VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers
Abstract
1. Introduction
2. VCSEL Design Development
3. Epitaxial Growth of VCSELs
4. Reliability of VCSELs
5. Parameters Affecting the Modulation Response of VCSELs
6. Noise Characteristics of VCSELs
- Mode partition noise (MPN). MPN arises from random mode hopping between transverse or longitudinal modes [52]. Although the total optical power in a current pulse remains constant, individual modes can exhibit sudden power jumps that partially compensate each other in the total power. Because the rise and fall times for different modes may differ from the overall power rise time, these transients can close the eye diagram in case some of the existing modes are not coupled. To suppress MPN, the coupling efficiencies to all modes in multi-mode fibers should be as equal as possible. This requires narrow beam, low beam-parameter product and high beam quality, which modern multi-mode VCSELs deliver with a substantial margin. Multi-mode VCSELs with far-field widths below 30° at the 1/e2 intensity level have aperture diameters of 5 µm or less (M2 < 4). Therefore, the device meets the encircled flux requirements of the launch conditioner (M2 < 9). Single-mode (SM) VCSELs do not exhibit MPN because only one transverse mode is present.
- Mode beating noise (MBN). Once several VCSEL modes have closely spaced photon energies, their optical fields interfere and locally enhance the gain at beat frequencies equal to the differences in the mode frequencies. In devices with a small number of interacting modes, this noise appears as narrow spikes of only 1–3 GHz width in the RIN spectrum [53,54,55]. Multi-mode VCSELs emitting in a large number of modes may exhibit multiple beating features that increase RIN to values above −140 dB/Hz, which is unacceptable for high-performance links. Intrinsic and strain-induced birefringence in GaAs produces beating features between modes of identical symmetry but orthogonal polarization, typically at low frequencies (1–5 GHz). Randomly, modes of different symmetry may lie close in frequency, producing beat notes in the 15–50 GHz range that strongly limit data transmission performance. Engineering the aperture shape to deviate from circular symmetry suppresses these modes. Otherwise, modes with enhanced frequency splitting can be applied intentionally, allowing the realization of spin lasers [56]. Single-mode VCSELs and multi-aperture VCSELs with isolated apertures inherently avoid MBN because only one mode per aperture exists. Optical reflections must still be minimized to prevent injection of additional modes that could enhance RIN [53].
- Noise due to optical feedback. Reflections from the coupling optics, fiber facets or the detector can feed back into the VCSEL cavity and excite unwanted modes or increase noise. Unlike distributed feedback lasers, VCSELs rely on a high-reflectivity top DBR stack that also acts as an optical isolator [57]. Additional measures include antireflection-coated optics, diffusers or vortex structures [58] to scatter returning light, and thin absorber layers such as GaAs or amorphous Ge deposited on the VCSEL surface to absorb wavelength- and angle-mismatched light reflected to the cavity. These features reduce feedback without significantly lowering the lasing power. Proper optical design is therefore essential to maintain low noise. Because MA VCSELs and SM VCSELs have narrow far-field patterns, they can achieve low feedback reflection for MMF coupling by tilting the coupling angle.
7. Multi-Aperture VCSELs
8. Data Transmission Using Single-Mode MA VCSELs: Chirp and Launch Conditions
9. Mode Evolution in MA VCSELs with Coherently Coupled Apertures
