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Abstract: Utilizing bismuth telluride (Bi2Te3) nanosheet saturable absorbers (SA), a remarkable source
of continuous-wave infrared radiation known for its high efficiency and wide range of accessible
wavelengths, has been successfully developed. The mode-locking bright pulses have a repetition
frequency of 9.5 MHz and a pulse width of 0.6 ps at a power level of 203.5 mW. The optical spectrum
has its center at 1050.23 nm and delivers pulse energies of 2.13 nJ and output power of 20.3 mW.
Using a straightforward 18 m long ring design and a laser cavity with a −19.9 ps2/km dispersion, a
44 dB signal-to-noise ratio (SNR) was achieved to demonstrate the pulse’s strong stability.

Keywords: YDFL; saturable absorber; mode-locked; fiber laser; bismuth telluride

1. Introduction

Pulse fiber lasers are commonly used in a broad spectrum of applications from material
processing to medicine and spectroscopy [1–3]. Important criteria of a pulse fiber laser for
critical applications that require cleaner finishing from laser cutting are the pulse width
and repetition rate. High-power fiber lasers are highly sought after to be used in welding
to weld thick metal plates, and in LIDAR technology to obtain high-resolution and high-
refresh-rate operation [4]. In view of this, researchers are working around pulse fiber lasers
using rare earth ytterbium, which can offer a broad-gain spectrum, high output power, and
excellent power conversion efficiency [5].

Various techniques were adopted to generate a pulse in a fiber laser. These encompass
artificial (nonlinear polarization rotation [6] and nonlinear amplifying loop mirror [7])
and real saturable absorbers (SA) [8]. Among all these techniques, SA technology is a
popular method that relies on material saturable absorption capability to initiate pulsing.
Semiconductor SA is well established commercially because of the advances and innova-
tions in engineering technology that allow precise control of its absorption wavelength
and saturable fluence [9]. Even though semiconductor SA is already mature, researchers
are still working to search for other novel materials with faster relaxation time beyond
picoseconds with lower costs to replace semiconductors. This eventually led to the dis-
covery of 2D graphene [10,11] and later to the emergence of graphene oxide (GO) [12,13]
carbon nanotube (CNT) [14,15] transition-metal dichalcogenide (TMD) [16,17], topological
insulator (TI) [18,19], photonic Floquet topological insulator (PFTI) [20], black phosphorous
(BP) [13,21], and MXene [22,23]. These materials offer distinct yet complementary electrical
and optical properties. This paves the way for a new opportunity to explore the application
of 2D SA in a fiber laser, specifically with ytterbium fiber, to produce high-power lasers.

Crystals 2022, 12, 1507. https://doi.org/10.3390/cryst12111507 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12111507
https://doi.org/10.3390/cryst12111507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-4800-1267
https://orcid.org/0000-0003-1097-0783
https://doi.org/10.3390/cryst12111507
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12111507?type=check_update&version=3


