All-Fiber High-Energy Mode-Locked Ytterbium-Doped Fiber Laser with Bismuth Telluride Nanosheet Saturable Absorber
Abstract
:1. Introduction
2. Preparation and Characterization of Topological Insulator-Based Bi2Te3 Nanosheet SA
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bliedtner, J.; Schindler, C.; Seiler, M.; Wächter, S.; Friedrich, M.; Giesecke, J. Ultrashort pulse laser material processing: An extension of application variety for ultrashort pulse laser processing of different materials. Laser Tech. J. 2016, 13, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Plamann, K.; Aptel, F.; Arnold, C.; Courjaud, A.; Crotti, C.; Deloison, F.; Druon, F.; Georges, P.; Hanna, M.; Legeais, J.-M. Ultrashort pulse laser surgery of the cornea and the sclera. J. Opt. 2010, 12, 084002. [Google Scholar] [CrossRef]
- Nicolodelli, G.; Senesi, G.S.; Romano, R.A.; de Perazzoli, I.L.O.; Milori, D.M.B.P. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils. Spectrochim. Acta B Atomic Spectrosc. 2015, 111, 23–29. [Google Scholar] [CrossRef]
- Kim, G.; Park, Y. LIDAR pulse coding for high resolution range imaging at improved refresh rate. Opt. Express 2016, 24, 23810–23828. [Google Scholar] [CrossRef]
- Pan, L.; Utkin, I.; Fedosejevs, R. Two-wavelength passively Q-switched ytterbium doped fiber laser. Opt Express 2008, 16, 11858–11870. [Google Scholar] [CrossRef]
- Tan, S.J.; Tiu, Z.C.; Harun, S.W.; Ahmad, H. Sideband-controllable soliton pulse with bismuth-based erbium-doped fiber. Chin. Opt. Lett. 2015, 13, 111406. [Google Scholar] [CrossRef] [Green Version]
- Michalska, M.; Swiderski, J. Noise-like pulse generation using polarization maintaining mode-locked thulium-doped fiber laser with nonlinear amplifying loop mirror. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Kisel, V.; Rudenkov, A.; Pavlyuk, A.; Kovalyov, A.; Preobrazhenskii, V.; Putyato, M.; Rubtsova, N.; Semyagin, B.; Kuleshov, N. High-power, efficient, semiconductor saturable absorber mode-locked Yb: KGW bulk laser. Opt. Lett. 2015, 40, 2707–2710. [Google Scholar] [CrossRef] [Green Version]
- Pogaku, D.; Saad, I. Effects of S/D doping concentrations on strained SiGe vertical I-MOS characteristics. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; pp. 294–297. [Google Scholar]
- Zhang, H.; Tang, D.; Zhao, L.; Bao, Q.; Loh, K. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630–17635. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, R.; Zhang, Y.; Kartashov, Y.V.; Li, F.; Zhong, H.; Guan, H.; Gao, K.; Li, F.; Zhang, Y. Observation of edge solitons in photonic graphene. Nat. Commun. 2020, 11, 1902. [Google Scholar] [CrossRef]
- Adnan, N.; Bidin, N.; Taib, N.; Haris, H.; Fakaruddin, M.; Hashim, A.; Krishnan, G.; Harun, S.W. Passively Q-switched flashlamp pumped Nd: YAG laser using liquid graphene oxide as saturable absorber. Opt. Laser Technol. 2016, 80, 28–32. [Google Scholar] [CrossRef]
- Markom, A.; Tan, S.; Muhammad, A.; Paul, M.C.; Dhar, A.; Das, S.; Latiff, A.; Harun, S. Dark pulse mode-locked fibre laser with zirconia-based erbium-doped fibre (Zr-EDF) and Black phosphorus saturable absorber. Optik 2020, 223, 165635. [Google Scholar] [CrossRef]
- Taib, N.A.M.; Bidin, N.; Haris, H.; Adnan, N.N.; Ahmad, M.F.S.; Harun, S.W. Multi-walled carbon nanotubes saturable absorber in Q-switching flashlamp pumped Nd: YAG laser. Chin. Phys. Lett. 2016, 79, 193–197. [Google Scholar]