10. Impact of Self-Injection Locking on VCSEL Dynamics
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iga, K.; Koyama, F.; Kinoshita, S. Surface emitting semiconductor laser. IEEE J. Quantum Electron. 1988, 24, 1845–1855. [Google Scholar] [CrossRef]
- Jewell, J.L.; Harbison, J.P.; Scherer, A.; Lee, Y.H.; Florez, L.T. Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization. IEEE J. Quantum Electron. 1991, 27, 1332–1346. [Google Scholar] [CrossRef]
- Lin, C.C.; Deppe, D.G.; Lei, C. Role of waveguide light emission in planar microcavities. IEEE J. Quantum Electron. 1994, 30, 2304–2313. [Google Scholar] [CrossRef]
- Savelyev, A.V.; Nadtochiy, A.M.; Maximov, M.V.; Zhukov, A.E.; Shchukin, V.A.; Ledentsov, N.N. Spontaneous Emission in the Anti-Waveguiding VCSEL. Semiconductors 2019, 53, 1876–1879. [Google Scholar] [CrossRef]
- Huffaker, D.L.; Deppe, D.G. Shin Low threshold half-wave vertical-cavity lasers. Electron. Lett. 1994, 30, 1946–1947. [Google Scholar] [CrossRef]
- Shchukin, V.A.; Ledentsov, N.N.; Kalosha, V.P.; Ledentsov, N., Jr.; Agustin, M.; Kropp, J.R.; Maximov, M.V.; Zubov, F.I.; Shernyakov, Y.M.; Payusov, A.S.; et al. Egorov Virtual cavity in distributed Bragg reflectors. Opt. Express 2018, 26, 25280–25292. [Google Scholar] [CrossRef]
- Ledentsov, N.; Shchukin, V. Optoelectronic Device Based on an Antiwaveguiding Cavity. U.S. Patent 7,339,965B2, 4 March 2008. [Google Scholar]
- Helms, C.J.; Aeby, I.; Luo, W.; Herrick, R.W.; Yuen, A. Reliability of oxide VCSELs at Emcore. Proc. SPIE 5364. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers VIII, San Jose, CA, USA, 16 June 2004. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Shchukin, V.A.; Kalosha, V.P.; Ledentsov, N.N.; Kropp, J.-R.; Agustin, M.; Chorchos, Ł.; Stepniak, G.; Turkiewicz, J.P.; Shi, J.-W. Anti–waveguiding vertical–cavity surface–emitting laser at 850 nm: From concept to advances in high–speed data transmission. Opt. Express 2018, 26, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Ledentsov, N.N.; Hopfer, F.; Mutig, A.; Shchukin, V.A.; Savel’ev, A.V.; Fiol, G.; Kuntz, M.; Haisler, V.A.; Warming, T.; Stock, E.; et al. Novel concepts for ultrahigh-speed quantum-dot VCSELs, edge-emitters, SPIE Proc. 6468. In Proceedings of the Physics and Simulation of Optoelectronic Devices XV, 64681O, San Jose, CA, USA, 7 February 2007. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Hopfer, F.; Mutig, A.; Shchukin, V.A.; Savel’ev, A.V.; Fiol, G.; Lenz, A.; Kuntz, M.; Haisler, V.A.; Warming, T.; et al. Novel concepts for ultrahigh-speed quantum-dot VCSELs, edge-emitters, SPIE Proc. 6468. Presented at the Physics and Simulation of Optoelectronic Devices XV, 64681O, San Jose, CA, USA, 7 February 2007.
- Mutig, A.; Moser, P.; Lott, J.A.; Wolf, P.; Hofmann, W.; Ledentsov, N.N.; Bimberg, D. High-speed 850 and 980 nm VCSELs for high-performance computing applications. In Proceedings of the 2011 Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, China, 28 November 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Moser, P.; Wolf, P.; Lott, J.A.; Larisch, G.; Payusov, A.; Mutig, A.; Unrau, W.; Ledentsov, N.N.; Hofmann, W.; Bimberg, D. High-speed VCSELs for energy efficient computer interconnects, Proc. SPIE 8432. In Proceedings of the Semiconductor Lasers and Laser Dynamics V, 843202, Brussels, Belgium, 8 May 2012. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, Y.; Zhang, X.; Zhang, J.; Liu, Z.; Ning, Y.; Wang, L. Large-aperture single-mode 795 nm VCSEL for chip-scale nuclear magnetic resonance gyroscope with an output power of 4.1mW at 80 °C. Opt. Express 2022, 30, 8991–8999. [Google Scholar] [CrossRef]
