTs | Cladding | CWML | 0.5 GHz | 2.05 ps | 30.8 | [63] |
Yb:CaF2 | 1045.2 | ReS0.2Se1.2 | Cladding | Q–switched | 125~692.5 kHz | 513 ns | 9.4 | [62] |
Nd:YVO4 | 1064 | Bi2Se3 | Cladding | QSML | 6.436 GHz | 52 ps | 46 | [64] |
MoS2 | 6.48 GHz | 43 ps | 56 | |||||
Bi2Se3 | 6.556 GHz | 26 ps | 33 | |||||
Nd:LGGG | 1061 and 1063 | – | Cladding | SQSML | 8.03 GHz | 30 ps | 25.38 | [27] |
Nd:YAG | 1061 and 1064 | graphene | Cladding | CWML | 9.8 GHz | 102 ps | – | [61] |
Nd:YAP | 1079 and 1064 | MoS2 | S–curved cladding waveguide | QSML | 7.9 GHz | 64 ps | 14.10 | [25] |
31.68 GHz | 16 ps | 14.1 | ||||||
Er:YLiF4 | 2717 | – | Cladding | SQS | 368 kHz | 240 ns | 15.2 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yu, B.; Zhang, Z.; Duan, X.; Wang, J. Developments of Waveguide Lasers by Femtosecond Laser Direct–Writing Technology. Photonics 2024, 11, 803. https://doi.org/10.3390/photonics11090803
Zhang Y, Yu B, Zhang Z, Duan X, Wang J. Developments of Waveguide Lasers by Femtosecond Laser Direct–Writing Technology. Photonics. 2024; 11(9):803. https://doi.org/10.3390/photonics11090803
Chicago/Turabian StyleZhang, Yang, Boyan Yu, Zihao Zhang, Xinghao Duan, and Junli Wang. 2024. "Developments of Waveguide Lasers by Femtosecond Laser Direct–Writing Technology" Photonics 11, no. 9: 803. https://doi.org/10.3390/photonics11090803
APA StyleZhang, Y., Yu, B., Zhang, Z., Duan, X., & Wang, J. (2024). Developments of Waveguide Lasers by Femtosecond Laser Direct–Writing Technology. Photonics, 11(9), 803. https://doi.org/10.3390/photonics11090803