Crystals 2022, 12, 1507 2 of 10

Recently, the rise of the 2D topological insulator (TI) SA has been gaining attention
among researchers. Interestingly, TI is a new kind of quantum electronics matter that
exhibits metallic states at the surface but insulates at its interior [24]. TI possesses extraor-
dinary charge and spin properties on the edge and is actively investigated in quantum
and spintronic devices [25]. The surface of TI exhibits time-reversal symmetry, which can
prevent scattering by other nonmagnetic impurities. TI is validated to demonstrate broad-
band saturable absorption, large modulation depth, and strong saturable intensity [26].
Additionally, TI also possesses excellent thermoelectric efficiency of 1.34 over 400 K for
24 h with annealed Bi2Te2/Bi2Te3 core/shell nanosheets [27]. Bernard et al. [28] first in-
vestigated the transmission spectrum of Bi2Te3 and confirmed the nonlinear transmission
and its saturable absorber behavior at telecommunication wavelength. In the same year,
Zhao et al. [29] demonstrated a soliton pulse using an erbium gain medium with a pulse
width of 1.21 ps and a repetition rate of 1.21 MHz. They also described the modulation
depth of the fabricated TI SA as being as high as 95% and suggested that the high mod-
ulation depth of TI is suitable for high-power pulse formation. Successively, TI such as
Bi2Se3, Bi2Te3, and Sb2Te3 were proven as efficient SA for Q-switching [30–34] and mode-
locking [35–42]. Another interesting work that reported using ytterbium-doped fiber was
about depositing Sb2Te3 on a side-polished fiber, and producing a pulse width of 5.9 ps and
a repetition rate of 19.28 MHz [43,44]. Yan et al. [18] successfully deposited Bi2Te3 in a pho-
tonic crystal fiber (PCF) and inserted it into a ring cavity with ytterbium as gain medium. It
resulted in a pulse width of 960 ps and a repetition rate of 1.11 MHz. Bi2Te3 was reported to
have carrier mobility as high as 5000 cm2/(Vs) and an energy bandgap similar to graphene
at 0.17 eV [45]. Therefore, Bi2Te3 is expected to operate in a wide wavelength range. Here,
we report the mode-locked pulse generation from ytterbium-doped fiber laser (YDFL)
using Bi2Te3 SA. The pulse oscillated at a frequency of 9.5 MHz with a pulse width of
600 ps. Efforts were put into manipulating the factors that affect the mode-locking operation,
including laser diode pump power, the modulation depth of SA, dispersion, nonlinearity,
and gain and loss of a cavity. Adjustment on these parameters resulted in a low pulsing
threshold at 85 mW, delivering pulse energy as high as 2.13 nJ. Moreover, it can be con-
cluded from Raman spectroscopy that a thin Bi2Te3 nanosheet was successfully fabricated,
and it demonstrated nonlinear saturable absorption in the 1 um region.

2. Preparation and Characterization of Topological Insulator-Based Bi2Te3
Nanosheet SA

This section describes the preparation of Bi2Te3 SA. By using a magnetic hotplate
stirrer, 5 mg of Bi2Te3 nanosheets were dispersed in 50 mL of isopropyl alcohol. Once it
was evenly dispersed, it was put under an ultra-sonication bath (Branson 2510, 40 kHz) for
2 h at room temperature to produce a homogeneous Bi2Te3 nanosheet solution. Figure 1a
shows the produced Bi2Te3 nanosheet solution. After this process, Bi2Te3 suspension was
produced with a slightly grey color, which indicates the Bi2Te3 was evenly distributed,
as referred to in Figure 1b. Next, the optical deposition technique was adopted with the
purpose of attaching Bi2Te3 nanosheets at the end of the fiber ferrule [42,46]. The optical
deposition technique was graphically illustrated in Figure 1c. The tip of the fiber ferrule
was soaked in a Bi2Te3 suspension solution. At the same time, light from a 980 nm laser
diode with pump power fixed at 50 mW was introduced to the fiber ferrule. This process
lasted for about 20 min, and the fiber ferrule was removed from the solution to allow
evaporation. The fiber ferrule was left to dry for about 15 min. This process was repeated
for three rounds to ensure the Bi2Te3 has attached adequately to the fiber ferrule. The ready
Bi2Te3 was characterized first before being inserted into the laser cavity.
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Figure 1. Preparation of Bi2Te3 SA: (a) Bi2Te3 nanosheets solution before ultrasonic bath; (b) Bi2Te3 
nanosheets solution after ultrasonic bath treatment; (c) optical deposition technique to append 
Bi2Te3 at the of fiber ferrule; and (d) actual image of before and after Bi2Te3 deposition on fiber ferrule 
tip. 