- Mu, J.; Yuan, G.; Zhou, Y.; Zhang, J.; Chen, C.; Liu, T.; Zhang, Z.; Xu, Y.; Zhang, T.; Gao, X.; et al. 5.3 mW at 80 °C, single-mode high-power 795 nm VCSEL achieved solely through intracavity design. Opt. Express 2025, 33, 23865–23872. [Google Scholar] [CrossRef] [PubMed]
- Ledentsov, N.N.; Shchukin, V.A.; Shernyakov, Y.M.; Kulagina, M.M.; Payusov, A.S.; Gordeev, N.Y.; Maximov, M.V.; Zhukov, A.E.; Karachinsky, L.Y.; Denneulin, T.; et al. Room Temperature Yellow InGaAlP Quantum Dot Laser. Solid State Electron. 2019, 155, 129–138. [Google Scholar] [CrossRef]
- Shchukin, V.A.; Ledentsov, N.N.; Soshnikov, I.P.; Kryzhanovskaya, N.V.; Maximov, M.V.; Zakharov, N.D.; Werner, P.; Bimberg, D. Nanofaceting and alloy decomposition: From basic studies to advanced photonic devices. Microelectron. J. 2006, 37, 1451–1460. [Google Scholar] [CrossRef]
- Nötzel, R.; Ledentsov, N.N.; Däweritz, L.; Hohenstein, M.; Ploog, K. Direct synthesis of corrugated superlattices on non-(100)-oriented surfaces. Phys. Rev. Lett. 1991, 67, 3812. [Google Scholar] [CrossRef]
- Nötzel, R.; Däweritz, L.; Ledentsov, N.N. Size quantization by faceting in (110)—Oriented GaAs/AlAs heterostructures. Appl. Phys. Lett. 1992, 60, 1615–1617. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Litvinov, D.; Rosenauer, A.; Gerthsen, D.; Soshnikov, I.P.; Shchukin, V.A.; Ustinov, V.M.; Egorov, A.Y.; Zukov, A.E.; Volodin, V.A.; et al. Interface structure and growth mode of quantum wire and quantum dot GaAs-AlAs structures on corrugated (311)A surfaces. J. Electron. Mater. 2001, 30, 463–470. [Google Scholar] [CrossRef]
- Litvinov, D.; Rosenauer, A.; Gerthsen, D.; Ledentsov, N.N.; Bimberg, D.; Ljubas, G.A.; Bolotov, V.V.; Volodin, V.A.; Efremov, M.D.; Preobrazhenskii, V.V.; et al. Ordered arrays of vertically correlated GaAs and AlAs quantum wires grown on a (311)A surface. Appl. Phys. Lett. 2002, 81, 1080–1082. [Google Scholar] [CrossRef]
- Temmyo, J.; Kuramochi, E.; Sugo, M.; Nishiya, T.; Nötzel, R.; Tamamura, T. Self-organized InGaAs quantum disk lasers. Mater. Sci. Eng. B 1995, 35, 7–11. [Google Scholar] [CrossRef]
- Ledentsov, N.; Agustin, M.; Shchukin, V.A.; Kropp, J.-R.; Ledentsov, N.N.; Chorchos, Ł.; Turkiewicz, J.P.; Khan, Z.; Cheng, C.-L.; Shi, J.W.; et al. Quantum dot 850 nm VCSELs with extreme high temperature stability operating at bit rates up to 25 Gbit/s at 150 °C. Solid-State Electron. 2019, 155, 150–158. [Google Scholar] [CrossRef]
- Iba, S.; Koh, S.; Ikeda, K.; Kawaguchi, H. Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection. Appl. Phys. Lett. 2009, 94, 131108. [Google Scholar] [CrossRef]
- Yao, S.; Lv, Z.; Zhang, W.; Wang, Q.; Liang, C.; Du, J.; Zhou, G.; Yu, H.; Li, Y.; Zhang, Y.; et al. Mass-Production Level 200-Gb/s 850 nm VCSEL Array with up to 1.03-W/A Current-Light Slope Efficiency. In Proceedings of the 2017 Asia Communications and Photonics Conference (ACP), Guangzhou, China, 10–13 November 2017; pp. 1–3. [Google Scholar]
- He, Y.; He, X.; Hu, S.; Su, J.; Li, C.; Hu, A.; Guo, X. Wet nitrogen oxidation technology and its anisotropy influence on VCSELs. J. Semicond. 2018, 39, 126001. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Ustinov, V.M.; Egorov, A.Y.; Zhukov, A.E.; Maximov, M.V.; Tabatadze, I.G.; Kop’ev, P.S. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors 1994, 28, 832–834. [Google Scholar]
- Ledentsov, N.N.; Grundmann, M.; Kirstaedter, N.; Christen, J.; Heitz, R.; Böhrer, J.; Heinrichsdorff, F.; Bimberg, D.; Ruvimov, S.S.; Werner, P.; et al. Luminescence and Structural Properties of (In, Ga)As/GaAs Quantum Dots. In Proceedings of the 22nd International Conference on the Physics of Semiconductors, Vancouver, BC, Canada, 15–19 August 1994; Lockwood, D.J., Ed.; World Scientific: Singapore, 1995; Volume 3, p. 1855. [Google Scholar]
