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Abstract: Passively Q-switching and mode-locking technologies can generate short pulses with
durations that differ by several orders of magnitude widely used in different applications. Recently,
Q-switching and mode-locking realized in an identical laser cavity with saturable absorbers was
reported. The analysis of pulse conversion is helpful for us to further understand the pulse dy-
namics of a laser. In this paper, the pulse evolution from Q-switching, Q-switched mode-locking
to mode-locking, is demonstrated by using a tungsten trioxide saturable absorber in a ring-cavity
erbium-doped fiber laser. Firstly, self-started Q-switching at 1563 nm is observed, the repetition rate
continuously increases, and the duration decreases when the pump power increased. Then, with
an adjusting intra-cavity state of polarization under a high pump power level, stable Q-switched
mode-locking pulses evolved from Q-switching, are observed. The amplitude of the emerged pulse
sequence with a period of 36.8 ns, determined by cavity length, is modulated by the Q-switched
envelope with the period of 10.3 µs. By optimizing the intracavity polarization carefully, stable
continuous wave mode-locking operation is achieved eventually. To the best of our knowledge, this
is the first experimental demonstration of Q-switching and mode-locking, respectively, in an identical
transition-metal-oxides-based pulsed fiber laser without modification of cavity structure.

Keywords: pulsed fiber lasers; Q-switching; mode-locking; tungsten trioxide

1. Introduction

Short-pulse lasers have shown high potential in applications regarding nonlinear op-
tics and ultrafast optics, such as communications, optical sensing, and laser processing [1,2].
Passively Q-switching and mode-locking are typical technologies for generating short and
ultrashort pulse laser in fiber lasers [3,4]. The Q-switching (QS) is a technology for modulat-
ing the laser cavity quality factor (Q). By changing the Q value of the optical resonator, the
energy stored in the activated medium is released instantaneously. Therefore, the pulses
formed by this mechanism usually have a duration in the order of microseconds and a
repetition rate of kilohertz. Meanwhile, mode-locking (ML) is achieved by introducing a
fixed phase relationship between the modes of the laser cavity. Compared with QS technol-
ogy, ML technology produces a shorter pulse duration and higher peak power, but a lower
pulse energy. The different characteristics make them suitable for diverse applications.

In the past decade, saturable absorbers (SA) have been increasingly employed in fiber
laser cavities for passively Q-switched or mode-locked operation to generate ultrashort
pulses, due to their excellent nonlinear absorption optical properties. Moreover, the same
SA sample could achieve pulse transition from QS to ML by using two common methods.
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One is introducing the nonlinear polarization evolution (NPE) effect to the fiber laser by
using a polarization-dependent component, such as a polarizer [5], tapered fiber [6–8],
or D-shaped fiber [9]. The other is dispersion management with significantly increased
cavity length [10–20]; however, the repetition frequency of the laser is greatly reduced. In
addition to the dispersion and nonlinearity, the parameters of the SA can also affect the
performance of the QS and ML laser. When the SA have a lower saturation intensity and
thermal damage resistance, transition from QS to ML can also be achieved when the pump
power is exponentially higher than the saturation intensity. Among the various materials
for fabricating the SA, nanomaterial saturable absorbers have been widely investigated
due to their wide operating bandwidth, low cost, and easy integration. Moreover, recent
studies have found that transition metal materials have excellent optical properties ultrafast
response time and broadband absorption [21–23]. Especially, the transition metal tungsten
oxide shows excellent performance to fabricate SA for its good air stability, thermal damage
thresholds, and third-order nonlinearity [24]. In 2020, Al-Hiti’s team used WO3 as SA for
the first time to achieve QS pulse output at 1556.8 nm. Additionally, in the same year, based
on the WO3-SA with a saturation intensity of 0.04 MW/cm2, a mode-locked erbium-doped
fiber laser (EDFL) was obtained by introducing a segment single-mode fiber (SMF) with a
length of 100 m in the cavity. However, the repetition frequency is as low as 1.85 MHz [25].