The properties of successfully prepared Bi2Te3 were further characterized using field-
emission scanning electron microscopy (FESEM), Raman spectroscopy, and EDX analysis. 
Before characterization, the mixture was first dispensed at 600 rpm to wet the copper plate 
base. The spin speed was increased to 2000 rpm for 45s to allow Bi2Te3 suspension to 
spread. Next, the dispensed Bi2Te3 was dried in an oven (80 °C temperature for 60 s) to 
remove any residual liquid and ready it for morphological characterization. The FESEM 
image of Bi2Te3 is shown in Figure 2a. The image reveals layers like complex flakes. Ac-
cording to the atomic force microscopy (AFM) topography measurement in Figure 2b, 
Bi2Te3 was found to have a thickness of about 20 nm. On the other hand, qualitative chem-
ical analysis was performed using EDX, as presented in Figure 2c. It shows that it consists 
of 52.76 weight % Bi and 47.24 weight % Te elements. Figure 2d illustrates the Raman 
spectrum at 39.6, 59.5, 100.9, 115, and 136 cm−1, respectively. These four Raman optical 
phonon peaks corresponded to the Eg1, A1g1, Eg2, A1u2, and A1g2 signals. The observed signal 
peaks are very near to a few-quintuple layer (FQL), 10 quintuple (QL), and 50 QL 2D na-
noplate of Bi2Te3 Raman peaks that have previously been reported [47,48]. The Raman 
analysis was qualitatively similar to that work. An additional peak at 115 cm−1 was ob-
served as well. This highest peak represents the A1u mode composed of longitudinal opti-
cal (LO) phonons at the BZ boundary (Z point). This peak was detected as the result of 
symmetry breaking, proving that the fabricated Bi2Te3 was in a good nano-structured 
state. The incomplete QL layer at the surface caused atoms at the surface to move out of 
the plane and this resulted in the presence of an A1u mode. Light from a white light source 
was injected into Bi2Te3, and its transmission spectrum was recorded via an optical spec-
trometer. Its linear transmission curve is shown in Figure 2e, covering a broad wavelength 
with flat linear absorption. This indicates that Bi2Te3 has a broadband optical response. Its 
nonlinear optical responses, such as saturation intensity, modulation depth, and non-sat-
urable absorption, were also investigated. Details on the nonlinear optical response meas-
urement can be found in [49]. The nonlinear transmission curve is shown in Figure 2f. It 
was plotted with the equation T(I) = 1- (αs/(1+I/Isat) + αns), where T(I) is the transmission, 
αs is the modulation depth, I is the input intensity, Isat is the saturation intensity, and αns 
is the nonsaturable absorption. From the fitted graph, it can be determined that the satu-
ration intensity Isat for Bi2Te3 is 10.2 MW/cm2, modulation depth is at 41.4%, and 

Figure 1. Preparation of Bi2Te3 SA: (a) Bi2Te3 nanosheets solution before ultrasonic bath; (b) Bi2Te3

nanosheets solution after ultrasonic bath treatment; (c) optical deposition technique to append Bi2Te3

at the of fiber ferrule; and (d) actual image of before and after Bi2Te3 deposition on fiber ferrule tip.

The properties of successfully prepared Bi2Te3 were further characterized using field-
emission scanning electron microscopy (FESEM), Raman spectroscopy, and EDX analysis.
Before characterization, the mixture was first dispensed at 600 rpm to wet the copper plate
base. The spin speed was increased to 2000 rpm for 45s to allow Bi2Te3 suspension to spread.
Next, the dispensed Bi2Te3 was dried in an oven (80 ◦C temperature for 60 s) to remove
any residual liquid and ready it for morphological characterization. The FESEM image
of Bi2Te3 is shown in Figure 2a. The image reveals layers like complex flakes. According
to the atomic force microscopy (AFM) topography measurement in Figure 2b, Bi2Te3
was found to have a thickness of about 20 nm. On the other hand, qualitative chemical
analysis was performed using EDX, as presented in Figure 2c. It shows that it consists of
52.76 weight % Bi and 47.24 weight % Te elements. Figure 2d illustrates the Raman spectrum
at 39.6, 59.5, 100.9, 115, and 136 cm−1, respectively. These four Raman optical phonon peaks
corresponded to the Eg