- Grundmann, M.; Christen, J.; Ledentsov, N.N.; Böhrer, J.; Bimberg, D.; Ruvimov, S.S.; Werner, P.; Richter, U.; Gösele, U.; Heydenreich, J.; et al. Ultranarrow luminescence lines from single quantum dots. Phys. Rev. Lett. 1995, 74, 4043–4046. [Google Scholar] [CrossRef]
- Lott, J.A.; Ledentsov, N.N.; Ustinov, V.M.; Maleev, N.A.; Zhukov, A.E.; Kovsh, A.R.; Maximov, M.V.; Volovik, B.V.; Alferov, Z.I.; Bimberg, D. InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm. Electron. Lett. 2000, 36, 1384–1385. [Google Scholar] [CrossRef]
- Moller, C.; Mikhrin, S.S.; Kozhukhov, A.V.; Krestnikov, I.L.; Livshits, D.A.; Kovsh, A.R.; Ledentsov, N.N. Ultralow threshold long wavelength single-mode quantum dot VCSELs on GaAs substrates. In Proceedings of the 2005 31st European Conference on Optical Communication, ECOC 2005, Glasgow, UK, 25–29 September 2005; Volume 2, pp. 305–306. [Google Scholar] [CrossRef]
- Lott, J.A.; Kovsh, A.R.; Ledentsov, N.N.; Bimberg, D. GaAs-Based InAs/InGaAs Quantum Dot Vertical Cavity and Vertical External Cavity Surface Emitting Lasers Emitting Near 1300 nm. In Proceedings of the 2005 Pacific Rim Conference on Lasers & Electro-Optics, Tokyo, Japan, 14 July 2005; pp. 160–161. [Google Scholar] [CrossRef]
- Rautiainen, J.; Krestnikov, I.; Nikkinen, J.; Okhotnikov, O.G. Multi-watt orange light generation by intracavity frequency doubling in a dual-gain quantum dot semiconductor disk laser, Proc. SPIE 7917. In Proceedings of the Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications X, 791702, San Francisco, CA, USA, 21 February 2011. [Google Scholar] [CrossRef]
- Lott, J.A.; Stintz, A.; Kovsh, A.R.; Ledentsov, N.N. GaAs-based bipolar cascade InAs/InGaAs quantum dot VCSELs emitting near 1300 nm. In Proceedings of the 2005 IEEE LEOS Annual Meeting Conference Proceedings, Sydney, NSW, Australia, 22–28 October 2005; pp. 533–534. [Google Scholar] [CrossRef]
- Maximov, M.V.; Ustinov, V.M.; Zhukov, A.E.; Kryzhanovskaya, N.V.; Payusov, A.S.; Novikov, I.I.; Gordeev, N.Y.; Shernyakov, Y.M.; Krestnikov, I.; Livshits, D. A 1.33 µm InAs/GaAs quantum dot laser with a 46 cm−1 modal gain Semicond. Sci. Technol. 2008, 23, 105004. [Google Scholar] [CrossRef]
- Siskaninetz, W.J.; Ehret, J.E.; Albrecht, J.D.; Bedford, R.G.; Nelson, T.R., Jr.; Lott, J.A. Gigahertz modulation of GaAs-based bipolar cascade vertical cavity surface-emitting lasers. Opt. Lett. 2007, 32, 136–138. [Google Scholar] [CrossRef]
- Hopfer, F.; Mutig, A.; Fiol, G.; Kuntz, M.; Shchukin, V.; Ledentsov, N.N.; Bimberg, D.; Mikhrin, S.S.; Krestnikov, I.L.; Livshits, D.A.; et al. High Speed 1225 and 1250 nm VCSELs Based on Low-Temperature Grown Quantum Dots. In CLEO/Europe and IQEC 2007 Conference Digest; paper CB8_2; Optica Publishing Group: Washington, DC, USA, 2007. [Google Scholar]
- Kettler, T.; Karachinsky, L.Y.; Ledentsov, N.N.; Shchukin, V.A.; Fiol, G.; Kuntz, M.; Lochmann, A.; Schulz, O.; Reissmann, L.; Posilovic, K.; et al. Degradation-robust single mode continuous wave operation of 1.46 µm metamorphic quantum dot lasers on GaAs substrate. Appl. Phys. Lett. 2006, 89, 041113. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Shchukin, V.A.; Kettler, T.; Posilovic, K.; Bimberg, D.; Karachinsky, L.Y.; Gladyshev, A.Y.; Maximov, M.V.; Novikov, I.I.; Shernyakov, Y.M.; et al. MBE-grown metamorphic lasers for applications at telecom wavelengths. J. Cryst. Growth 2007, 301–302, 914–922. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zhao, J. Dynamic Modeling of Stress-Induced Defect Expansion in VCSELs. IEEE Photonics J. 2024, 16, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Abrenica, J. Electrical and physical failure analysis techniques for oxide aperture delineation in high-power oxide-confined VCSEL arrays, Proc. SPIE Volume 11777. In Proceedings of the High Power Lasers and Applications, Online, 18 April 2011; p. 117770S. [Google Scholar] [CrossRef]