In this paper, we deposited WO3 nanometer material on the fiber end face by using
optical driven deposition method to fabricate a fiber-integrated SA with a low saturation
intensity. In the experiment, a complete pulse evolution from QS, QML to ML was observed
by increasing the pump power. In the whole process, the structure of the laser cavity is kept
unchanged. The total cavity length is 7.5 m, and the repetition rate of obtained mode-locked
pulse is 27.2 MHz. For the QS state, the pulse energy undergoes an increase first and then
a rapid decrease with monotonically increased pump power. At high pump levels, the
QS envelope becomes rough. In this case, mode-locked pulse sequence would emerge
with significantly amplitude-modulated by the QS envelope, i.e., QML operation, when
the polarization state is adjusted. Moreover, the QML could eventually evolved into ML
for an optimizing polarization state. This work achieves an evolution from QS to ML
without modification of fiber cavity and it would contribute to a better understanding of
the establishment of mode-locking.

2. WO3-SA Preparation and Characterization

The setup for depositing WO3 nanoparticles on a clean optical fiber ferrule connec-
tor [26,27] is shown in Figure 1a. WO3 is an alcohol-soluble material. Firstly, the WO3
solution was prepared by mixing approximately 0.5 mg of WO3 powder with 2 mL of
ethanol and ultrasonicated for 20 min. Next, a single-mode fiber (SMF) end was immersed
in the solution and injected with 980 nm LD laser at an empirical power of 25 mW for
5–10 min. The clean and the deposited fiber end-face are shown in Figures 1b and 1c, respec-
tively, obtained by taking photos of an optical fiber end-face inspection microscope. Finally,
the fiber ferrule connector with fiber end-face deposited WO3 nanoparticles layer was
connected with another clean fiber connector through an adapter to compose a WO3-based
SA, as shown in Figure 1d.
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Figure 2a shows the morphological characteristics of the WO3 solution sample used
for deposition by using field emission scanning electron microscopy (SEM), which shows
the morphology of the WO3 as spherical nanoparticles. It can be clearly observed that the
WO3 is uniformly distributed in a spherical nanoparticle structure.
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In addition, we investigated the optical nonlinear absorption properties of the fabri-
cated WO3-SA based on the twin-detector measurement approach, as shown in the inset
of Figure 2b. The probe light source is a homemade passively mode-locked fiber laser at
1550 nm with a pulse duration of 0.5 ps and a fundamental frequency of 24.4 MHz. The non-
linear transmission curve and the fitting curve are shown in Figure 2b. The experimental
data are fitted by the Formula (1):

T(I) = 1 − α0exp
(
−I
Isat

)
− αns (1)

where T(I) is transmission coefficient, α0 is modulation depth, I is input intensity, Isat
is saturation intensity, and αns is non-saturation loss. According to the fitting data, the
nonlinear absorption characteristic is illustrated with a non-saturation loss of 39.8%, a large
modulation depth of 20% and a low saturation intensity of 0.22 kW/cm2. The parameters
are similar to that of SA for self-Q-switching as in Ref. [28].

3. Experimental Setup

The schematic of the fiber laser configuration is shown in Figure 3. A piece of
2.5-m-long erbium-doped fiber (EDF: YOFC, EDF22/6/125-23) with 20 dB/m absorp-
tion coefficient at 1529 nm is used as the gain medium, forward-pumped by a 980 nm
pump laser. A polarization-independent isolator (PI-ISO) is used to assure unidirectional
lasing. A polarization controller (PC) is used to adjust the intra-cavity polarization states.
The nonlinear parameters of the WO3-SA used in the cavity are described in the previous
section, and its linear insertion loss is 1.2 dB. A 90/10 fiber coupler is used to extract
10% as the output. The total length of the cavity is about 7.6 m, and all the fiber pigtails
are single-mode fiber (SMF). The dispersion of the EDF is estimated as −6 ps/km/nm
at 1560 nm, and the total net cavity dispersion is about −0.09 ps2. To investigate the
polarization-dependent characteristics of the fiber cavity, we measured the output power
of the laser emitting continuous wave (CW) under different polarization states by tuning
the PC. Under a same pump level, a maximum fluctuation of 10% for the output power is
observed, indicating the polarization-dependent loss (PDL) is measured less than 0.5 dB.
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Figure 3. Schematic of the erbium-doped fiber ring laser with WO3-SA.

In this experiment, the output of the fiber laser is characterized by an optical spectrum
analyzer (Yokogawa, AQ6370C), a 1 GHz photodetector (Newport, 1611FC-AC), a digital
oscilloscope (Tektronix, TDS3054C) with a 500 MHz bandwidth and a sampling rate of
5 GS s−1, and a radio frequency (RF) spectrum analyzer (Agilent, E4405B).