1, A1g
1, Eg

2, A1u
2, and A1g

2 signals. The observed signal peaks are
very near to a few-quintuple layer (FQL), 10 quintuple (QL), and 50 QL 2D nanoplate of
Bi2Te3 Raman peaks that have previously been reported [47,48]. The Raman analysis was
qualitatively similar to that work. An additional peak at 115 cm−1 was observed as well.
This highest peak represents the A1u mode composed of longitudinal optical (LO) phonons
at the BZ boundary (Z point). This peak was detected as the result of symmetry breaking,
proving that the fabricated Bi2Te3 was in a good nano-structured state. The incomplete QL
layer at the surface caused atoms at the surface to move out of the plane and this resulted in
the presence of an A1u mode. Light from a white light source was injected into Bi2Te3, and
its transmission spectrum was recorded via an optical spectrometer. Its linear transmission
curve is shown in Figure 2e, covering a broad wavelength with flat linear absorption. This
indicates that Bi2Te3 has a broadband optical response. Its nonlinear optical responses,
such as saturation intensity, modulation depth, and non-saturable absorption, were also
investigated. Details on the nonlinear optical response measurement can be found in [49].
The nonlinear transmission curve is shown in Figure 2f. It was plotted with the equation
T(I) = 1 − (αs/(1 + I/Isat) + αns), where T(I) is the transmission, αs is the modulation depth,
I is the input intensity, Isat is the saturation intensity, and αns is the nonsaturable absorption.
From the fitted graph, it can be determined that the saturation intensity Isat for Bi2Te3 is
10.2 MW/cm2, modulation depth is at 41.4%, and nonsaturable absorption is measured at
10%. The Isat of 10.2 MW/cm2 is taken when the power intensity reduces the absorption
to half of its unbleached value. The modulation depth refers to the maximum change in
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transmission (distance between two dotted blue lines), while nonsaturable absorption is
measured from the saturation curve at 90% to the maximum. The error bar analysis reveals
minimum and maximum errors of 0.07% and 3.89%, respectively.
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analysis; (d) Raman spectrum; (e) linear transmission spectrum; and (f) nonlinear transmission curve.

3. Experimental Setup

Figure 3 shows the proposed experimental setup. It uses 1 m long ytterbium-doped
fiber (YDF) as a gain medium. The characteristics of YDF are as follows: core and cladding
diameters of 4 µm and 125 µm, respectively, numerical aperture (NA) of 0.20, a cut-off
wavelength at 1010 nm, ytterbium ion absorption of 280 dB/m at 920 nm, and group velocity
dispersion (GVD) of 24.22 ps2/km. A 980/1064 nm wavelength division multiplexer
(WDM) multiplexed 980 nm laser diode (LD) and lasing from YDF. The prepared Bi2Te3
SA was carefully arranged inside the laser cavity to induce pulsing. SA insertion loss
was estimated at around 4 dB at the 1050 nm wavelength. The role of an isolator is to
force one direction of light operation. A 50/50 coupler was used to tap out a portion
of light for monitoring while retaining the remaining 50% for further oscillation. The
monitoring instruments involved were an optical spectrum analyzer (OSA, Yokogawa
AQ6370B), an oscilloscope (LeCroy,352A), and a 7.8 GHz radio-frequency (RF, Anritsu
MS2683A) spectrum analyzer. A 1.2 GHz InGaAs photodetector (Thorlabs DET01CFC) was
employed to convert the optical into an electrical signal for further analysis. The length of
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the laser cavity was projected at 18 m. Except for the gain medium, the cavity was made up
of single-mode fiber (HI 1060) with GVD −21.ps2/km. The laser cavity’s dispersion was
estimated at −19.9 ps2/km.
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Figure 3. Proposed configuration of the mode-locked YDFL with Bi2Te3 SA.

4. Results and Discussion

The laser diode pump power was slowly increased, and once pump power reached
around 85 mW, the continuous-wave (CW) lasing was observed to change to pulsing
operation. Pump power was further increased up to 203.5 mW, and pulsing was still
observed and maintained. The pulsing spectrum at the pump power of 203.5 mW was
recorded with an optical spectrum analyzer (OSA). Figure 4 illustrates the optical spectrum,
spanning from 1035 nm to 1060 nm. The center of the spectrum was located at 1050.23 nm,
with a 3 dB bandwidth of 2.3 nm. No clear Kelly sidebands were visible on the optical
spectrum, suggesting that the pulse was chirped because of the long-constructed cavity.
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Figure 4. Optical spectrum of the mode-locked YDFL at pump power of 203.5 mW, centered at
1050.23 nm.

Figure 5a reveals the temporal characteristics of the generated pulse at the pump
power of 203.5 mW. The peak-to-peak of the oscillation pulse in Figure 5b was consistently
separated at 105.26 ns, equivalent to a repetition rate of 9.5 MHz. This fundamental
frequency matched the cavity length. The pulse width was measured to be 600 ps at the
oscilloscope. The pulse width was predicted to be less than 0.5 ps if the trace is fitted to a
sech pulse profile with a time-bandwidth profile (TBP) = 0.315.
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Figure 5. Typical temporal characteristics of the mode-locked YDFL: (a) zoom-out oscillation trace
at the pump power of 203.5 mW and (b) zoom-in oscillation trace showing the separation between
oscillation trace.