- Shchukin, V.A.; Borovkov, A.I.; Ledentsov, N.N.; Bimberg, D. Tuning and breakdown of faceting under externally applied stress. Phys. Rev. B 1995, 51, 10104–10118. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, P.O.; Koizumi, K.; Fujita, K.; Ohachi, T. AlAs oxidation process in GaAs/AlGaAs/AlAs heterostructures grown by molecular beam epitaxy on GaAs (n11)A substrates. Microelectron. J. 1999, 30, 387–391. [Google Scholar] [CrossRef]
- Koizumi, K.; Vaccaro, P.O.; Fujita, K.; Tateuchi, M.; Ohachi, T. Lateral wet oxidation of AlAs layer in GaAs/AlAs heterostructures grown by MBE on GaAs (n11)A substrates. J. Cryst. Growth 1999, 198–199, 1136–1140. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Makarov, O.Y.; Shchukin, V.A.; Kalosha, V.P.; Ledentsov, N.; Chrochos, L.; Sanayeh, M.B.; Turkiewicz, J.P. High speed VCSEL technology and applications. J. Lightware Technol. 2022, 40, 1749–1763. [Google Scholar] [CrossRef]
- Tauber, D.; Wang, G.; Geels, R.S.; Bowers, J.E.; Coldren, L.A. 70-GHz relaxation oscillation in a vertical cavity surface emitting laser. IEEE Trans. Electron. Devices 1992, 39, 2652. [Google Scholar] [CrossRef]
- Lott, J.A.; Payusov, A.S.; Blokhin, S.A.; Moser, P.; Ledentsov, N.N.; Bimberg, D. Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25 to 40 Gbit/s optical interconnects. Phys. Status Solidi C 2012, 9, 290–293. [Google Scholar] [CrossRef]
- Wang, J.; Murty, M.V.R.; Jiang, S.; Dolfi, D.W.; Wang, T.K.; Feng, Z.-W.; Taslim, S.-J.; Sridhara, A.; Cai, X.; Leong, N.; et al. 200Gb/s PAM4 oxide VCSEL development progress at Broadcom, Proc. SPIE 13384. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XXIX, San Francisco, CA, USA, 19 March 2025. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Lott, J.A.; Kropp, J.-R.; Shchukin, V.A.; Bimberg, D.; Moser, P.; Fiol, G.; Payusov, A.S.; Molin, D.; Kuyt, G.; et al. Progress on single mode VCSELs for data- and tele-communications, Proc. SPIE 8276. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XVI, San Francisco, CA, USA, 7 February 2012. [Google Scholar] [CrossRef]
- Ledentsov, N.N.; Shchukin, V.A.; Kalosha, V.; Ledentsov, N., Jr.; Makarov, O.Y.; Titkov, I.; Ledentsov, A.; Chorchos, Ł.; Turkiewicz, J.; Chen, X.; et al. Single mesa multiaperture VCSELs for high data rate transmission over multimode fiber, Proc. SPIE 13384. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XXIX, San Francisco, CA, USA, 19 March 2025. [Google Scholar] [CrossRef]
- Deppe, D.G.; Li, M.; Yang, X.; Bayat, M. Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response. IEEE J. Quantum Electron. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Murty, M.V.R.; Cunningham, D.; Giovane, L.; Wang, J.; Feng, Z.-W.; Fanning, T.R. Mode partition noise characterization of 25 Gb/s VCSELs, Proc. SPIE 9381. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XIX, San Francisco, CA, USA, 4 March 2015. [Google Scholar] [CrossRef]
- Quirce, A.; Valle, A.; Gimenez, C.; Pesquera, L. Intensity Noise Characteristics of Multimode VCSELs. J. Lightware Technol. 2011, 29, 1039–1045. [Google Scholar] [CrossRef]
- Ledentsov, N., Jr.; Chorchos, L.; Makarov, O.; Kropp, J.-R.; Shchukin, V.; Kalosha, V.P.; Hecht, U.; Kurth, P.; Gerfers, F.; Turkiewicz, J.P.; et al. Oxidation stress induced birefringence in vertical cavity surface emitting lasers, Proc. SPIE 11300. In Proceedings of the Vertical-Cavity Surface-Emitting Lasers XXIV, San Francisco, CA, USA, 24 February 2020. [Google Scholar] [CrossRef]
