Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror
Abstract
:1. Introduction
2. Theoretical Calculation of EDFA and NPS
3. Results and Discussion
3.1. Inverse Saturable Absorption Mechanism in NALM
3.2. Different Effects of Splitting Ratio and Optical Attenuator on NOLM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CW | continuous wave |
NALM | non-linear amplifying loop mirror |
XPM | cross-phase modulation |
NPS | non-linear phase shift |
ISA | inverse saturable absorption |
NOLM | non-linear optical loop mirror |
NAbLM | non-linear absorbing loop mirror |
EDFA | erbium doped fiber amplifier |
SPM | self-phase modulation |
References
- Fermann, M.E.; Haberl, F.; Hofer, M.; Hochreiter, H. Nonlinear Amplifying Loop Mirror. Opt. Lett. 1990, 15, 752. [Google Scholar] [CrossRef] [PubMed]
- Doran, N.J.; Wood, D. Nonlinear-Optical Loop Mirror. Opt. Lett. 1988, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Duling, I. Subpicosecond All-Fibre Erbium Laser. Electron. Lett. 1991, 27, 544. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hofer, M.; Haberl, F.; Schmidt, A.J.; Turi, L. Additive-Pulse-Compression Mode Locking of a Neodymium Fiber Laser. Opt. Lett. 1991, 16, 244–246. [Google Scholar] [CrossRef]
- Richardson, D.; Laming, R.; Payne, D.; Matsas, V.; Phillips, M. Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch. Electron. Lett. 1991, 27, 542. [Google Scholar] [CrossRef] [Green Version]
- Bulushev, A.G.; Dianov, E.M.; Okhotnikov, O.G. Self-Starting Mode-Locked Laser with a Nonlinear Ring Resonator. Opt. Lett. 1991, 16, 88–90. [Google Scholar] [CrossRef]
- Seong, N.H.; Kim, D.Y.; Veetil, S.P. Mode-Locked Fiber Laser Based on an Attenuation-Imbalanced Nonlinear Optical Loop Mirror. Opt. Commun. 2007, 280, 438–442. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, J.; Jiang, Y.; Li, L.; Shen, D.; Komarov, A.; Su, L.; Tang, D.; Klimczak, M.; Zhao, L. Nonlinear Absorbing-Loop Mirror in a Holmium-Doped Fiber Laser. J. Light. Technol. 2020, 38, 6069–6075. [Google Scholar] [CrossRef]
- Bogoni, A.; Scaffardi, M.; Ghelfi, P.; Poti, L. Nonlinear Optical Loop Mirrors: Investigation Solution and Experimental Validation for Undesirable Counterpropagating Effects in All-Optical Signal Processing. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 1115–1123. [Google Scholar] [CrossRef]
- Pitois, S. Influence of Cross-Phase Modulation in SPM-Based Nonlinear Optical Loop Mirror. Opt. Commun. 2005, 253, 332–337. [Google Scholar] [CrossRef]
- Ai, F.; Cao, Z.; Zhang, X.; Zhang, C.; Zhang, B.; Yu, B. Passively Mode-Locked Fiber Laser with Kilohertz Magnitude Repetition Rate and Tunable Pulse Width. Opt. Laser Technol. 2011, 43, 501–505. [Google Scholar] [CrossRef]
- Steele, A. Pulse Compression by an Optical Fibre Loop Mirror Constructed from Two Different Fibres. Electron. Lett. 1993, 29, 1972. [Google Scholar] [CrossRef]
- Wong, W.S.; Namiki, S.; Margalit, M.; Haus, H.A.; Ippen, E.P. Self-Switching of Optical Pulses in Dispersion-Imbalanced Nonlinear Loop Mirrors. Opt. Lett. 1997, 22, 1150. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Ohishi, T. Dispersion-Imbalanced Nonlinear Optical Loop Mirror with Lumped Dispersive Elements. Electron. Lett. 1998, 34, 1140. [Google Scholar] [CrossRef]
- Yongkui, D.; Yongqiang, W.; Zhiyong, L.; Li, T.; Shichen, L. Pulse Amplitude Equalization in a Harmonically Modelocked Fiber Laser Using a Dispersion Imbalanced Non-Linear Loop Mirror. Opt. Commun. 2003, 225, 363–369. [Google Scholar] [CrossRef]
- Mortimore, D. Fiber Loop Reflectors. J. Light. Technol. 1988, 6, 1217–1224. [Google Scholar] [CrossRef]
- Steele, A.L.; Hemingway, J.P. Nonlinear Optical Loop Mirror Constructed from Dispersion Decreasing Fibre. Opt. Commun. 1996, 123, 487–491. [Google Scholar] [CrossRef]