4. Results and Discussions
4.1. Q-Switched Operation

The self-started Q-switching is emerged at 26 mW of 980 nm pump power. The optical
spectrum of QS is shown in Figure 4a, with a center wavelength of 1562.5 nm and a 3-dB
bandwidth of 1.4 nm. Compared with the spectrum that without SA inserted in the fiber
laser, the wavelength is slightly blue shifting due to the additional insertion loss of the
SA. The corresponding QS average output power is 1.1 mW. The pulse duration, period,
repetition rate and single pulse energy are estimated to be 8.2 µs, 29.6µs, 33.8 kHz and
33 nJ, respectively.
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The laser pulse trains at the different pump power level from 26 mW to 56 mW are
shown as Figure 4b,c, respectively. Both the repetition rate and pulse duration are pump
power dependent, which is a typical behavior of a Q-switched laser [29]. As the pump
power gradually increases from 26 mW to 56 mW, the repetition rate increases from 33.8 kHz
to 96.1 kHz, the pulse duration decreases from 8.2 µs to 2.1 µs, the average output power
increases from 1.1 mW to 3.6 mW, and the corresponding pulse energy fluctuates from
33.2 nJ to 53.9 nJ. The measured data are summarized as shown in Figure 4d,e. Obviously,
when the pump power is set above 39 mW, the average output power increases slowly
while the corresponding pulse energy of the QS pulse decreases rapidly. The estimated
slope efficiency of the laser is not constant but drops from 13.2% to 4.8%. Meanwhile, the
observed amplitude on the oscilloscope shown in Figure 4b,c do not increase significantly
anymore and the trace becomes rough. This phenomenon may attribute to the thermal
accumulation and supersaturation of SA at high pumping level [7,20,30]. At QS stage, the
pulse intensity is greatly improved due to the bleaching of the saturable absorber and the
reduced intra-cavity loss. However, because of the high pulse intensity, the gain saturation
effect is induced, and the population inversion in the laser is greatly consumed, which leads
to the sharp weakening of the gain in the cavity. Under this condition, it is impossible to
maintain such high-power pulse operation, resulting in the Q-switching instability, which
is manifested as a rapid decrease of the intensity and bandwidth of the spectrum.

4.2. Q-Switched Mode-Locked Operation

To investigate the pulse evolution, we continuously adjusted the polarization state of
the cavity through rotating the intra-cavity PC, when keeping the pump power at 56 mW.
A complete transition process is observed from Q-switching to Q-switched mode-locking,
eventually continuous wave (CW) mode-locking (ML) state. The waveforms of different
operation states are shown in Figure 5a–e. In the process of fine-tuning of PC, the rough
QS pulse envelope gradually reveals that it is consist of a large quantity of narrow pulses
modulated by inconsistent amplitude, i.e., Q-switched mode-locking (QML). The QML is
commonly interpreted as Q-switching instability in a passively mode-locked laser. This is
a transition state of Q-switched and mode-locked regime [31], which could be achieved
from QS pulse or evolve to ML pulse by utilizing additional nonlinear saturable absorption.
However, at a certain condition, the gain, loss, dispersion, saturable absorption, and other
nonlinear effects in the laser reach a balance state, the stable QML operation could be
realized [32]. We attribute the evolution in this paper to the additional weak nonlinear
saturable absorption introduced by the indeed weak polarization sensitivity of the laser
when the PC adjusted, as mentioned in the section of experimental setup. The details
on the recorded pulse traces in spans of 1 µs for the operation states in Figure 5a–e are
shown in Figure 5f–j, respectively, which identify the establishing of mode-locking. In
this condition, the average output power was measured of 3.7 mW, without significantly
variation compared to that of the QS state. The pulse period is measured about 36.8 ns
and the corresponding repetition frequency is 27.2 MHz, in good agreement with the total
cavity length. Additionally, the waveform observed is close to sinusoidal with a pulse
width of about 17 ns for the state 3 of QML.