- Ledentsov, N., Jr.; Chorchos, L.; Makarov, O.Y.; Sanayeh, M.B.; Kropp, J.-R.; Shchukin, V.A.; Kalosha, V.P.; Turkiewicz, J.P.; Ledentsov, N.N. Frequency characteristics of the polarization self-modulation in oxide-confined vertical-cavity surface-emitting lasers, Proc. SPIE 11805. In Proceedings of the Spintronics XIV, San Francisco, CA, USA, 1 August 2021. [Google Scholar] [CrossRef]
- Lindemann, M.; Xu, G.; Pusch, T.; Michalzik, R.; Hofmann, M.R.; Žutić, I.; Gerhardt, N.C. Ultrafast spin-lasers. Nature 2019, 568, 212–215. [Google Scholar] [CrossRef]
- Ho, K.P.; Walker, J.D.; Kahn, J.M. External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett. 1993, 5, 892–895. [Google Scholar] [CrossRef]
- Jia, X.; Kapraun, J.; Wang, J.; Qi, J.; Ji, Y.; Chang-Hasnain, C. Metasurface reflector enables room-temperature circularly polarized emission from VCSEL. Optica 2023, 10, 1093–1099. [Google Scholar] [CrossRef]
- Haghighi, N.; Lott, J.A. Electrically Parallel Three-Element 980 nm VCSEL Arrays with Ternary and Binary Bottom DBR Mirror Layers. Materials 2021, 14, 397. [Google Scholar] [CrossRef] [PubMed]
- Ledentsov, N., Jr.; Makarov, O.; Kon, A.; Kujirai, Y.; Saito, Y.; Titkov, I.; Kropp, J.-R.; Ledentsov, N. Light turning connector optimized for 800G MMF extended reach with the use of Multi Aperture Single Mode 850 nm VCSELs. ECOC 2024. In Proceedings of the 50th European Conference on Optical Communication, Frankfurt, Germany, 22–26 September 2024; pp. 732–734, ISBN 978-3-8007-6426-6. [Google Scholar]
- Chorchos, Ł.; Ledentsov, N.N.; Turkiewicz, J.P. 850nm Multiaperture Vertical Cavity Surface Emitting Lasers: Equivalent Circuit Modeling, Intrinsic Response, Transmission Performance and Comparison to Standard VCSEL Design. J. Lightware Technol. 2025, 43, 4331–4337. [Google Scholar] [CrossRef]
- VKalosha, P.; Shchukin, V.A.; Ledentsov, N.; Ledentsov, N.N. Comprehensive Analysis of Electric Properties of Oxide-Confined Vertical-Cavity Surface-Emitting Lasers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–9. [Google Scholar] [CrossRef]
- Chorchos, L.; Ledentsov, N. Multi-Aperture High Power 100G Single Mode 850nm VCSEL for Extended Reach 800G Ethernet. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Stepniak, G.; Lewandowski, A.; Kropp, J.R.; Ledentsov, N.N.; Shchukin, V.A.; Ledentsov, N., Jr.; Schaefer, G.; Agustin, M.; Turkiewicz, J.P. 54 Gbit/s OOK transmission using single–mode VCSEL up to 2.2 km MMF. Electron. Lett. 2016, 52, 633–635. [Google Scholar] [CrossRef]
- Chen, X.; Ledentsov, N., Jr.; Hurley, J.E.; Makarov, O.Y.; Li, M.-J.; Ledentsov, N. Link Bandwidth and Transmission Capability of Single-Mode Multi-Aperture Vertical-Cavity Surface-Emitting Lasers at 100 G/Lane and 200 G/Lane over Multimode Fibers. Photonics 2025, 12, 147. [Google Scholar] [CrossRef]
- Chen, X., Jr.; Karar, A.S.; Hurley, J.E.; Makarov, O.Y.; Dong, H.; Ledentsov, N. Characterization of Chirp Properties of an 850 nm Single-Mode Multi-Aperture Vertical-Cavity Surface-Emitting Laser and Analysis of Transmission Performance over Multimode and Single-Mode Fibers. Photonics 2025, 12, 703. [Google Scholar] [CrossRef]
- Chen, X.; Li, K.; Stone, J.S.; Li, M.-J. Enhanced 850-nm SM VCSEL transmission by favorable chirp interaction with fiber dispersion. AIP Adv. 2021, 11, 105104. [Google Scholar] [CrossRef]
- Kim, M.; Kim, B.G.; Bae, S.; Chung, Y.C. 112-Gb/s PAM4 transmission over 1km of MMF with mode-field matched center-launching in 850-nm band. IEEE Photon. Technol. Lett. 2021, 33, 23–26. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Papadopoulos, S.; Soos, C.; Troska, J.; Vasey, F.; Vichoudis, P. Modal Dispersion Mitigation in Standard Single-Mode Fibers at 850 nm With Fiber Mode Filters. IEEE Photonics Technol. Lett. 2010, 22, 1476–1478. [Google Scholar] [CrossRef]