- Ahmad, F.; Haris, H.; Nor, R.; Zulkepely, N.; Ahmad, H.; Harun, S. Passively Q-switched EDFL using a multi-walled carbon nanotube polymer composite based on a saturable absorber. Chin. Phys. Lett. 2014, 31, 034204. [Google Scholar] [CrossRef] [Green Version]
- Kadir, N.; Ismail, E.I.; Latiff, A.A.; Ahmad, H.; Arof, H.; Harun, S.W. Transition metal dichalcogenides (WS2 and MoS2) saturable absorbers for mode-locked erbium-doped fiber lasers. Chin. Phys. Lett. 2017, 34, 014202. [Google Scholar] [CrossRef]
- Chen, H.; Yin, J.; Yang, J.; Zhang, X.; Liu, M.; Jiang, Z.; Wang, J.; Sun, Z.; Guo, T.; Liu, W. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt. Lett. 2017, 42, 4279–4282. [Google Scholar] [CrossRef]
- Yan, P.; Lin, R.; Chen, H.; Zhang, H.; Liu, A.; Yang, H.; Ruan, S. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser. IEEE Photonics Technol. Lett. 2014, 27, 264–267. [Google Scholar]
- Luo, Z.; Liu, C.; Huang, Y.; Wu, D.; Wu, J.; Xu, H.; Cai, Z.; Lin, Z.; Sun, L.; Weng, J. Topological-insulator passively Q-switched double-clad Fiber laser at 2µm wavelength. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 1–8. [Google Scholar]
- Zhang, Y.; Wu, Z.; Belić, M.R.; Zheng, H.; Wang, Z.; Xiao, M.; Zhang, Y. Photonic Floquet topological insulators in atomic ensembles. Laser Photonics Rev. 2015, 9, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Luo, H.; Zhai, B.; Lu, R.; Guo, Z.; Zhang, H.; Liu, Y. Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 2016, 6, 30361. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jin, X.; Chen, S.; Jiang, X.; Hu, Y.; Jiang, Q.; Wu, L.; Li, J.; Zheng, Z.; Zhang, M. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Opt. Express 2019, 27, 10159–10170. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Du, L.; Miao, L.; Yi, J.; Huang, B.; Zou, Y.; Zhao, C.; Wen, S. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T = F, O, or OH) mode-locked fiber laser. Photonics Res. 2019, 7, 260–264. [Google Scholar] [CrossRef]
- Tian, W.; Yu, W.; Shi, J.; Wang, Y. The property, preparation and application of topological insulators: A review. Materials 2017, 10, 814. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Wang, X.; Gu, M. Topological insulator materials for advanced optoelectronic devices. In Advanced Topological Insulators; John and Wiley and Sons: Hoboken, NJ, USA; Scrivener Publishing LLC.: Beverly, MA, USA, 2019; pp. 45–70. [Google Scholar]
- Peiguang, Y.; Rongyong, L.; Han, Z.; Zhiteng, W.; Han, C.; Shuangchen, R. Multi-pulses dynamic patterns in a topological insulator mode-locked ytterbium-doped fiber laser. Opt. Commun. 2015, 335, 65–72. [Google Scholar] [CrossRef]
- Bauer, C.; Veremchuk, I.; Kunze, C.; Benad, A.; Dzhagan, V.M.; Haubold, D.; Pohl, D.; Schierning, G.; Nielsch, K.; Lesnyak, V. Heterostructured bismuth telluride selenide nanosheets for enhanced thermoelectric performance. Small Sci. 2021, 1, 2000021. [Google Scholar] [CrossRef]
- Bernard, F.; Zhang, H.; Gorza, S.-P.; Emplit, P. Towards mode-locked fiber laser using topological insulators. In Proceedings of the Nonlinear Photonics, Colorado Springs, CO, USA, 17–21 June 2012; p. NTh1A. 5. [Google Scholar]