- Shah, D.D.; Ravikanth, J.; Vijaya, R. Optimization of Peak Transmittivity in a Non-Linear Fiber Loop Mirror—an Accurate Analysis. Opt. Commun. 2001, 197, 301–308. [Google Scholar] [CrossRef]
- Meissner, M.; Rösch, M.; Schmauss, B.; Leuchs, G. Optimum Splitting Ratio for Amplifier Noise Reduction by an Asymmetric Nonlinear Optical Loop Mirror. Appl. Phys. B 2005, 80, 489–495. [Google Scholar] [CrossRef]
- Kane, M.G.; Glesk, I.; Sokoloff, J.P.; Prucnal, P.R. Asymmetric Optical Loop Mirror: Analysis of an All-Optical Switch. Appl. Opt. 1994, 33, 6833. [Google Scholar] [CrossRef] [Green Version]
- Sponsel, K.; Cvecek, K.; Stephan, C.; Onishchukov, G.; Schmauss, B.; Leuchs, G. Optimization of a Nonlinear Amplifying Loop Mirror for Amplitude Regeneration in Phase-Shift-Keyed Transmission. IEEE Photon. Technol. Lett. 2007, 19, 1858–1860. [Google Scholar] [CrossRef]
- Hierold, M.; Roethlingshoefer, T.; Sponsel, K.; Onishchukov, G.; Schmauss, B.; Leuchs, G. Multilevel Phase-Preserving Amplitude Regeneration Using a Single Nonlinear Amplifying Loop Mirror. IEEE Photon. Technol. Lett. 2011, 23, 1007–1009. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, B.; Wen, F. Phase-Preserving NALM Regenerator with Lower Input Power by Optimizing the Nonreciprocal Phase Shifter. Appl. Opt. 2021, 60, 492. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Donald, D.; Sorin, W. Optimizing Polarization States in a Figure-8 Laser Using a Nonreciprocal Phase Shifter. J. Light. Technol. 1994, 12, 1121–1128. [Google Scholar] [CrossRef]
- Moores, J.D.; Bergman, K.; Haus, H.A.; Ippen, E.P. Optical Switching Using Fiber Ring Reflectors. J. Opt. Soc. Am. B 1991, 8, 594. [Google Scholar] [CrossRef]
- Finlayson, N.; Nayar, B.K.; Doran, N.J. Switch Inversion and Polarization Sensitivity of the Nonlinear-Optical Loop Mirror. Opt. Lett. 1992, 17, 112. [Google Scholar] [CrossRef]
- Rhy, H.Y.; Kim, B.Y.; Lee, H.W. Self-Switching with a Nonlinear Birefringent Loop Mirror. IEEE J. Quantum Electron. 2000, 36, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Pottiez, O.; Kuzin, E.A.; Ibarra-Escamilla, B.; Camas-Anzueto, J.T.; Gutiérrez-Zainos, F. Easily Tunable Nonlinear Optical Loop Mirror Based on Polarization Asymmetry. Opt. Express 2004, 12, 3878. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Liu, G.; Zhang, Z. 44.6 fs Pulses from a 257 MHz Er:Fiber Laser Mode-Locked by Biased NALM. Chin. Opt. Lett. 2018, 16, 111401. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, W.; Hoogland, H.; Giunta, M.; Schmid, S.; Steinmetz, T.; Doubek, R.; Mayer, P.; Dobner, S.; Cleff, C.; Fischer, M.; et al. All Polarization-Maintaining Fiber Laser Architecture for Robust Femtosecond Pulse Generation. Appl. Phys. B 2017, 123, 41. [Google Scholar] [CrossRef] [Green Version]
- Duling, I.; Chen, C.J.; Wai, P.; Menyuk, C. Operation of a Nonlinear Loop Mirror in a Laser Cavity. IEEE J. Quantum Electron. 1994, 30, 194–199. [Google Scholar] [CrossRef]
- Mayer, A.S.; Grosinger, W.; Fellinger, J.; Winkler, G.; Perner, L.W.; Droste, S.; Salman, S.H.; Li, C.; Heyl, C.M.; Hartl, I.; et al. Flexible All-PM NALM Yb:Fiber Laser Design for Frequency Comb Applications: Operation Regimes and Their Noise Properties. Opt. Express 2020, 28, 18946. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Wai, P.K.A.; Menyuk, C.R. Self-Starting of Passively Mode-Locked Lasers with Fast Saturable Absorbers. Opt. Lett. 1995, 20, 350. [Google Scholar] [CrossRef] [PubMed]
- Leke, P.A.; Dikandé, A.M. Dynamics of Passively Mode-Locked Lasers with Saturable Absorber and Saturable Nonlinearity. Appl. Phys. B 2020, 126, 157. [Google Scholar] [CrossRef]
- Liao, R.; Song, Y.; Chai, L.; Hu, M. Pulse Dynamics Manipulation by the Phase Bias in a Nonlinear Fiber Amplifying Loop Mirror. Opt. Express 2019, 27, 14705. [Google Scholar] [CrossRef] [PubMed]
- Jinno, M.; Matsumoto, T. Nonlinear Sagnac Interferometer Switch and Its Applications. IEEE J. Quantum Electron. 1992, 28, 875–882. [Google Scholar] [CrossRef]