- Simpanen, E.; Gustavsson, J.S.; Larsson, A.; Sorin, W.V.; Tan, M.; Bickham, S. Long-Reach 1060 nm SM VCSEL—SMF Optical Interconnects. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Hassan, A.; Ge, C.; Gu, X.; Koyama, F. Record 50 GHz Bandwidth 1060 nm Metal-Aperture Coupled-Cavity VCSELs Enabling 240 Gbps PAM4 Modulation. In Proceedings of the 2025 30th OptoElectronics and Communications Conference (OECC) and 2025 International Conference on Photonics in Switching and Computing (PSC), Sapporo, Japan, 29 June–3 July 2025; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, X.; Li, K.; McCool, R.A.; Chen, H.; Dong, H.; Patel, S.M.; Hurley, J.E.; Stone, J.S.; Bickham, S.; Li, M. Feasibility of 25Gb/s MWDM Transmission Over a 15-km G652.D Compliant Fiber for 5G Fronthaul Networks. In OSA Technical Digest, Proceedings of the 26th Optoelectronics and Communications Conference, Hong Kong, China, 3–7 July 2021; Wai, P.A., Tam, H., Yu, C., Eds.; Optica Publishing Group: Washington, DC, USA, 2021. [Google Scholar]
- Kritler, D.; Brokke, C.; Tourreau, P. Gigabit Ethernet drives evolution of multimode fiber-optic specifications. Laser Focus World 2009, 45, 58–61. [Google Scholar]
- Chen, X.; Patel, S.; Dong, H.; Chen, H.; Hurley, J.E.; Ledentsov, N.; Li, M.-J. Modal Bandwidth Enhancement Through Launch Condition Optimization for High Data Rate VCSEL Transmission Over Multimode Fibers. Photonics 2025, 12, 654. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, T.; Zhang, S.; Liu, L. Single-lane 200-Gbps PAM-4 transmission for Datacenter Intra-Connections employing 850-nm VCSEL. In Proceedings of the 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 24–27 October 2020; pp. 1–3. [Google Scholar]
- Zuo, T.; Zhang, T.; Zhang, S.; Liu, L. 850-nm VCSEL-Based Single-Lane 200-Gbps PAM-4 Transmission for Datacenter Intra-Connections. IEEE Photonics Technol. Lett. 2021, 33, 1042–1045. [Google Scholar] [CrossRef]
- Wettlin, T.; Lin, Y.; Stojanovic, N.; Calabrò, S.; Wang, R.; Zhang, L.; Kuschnerov, M. 200Gb/s VCSEL transmission using 60m OM4 MMF and KP4 FEC for AI computing clusters. arXiv 2024, arXiv:2403.17275. [Google Scholar] [CrossRef]
- Orenstein, M.; Kapon, E.; Harbison, J.P.; Florez, L.T.; Stoffel, N.G. Large two-dimensional arrays of phaselocked vertical cavity surface emitting lasers. Appl. Phys. Lett. 1992, 60, 1535. [Google Scholar] [CrossRef]
- Bao, L.; Kim, N.-H.; Mawst, L.J.; Elkin, N.N.; Troshchieva, V.N.; Vysotsky, D.V.; Napartovich, A.P. Near-diffraction-limited coherent emission from large aperture antiguided vertical-cavity surface-emitting laser arrays. Appl. Phys. Lett. 2004, 84, 320–322. [Google Scholar] [CrossRef]
- Fryslie, S.T.M.; Johnson, M.T.; Choquette, K.D. Coherence Tuning in Optically Coupled Phased Vertical Cavity Laser Arrays. IEEE J. Quantum Electron. 2015, 51, 1–6. [Google Scholar] [CrossRef]
- Parekh, D.; Zhao, X.; Hofmann, W.; Amann, M.C.; Zenteno, L.A.; Chang-Hasnain, C.J. Greatly enhanced modulation response of injection-locked multimode VCSELs. Opt. Express 2008, 16, 21582–21586. [Google Scholar] [CrossRef]
- North, W.; Jahan, N.; Strzebonski, P.; Khurana, A.; Ralph, S.E.; Choquette, K.D. Analysis and characterization of photon–photon resonance in coupled dual-element photonic crystal vertical cavity surface emitting laser arrays. J. Lightware Technol. 2024, 42, 236–242. [Google Scholar] [CrossRef]