4.3. Mode-Locked Operation

With the further optimization of intra-cavity state of polarization and keeping the same
pump power of 56 mW, the mode-locked pulse duration in the ML state could be changed
continuously. In the experiment, the pulse narrowing process can be observed from the
oscilloscope by carefully adjusting the PC. Figure 6a,b and the insets show two narrowed
pulse trains with durations of 9.0 ns to 2.1 ns, respectively. The pulse widths are estimated
by the oscilloscope with a bandwidth of 500 MHz and a sampling rate of 5.0 GS s−1 followed
a photodetector with 1 GHz bandwidth and 400 ps rise time. The negative overshoot of
the signal is aroused by the response characteristics of the detector preamplifier [3]. We
could find that there is barely intensity modulation over a 2-µs span, which indicates
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the high stability of continuous wave mode-locking operation. This evolution process is
also attributed to the additional nonlinear saturable absorption introduced by the weak
polarization sensitivity of the laser.
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Figure 6. The mode-locked pulse trains under different polarization states at pump power of 56 mW.
(a) Narrowed pulses with durations of 9.0 ns. (b) Narrowed pulses with durations of 2.1 ns.

In addition, the optical spectrum and RF spectrum are measured for the pulse with
duration of 2.1 ns, as shown in Figures 7a and 7b, respectively. The optical spectrum is
fitted with a sech2 function and a 3-dB spectral bandwidth of 1.5 nm is estimated. A SNR
of 46.7 dB at 27.2 MHz on the RF spectrum indicating a continuous wave mode-locking
operation is achieved. In this case, the average output power of the ML laser is 3.9 mW,
larger than that under QML or QS operation at a same pump power. We attribute this
phenomenon to the high transmittance of saturable absorption for high peak power.
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Figure 7. The characteristics of the mode-locked laser with 2.1 ns pulse duration. (a) Optical spectrum.
(b) RF spectrum.

Finally, we summarize the performance of the pulse transition from QS to ML in EDFL
based on increasing the cavity length to balance the dispersion and nonlinearity in fiber
cavity, see Table 1.

Table 1. Performance comparison for the work of SA to achieve pulse transition from QS to ML by
balancing dispersion and nonlinearity in the EDFL.

Year SA Material Saturation
Intensity Q-τ [µs] QS-RF

[kHz]
ML-RF
[MHz]

Increased
Length
(SMF)

Net Cavity
Dispersion Ref.

2016 MoS2 film / 5.18–3.53 72.74–86.39 5.78 30 m / [17]
2018 ReS2 film 74 MW/cm2 23–5.5 12.6–19 5.48 30 m −0.57 ps2 [10]
2019 Ho2O3 film 140 MW/cm2 0.64 115.8 17.1 3 m −0.19 ps2 [18]
2020 TiS2 19.97 MW/cm2 2.34 13.17–48.45 3.43 50 m / [12]
2020 MEH-PPV film 40 MW/cm2 3.54 59.5–78.6 1.86 100 m / [20]
2020 Te film / 8.9–5.2 15.9–47.6 5.04 40 m / [14]
2021 AZO film 1437 MW/cm2 2.2 86 1.86 100 m / [16]
2021 Ti3C2Tx film 20 MW/cm2 24.53–13.07 40.75–76.48 1.89 100 m [19]
2022 WO3 0.22 kW/cm2 8.2–2.1 33.8–96.1 27.2 0 m −0.09 ps2 This work

5. Conclusions

We demonstrate a pulsed erbium-doped fiber laser based on WO3, which can operate
at Q-switching and mode-locking, respectively. The transition of the regimes from QS
to QML and then ML is obtained and investigated by increasing the pump power and
carefully adjusting the polarization state. Under a pump power of 26 mW, the QS are
self-started and generated pulses with a duration of 8.2 µs and a repetition rate of 33.8 kHz.
As the pump power increased, the repetition rate is increased significantly and then the
oscilloscope trace becomes rough. When keeping at a high pump level, QML with series
of mode-locked pulses (27.2 MHz) modulated by QS envelope (97.2 kHz) is obtained by
adjusting the intra-cavity polarization state. Finally, by optimizing the polarization state, a
stable continuous wave ML can be obtained with a minimal pulse duration of 2.1 ns. The
results verify that QS and ML could be generated by an identical WO3-based fiber laser. In
addition, the QML as a transition state for QS and ML could be observed, which is helpful
for the comprehension of the pulse formation mechanism in WO3-based fiber laser.
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