- Clausen, C.B.; Povlsen, J.H.; Rottwitt, K. Polarization Sensitivity of the Nonlinear Amplifying Loop Mirror. Opt. Lett. 1996, 21, 1535. [Google Scholar] [CrossRef]
- Keller, U. Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications; Springer Nature Switzerland AG: Cham, Switzerland, 2021. [Google Scholar]
- Li, X.; Wang, Y.; Wang, Y.; Zhao, W.; Yu, X.; Sun, Z.; Cheng, X.; Yu, X.; Zhang, Y.; Wang, Q.J. Nonlinear Absorption of SWNT Film and Its Effects to the Operation State of Pulsed Fiber Laser. Opt. Express 2014, 22, 17227–17235. [Google Scholar] [CrossRef] [Green Version]
- Grange, R.; Haiml, M.; Paschotta, R.; Spühler, G.; Krainer, L.; Golling, M.; Ostinelli, O.; Keller, U. New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers. Appl. Phys. B 2005, 80, 151–158. [Google Scholar] [CrossRef]
- Saraceno, C.J.; Schriber, C.; Mangold, M.; Hoffmann, M.; Heckl, O.H.; Baer, C.R.; Golling, M.; Südmeyer, T.; Keller, U. SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds. IEEE J. Select. Top. Quantum Electron. 2012, 18, 29–41. [Google Scholar] [CrossRef]
- Schibli, T.; Thoen, E.; Kärtner, F.; Ippen, E. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption. Appl. Phys. B 2000, 70, S41–S49. [Google Scholar] [CrossRef]
- Giles, C.; Desurvire, E. Modeling Erbium-Doped Fiber Amplifiers. J. Light. Technol. 1991, 9, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G. Nonlinear Fiber Optics, 6th ed.; Elsevier Inc.: Cambridge, UK, 2019. [Google Scholar]
- Grudinin, A.; Richardson, D.; Payne, D. Energy Quantisation in Figure Eight Fibre Laser. Electron. Lett. 1992, 28, 67–68. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.W.; Andrejco, M. A Polarization Maintaining, Dispersion Managed, Femtosecond Figure-Eight Fiber Laser. Opt. Express 2006, 14, 8160. [Google Scholar] [CrossRef]
- Baumann, E.; Giorgetta, F.R.; Nicholson, J.W.; Swann, W.C.; Coddington, I.; Newbury, N.R. High-Performance, Vibration-Immune, Fiber-Laser Frequency Comb. Opt. Lett. 2009, 34, 638. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Morse, T.F.; Strait, J.; Fork, R.L. High-Power Passively Mode-Locked Er-Doped Fiber Laser with a Nonlinear Optical Loop Mirror. Opt. Lett. 1993, 18, 1444. [Google Scholar] [CrossRef]
- Haus, H. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1173–1185. [Google Scholar] [CrossRef]
- Duan, D.; Wang, J.; Wu, Y.; Ma, J.; Mao, Q. Approach to High Pulse Energy Emission of the Self-Starting Mode-Locked Figure-9 Fiber Laser. Opt. Express 2020, 28, 33603–33613. [Google Scholar] [CrossRef]
- Jiang, T.; Cui, Y.; Lu, P.; Li, C.; Wang, A.; Zhang, Z. All PM Fiber Laser Mode Locked With a Compact Phase Biased Amplifier Loop Mirror. IEEE Photon. Technol. Lett. 2016, 28, 1786–1789. [Google Scholar] [CrossRef]
- Pi, Y.; Tian, H.; Li, R.; Han, Y.; Song, Y.; Hu, M. Timing Jitter and Intensity Noise Characterization of a 122-MHz All-PM NALM Mode-Locked Fiber Laser. IEEE Photon. Technol. Lett. 2021, 33, 1439–1442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Shen, Y.; Tang, X.; Liu, Q.; Zou, H. Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror. Photonics 2023, 10, 261. https://doi.org/10.3390/photonics10030261
Zhang X, Shen Y, Tang X, Liu Q, Zou H. Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror. Photonics. 2023; 10(3):261. https://doi.org/10.3390/photonics10030261
Chicago/Turabian StyleZhang, Xiang, Yong Shen, Xiaokang Tang, Qu Liu, and Hongxin Zou. 2023. "Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror" Photonics 10, no. 3: 261. https://doi.org/10.3390/photonics10030261
APA StyleZhang, X., Shen, Y., Tang, X., Liu, Q., & Zou, H. (2023). Inverse Saturable Absorption Mechanism in Mode-Locked Fiber Lasers with a Nonlinear Amplifying Loop Mirror. Photonics, 10(3), 261. https://doi.org/10.3390/photonics10030261