- Zhao, C.; Zhang, H.; Qi, X.; Chen, Y.; Wang, Z.; Wen, S.; Tang, D. Ultra-short pulse generation by a topological insulator based saturable absorber. Appl. Phys. Lett. 2012, 101, 211106. [Google Scholar] [CrossRef]
- Yu, Z.H.; Song, Y.R.; Tian, J.R.; Dou, Z.Y.; Guoyu, H.Y.; Li, K.X.; Li, H.W.; Zhang, X.P. High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film. Opt. Express 2014, 22, 11508–11515. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Y.; Weng, J.; Cheng, H.; Lin, Z.; Xu, B.; Cai, Z.; Xu, H. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt. Express 2013, 21, 29516–29522. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-J.; Lee, C.-K.; Wang, Y.; Xia, H.-P.; Wang, X.-H.; You, Z.-Y.; Tu, C.-Y.; Xu, J.-L. Passively Q-Switched Wavelength-Tunable Bulk Laser Using Topological Insulator at 1 µm. IEEE Photonics Technol. Lett. 2016, 28, 2764–2767. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Zhang, H.; Wen, S.J.I.J.o.Q.E. Nanosecond Q-Switched Erbium-Doped Fiber Laser With Wide Pulse-Repetition-Rate Range Based on Topological Insulator. IEEE J. Quantum Electron 2014, 50, 393–396. [Google Scholar]
- Lee, J.; Lee, J.; Koo, J.; Chung, H.; Lee, J.H. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber. Opt. Eng. 2016, 55, 076109. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express 2014, 22, 6165–6173. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.Y.; Song, Y.R.; Tian, J.R.; Liu, J.H.; Yu, Z.H.; Fang, X.H. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3. Opt. Express 2014, 22, 24055–24061. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zhang, B.; Li, L.; Jiang, T.; Zhou, X.; Hou, J. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photonics Res. 2015, 3, 72. [Google Scholar] [CrossRef]
- Duan, L.; Wang, Y.; Xu, C.; Li, L.; Wang, Y. Passively Harmonic Mode-Locked Fiber Laser With a High Signal-to-Noise Ratio via Evanescent-Light Deposition of Bismuth Telluride (Bi2Te3) Topological Insulator Based Saturable Absorber. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Wei, Q.; Niu, K.; Han, X.; Zhang, H.; Zhang, C.; Yang, C.; Man, B. Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi2Te3 saturable absorber. Opt. Mater. Express 2019, 9, 3535–3545. [Google Scholar] [CrossRef]
- Wei, Q.; Han, X.; Zhang, H.; Yang, C.; Zhang, C.; Gao, J.; Man, B.; Xu, S. CVD-Bi2Te3 as a saturable absorber for various solitons in a mode-locked Er-doped fiber laser. Appl. Opt. 2020, 59, 7792–7800. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J.; Lee, J.H. A pulse-width-tunable, mode-locked fiber laser based on dissipative soliton resonance using a bulk-structured Bi2Te3 topological insulator. Opt. Eng. 2016, 55, 081309. [Google Scholar] [CrossRef]
- Haris, H.; Batumalay, M.; Tan, S.J.; Markom, A.M.; Muhammad, A.R.; Harun, S.W.; Hasnan, M.M.I.M.; Saad, I. Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals 2022, 12, 489. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Bogusławski, J.; Zybała, R.; Mars, K.; Mikuła, A.; Soboń, G.; Sotor, J. Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Opt. Mater. Express 2016, 6, 2273–2282. [Google Scholar] [CrossRef]
- Gao, L.; Zhu, T.; Huang, W.; Luo, Z. Stable, Ultrafast Pulse Mode-Locked by Topological Insulator Bi2Se3 With Photonic Crystal Fiber: From Anomalous Dispersion to Normal Dispersion. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar]