- Heidari, E.; Dalir, H.; Ahmed, M.; Sorger, V.J.; Chen, R.T. Hexagonal transverse-coupled-cavity VCSEL redefining the high-speed lasers. Nanophotonics 2020, 9, 4743–4748. [Google Scholar] [CrossRef]
- Dalir, H.; Koyama, F. 29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity. Appl. Phys. Lett. 2013, 103, 091109. [Google Scholar] [CrossRef]
- Lindemann, M.; Gerhardt, N.C.; Hofmann, M.R.; Ledentsov, N.; Shchukin, V.A.; Ledentsov, N.N.; Makarov, O.Y.; Chorchos, Ł.; Turkiewicz, J.P. Coupled Aperture VCSELs Suitable for 100 GHz Intensity Modulation. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Lindemann, M.; Gerhardt, N.C.; Hofmann, M.R.; Ledentsov, N.; Shchukin, V.A.; Ledentsov, N.N. Study of Electrically Excited Photon-Photon Resonances in Self-Injection-Locked Coupled-Cavity VCSELs. In Proceedings of the 2024 IEEE 29th International Semiconductor Laser Conference (ISLC), Orland, FL, UA, 29 September–2 October 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Lindemann, M., Jr.; Makarov, O.Y.; Ledentsov, N.N.; Tibaldi, A.; Gerhardt, N.C.; Hofmann, M.R. Laterally coupled vertical-cavity surface-emitting lasers with tunable resonance width and frequency. J. Appl. Phys. 2025, 138, 053102. [Google Scholar] [CrossRef]
- Hu, Y.; Brenner, C.; Ledentsov, N.N.; Ledentsov, N., Jr.; Shchukin, V.A.; Hofmann, M.R.; Lindemann, M. Coherent CW THz generation with a coupled-cavity mini-array VCSEL. Electron. Lett. 2025, 61, e70146. [Google Scholar] [CrossRef]
- Guillet, T.; Brimont, C. Polariton condensates at room temperature. Comptes Rendus Phys. 2016, 17, 946–956. [Google Scholar] [CrossRef]
- Simpson, T.B.; Liu, J.-M.; Usechak, N.G.; Kovanis, V. Tunable Oscillations in Optically Injected Semiconductor Lasers with Reduced Sensitivity to Perturbations. J. Lightware Technol. 2014, 32, 3749–3758. [Google Scholar] [CrossRef]
- Parekh, D.; Zhang, B.; Zhao, X.; Yue, Y.; Hofmann, W.; Amann, M.C.; Willner, A.; Chang-Hasnain, C.J. Long Distance Single-mode Fiber Transmission of Multimode VCSELs by Injection Locking. Opt. Express 2010, 18, 20552–20557. [Google Scholar] [CrossRef] [PubMed]
- Alnatah, H.; Liang, S.; Yao, Q.; Wan, Q.; Beaumariage, J.; West, K.; Baldwin, K.; Pfeiffer, L.N.; Snoke, D.W. Bose–Einstein Condensation of Polaritons at Room Temperature in a GaAs/AlGaAs Structure. ACS Photonics 2025, 12, 48–52. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledentsov, N.N.; Ledentsov, N., Jr.; Shchukin, V.A.; Ledentsov, A.N.; Makarov, O.Y.; Titkov, I.E.; Lindemann, M.; de Adelsburg Ettmayer, T.; Gerhardt, N.C.; Hofmann, M.R.; et al. VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers. Photonics 2025, 12, 1037. https://doi.org/10.3390/photonics12101037
Ledentsov NN, Ledentsov N Jr., Shchukin VA, Ledentsov AN, Makarov OY, Titkov IE, Lindemann M, de Adelsburg Ettmayer T, Gerhardt NC, Hofmann MR, et al. VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers. Photonics. 2025; 12(10):1037. https://doi.org/10.3390/photonics12101037
Chicago/Turabian StyleLedentsov, Nikolay N., Nikolay Ledentsov, Jr., Vitaly A. Shchukin, Alexander N. Ledentsov, Oleg Yu. Makarov, Ilya E. Titkov, Markus Lindemann, Thomas de Adelsburg Ettmayer, Nils C. Gerhardt, Martin R. Hofmann, and et al. 2025. "VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers" Photonics 12, no. 10: 1037. https://doi.org/10.3390/photonics12101037
APA StyleLedentsov, N. N., Ledentsov, N., Jr., Shchukin, V. A., Ledentsov, A. N., Makarov, O. Y., Titkov, I. E., Lindemann, M., de Adelsburg Ettmayer, T., Gerhardt, N. C., Hofmann, M. R., Chen, X., Hurley, J. E., Dong, H., & Li, M.-J. (2025). VCSELs: Influence of Design on Performance and Data Transmission over Multi-Mode and Single-Mode Fibers. Photonics, 12(10), 1037. https://doi.org/10.3390/photonics12101037