Nevertheless, the actual pulse width was larger because of the long cavity, which intro-
duced chirping. Figure 6 projects the radio-frequency spectrum of the mode-locked pulse.
A solid signal peak at a fundamental repetition rate of 9.5 MHz was clearly shown at the
spectrum analyzer. The signal-to-noise ratio (SNR) measurement was examined at 44 dB. This
proved that the mode-locking emission was steady and stable in the laboratory environment.
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Figure 7 shows the measured output power of the mode-locked YDFL with laser diode
pump power ranging from 85 mW to 203.5 mW. A power meter was used to measure
the average output power of mode-locked YDFL. The pulse energy was calculated and
projected in Figure 7. Both pulse output power and pulse energy increased with pump
power from threshold mode-locking power to 203.5 mW. The highest attainable output
power and pulse energy were 20.3 mW and 2.13 nJ, respectively. The pulse peak power
was anticipated to be 3.76 kW. The laser slope efficiency was calculated from the output
power data at 10.2%. When the laser diode pump power was further raised beyond
20.3 mW, pulsing became unstable and fluctuated. The unstable pulsing was due to the
over-saturation of SA. The pump power was reduced slowly to below 203.5 mW, and the
pulsing appeared stable. It can be concluded that the thermal power from the laser diode
did not accumulate at SA and destroy it. On another note, no pulsing was initiated when
the SA was removed from the cavity. The PC was rotated in a wide orientation, yet no
pulsing was discovered. This proved that the fabricated SA is the key element, and the
pulsing was contributed to by the saturable absorption characteristics of the SA. Figure 8
illustrates the wavelength stability. The stability of center wavelength of optical spectrum
was checked in three hours. The center wavelength was centered around 1050 nm and the
recorded maximum fluctuation was recorded at 0.006%. The output power was consistently
measured at around 20.3 mW, with a fluctuation of 0.34%.
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Figure 8. Stability test of mode-locked YDFL optical spectrum and output power.

Table 1 below summarizes the published work on mode-locked YDFL with Bi2Te3 SA.
Various integration techniques of Bi2Te3 were adopted, such as depositing Bi2Te3 at the
end of the fiber ferrule, side-polished fiber (SPF), tapered fiber, and filling up the photonic
crystal fiber (PCF). The mode-locking threshold in our work was relatively low at 85 mW,
and the pulse energy is high at 2 nJ.

Table 1. Mode-locked YDFL based on Bi2Te3 SA.

Integration Method Center Wavelength 3 dB Bandwidth Threshold
(mW) Pulse Energy Pulse Width Repetition Rate Ref

SPF 1057.82 nm 3.69 nm 200 mW 0.599 nJ 230 ps 1.44 MHz [50]
Tapered fiber 1052.5 nm 1.245 nm 230 mW 2.8 nJ 317 ps 19.8 MHz [51]

PCF 1064.47 nm 1.11 nm 115 mW 1 nJ 960 ps 1.11 MHz [18]
Fiber ferrule 1052.7 nm 0.45 nm 75 mW 753.9 pJ 417 ps 25.6 MHz [52]
Tapered fiber 1063.4 nm 2.24 nm 220 mW 2nJ 5.47 ns 6.2 MHz [53]
Fiber ferrule 1050.23 nm 2.3 nm 85 mW 2.13 nJ 600 ps 9.5 MHz This Work

5. Conclusions

Mode-locked YDFL with Bi2Te3 SA was successfully demonstrated. The fabricated SA
was in a good nano-structured state and exhibited modulation depth of 41.4%, favoring
mode-locking operation. The generated pulse was stable in the laboratory with a repetition
rate of 9.5 MHz. The fluctuation of the repetition rate is small, with a maximum fluctuation
of 0.53%. The pulse energy recorded from this mode-locked YDFL was high at 2.13 nJ.
This proves that the in-house fabricated Bi2Te3 SA is a promising broadband SA element
suitable for various medical and industrial processing applications.
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