- Lin, Y.-H.; Lin, S.-F.; Chi, Y.-C.; Wu, C.-L.; Cheng, C.-H.; Tseng, W.-H.; He, J.-H.; Wu, C.-I.; Lee, C.-K.; Lin, G.-R. Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photonics 2015, 2, 481–490. [Google Scholar] [CrossRef]
- Woodward, R.I.; Kelleher, E.J. 2D saturable absorbers for fibre lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef] [Green Version]
- Russo, V.; Bailini, A.; Zamboni, M.; Passoni, M.; Conti, C.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Raman spectroscopy of Bi-Te thin films. J. Raman Spectrosc. 2008, 39, 205–210. [Google Scholar] [CrossRef]
- Shahil, K.; Hossain, M.; Goyal, V.; Balandin, A.A. Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 2012, 111, 054305. [Google Scholar] [CrossRef]
- Haris, H.; Harun, S.; Muhammad, A.; Anyi, C.; Tan, S.; Ahmad, F.; Nor, R.; Zulkepely, N.; Arof, H. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber. Opt. Laser Technol. 2017, 88, 121–127. [Google Scholar] [CrossRef]
- Chi, C.; Lee, J.; Koo, J.; Lee, J.H. All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber. Laser Phys. 2014, 24, 105106. [Google Scholar] [CrossRef]
- Li, L.; Yan, P.-G.; Wang, Y.-G.; Duan, L.-N.; Sun, H.; Si, J.-H. Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited. Chin. Phys. B 2015, 24, 124204. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Sun, H.; Duan, L.; Wang, X.; Si, J. All-normal dispersion passively mode-locked Yb-doped fiber laser with Bi2Te3 absorber. Opt. Eng. 2015, 54, 046101. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Wang, X.; Lin, T.; Sun, H. High energy mode-locked Yb-doped fiber laser with Bi2Te3 deposited on tapered-fiber. Optik 2017, 142, 470–474. [Google Scholar] [CrossRef]
Integration Method | Center Wavelength | 3 dB Bandwidth | Threshold (mW) | Pulse Energy | Pulse Width | Repetition Rate | Ref |
---|---|---|---|---|---|---|---|
SPF | 1057.82 nm | 3.69 nm | 200 mW | 0.599 nJ | 230 ps | 1.44 MHz | [50] |
Tapered fiber | 1052.5 nm | 1.245 nm | 230 mW | 2.8 nJ | 317 ps | 19.8 MHz | [51] |
PCF | 1064.47 nm | 1.11 nm | 115 mW | 1 nJ | 960 ps | 1.11 MHz | [18] |
Fiber ferrule | 1052.7 nm | 0.45 nm | 75 mW | 753.9 pJ | 417 ps | 25.6 MHz | [52] |
Tapered fiber | 1063.4 nm | 2.24 nm | 220 mW | 2nJ | 5.47 ns | 6.2 MHz | [53] |
Fiber ferrule | 1050.23 nm | 2.3 nm | 85 mW | 2.13 nJ | 600 ps | 9.5 MHz | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, H.; Batumalay, M.; Jin, T.S.; Muhammad, A.R.; Markom, A.M.; Izani, M.H.; Hasnan, M.M.I.M.; Saad, I. All-Fiber High-Energy Mode-Locked Ytterbium-Doped Fiber Laser with Bismuth Telluride Nanosheet Saturable Absorber. Crystals 2022, 12, 1507. https://doi.org/10.3390/cryst12111507
Haris H, Batumalay M, Jin TS, Muhammad AR, Markom AM, Izani MH, Hasnan MMIM, Saad I. All-Fiber High-Energy Mode-Locked Ytterbium-Doped Fiber Laser with Bismuth Telluride Nanosheet Saturable Absorber. Crystals. 2022; 12(11):1507. https://doi.org/10.3390/cryst12111507
Chicago/Turabian StyleHaris, Hazlihan, Malathy Batumalay, Tan Sin Jin, Ahmad Razif Muhammad, Arni Munira Markom, Muhamad Hakim Izani, Megat Muhammad Ikhsan Megat Hasnan, and Ismail Saad. 2022. "All-Fiber High-Energy Mode-Locked Ytterbium-Doped Fiber Laser with Bismuth Telluride Nanosheet Saturable Absorber" Crystals 12, no. 11: 1507. https://doi.org/10.3390/cryst12111507