Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = contamination deposition characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4550 KiB  
Article
Efficient Visible-Light-Driven Photocatalysis of BiVO4@Diatomite for Degradation of Methoxychlor
by Nazar Iqbal, Xiaocui Huang, Khalid Mohamedali Hamid, Hongming Yuan, Irum Batool and Yuxiang Yang
Catalysts 2025, 15(7), 672; https://doi.org/10.3390/catal15070672 - 10 Jul 2025
Viewed by 484
Abstract
As a persistent organic pollutant, methoxychlor has drawn considerable environmental attention. Photocatalysis, recognized for its environmentally friendly characteristics, has been widely utilized for the degradation of contaminants. In this study, the photocatalytic material BiVO4@diatomite was successfully synthesized via the liquid-phase precipitation [...] Read more.
As a persistent organic pollutant, methoxychlor has drawn considerable environmental attention. Photocatalysis, recognized for its environmentally friendly characteristics, has been widely utilized for the degradation of contaminants. In this study, the photocatalytic material BiVO4@diatomite was successfully synthesized via the liquid-phase precipitation method. The synthesized material was comprehensively characterized using X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (DRS), and a Brunauer–Emmett–Teller (BET) analysis, providing robust evidence for the material’s stability and biocompatibility. The results confirmed the successful deposition of BiVO4 onto the diatomite surface. Furthermore, the effects of various parameters, including the initial methoxychlor concentration, pH, light exposure duration, and illumination intensity, on the photocatalytic degradation efficiency of methoxychlor by BiVO4@diatomite were systematically investigated to optimize degradation performance. The identification of optimal reaction conditions and the proposed degradation mechanism based on experimental findings will be valuable for guiding future studies and practical applications in environmental pollution control. The integration of BiVO4 with diatomite in this study yields a novel composite system with significantly enhanced photocatalytic degradation performance, offering fresh insights into the design of efficient, stable, and eco-friendly materials for pollutant removal. Full article
Show Figures

Figure 1

24 pages, 2126 KiB  
Article
Contaminant Assessment and Potential Ecological Risk Evaluation of Lake Shore Surface Sediments
by Audrey Maria Noemi Martellotta and Daniel Levacher
Water 2025, 17(14), 2042; https://doi.org/10.3390/w17142042 - 8 Jul 2025
Viewed by 375
Abstract
The interruption of solid transport causes sediment deposition, compromising the useful storage capacity. Therefore, it is essential to remove these materials, currently labelled as waste and disposed of in landfills, by identifying alternatives for recovery and valorization, after assessing their compatibility for reuse [...] Read more.
The interruption of solid transport causes sediment deposition, compromising the useful storage capacity. Therefore, it is essential to remove these materials, currently labelled as waste and disposed of in landfills, by identifying alternatives for recovery and valorization, after assessing their compatibility for reuse through characterization, in a circular economy view. This study analyses the potential contamination of shore surface sediments collected at the Camastra and the San Giuliano lakes, located in the Basilicata region. It defines their potential ecological risk, assesses the contamination level status of the sediments, and verifies whether they are polluted and, consequently, suitable for reuse. Analyses carried out using several pollution indices show a slight Arsenic pollution (with values above the regulatory threshold between 55% and 175%) for the San Giuliano sediments and slight Cobalt pollution (with exceedances between 30% and 58.5%) for the Camastra sediments. Subsequently, through statistical analysis, it was possible to make hypotheses on the possible pollutant sources, depending on the geological characteristics of the sampling area and the type of land use, and to identify the potential ecological risk linked to the exceedance of As and Co in San Giuliano and Camastra reservoirs, respectively. In conclusion, this study ascertained the low pollution content in the sampled sediments, so they could be reused in various application fields, from construction to agriculture, significantly reducing landfill disposal. Full article
(This article belongs to the Special Issue Soil Erosion and Sedimentation by Water)
Show Figures

Figure 1

27 pages, 4959 KiB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 249
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

15 pages, 1939 KiB  
Article
Tailings Reuse in Low-Permeability Reactive Geochemical Barriers
by Roberto Rodríguez-Pacheco, Joanna Butlanska and Aldo Onel Oliva-González
Processes 2025, 13(6), 1870; https://doi.org/10.3390/pr13061870 - 13 Jun 2025
Viewed by 323
Abstract
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the [...] Read more.
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the studied tailings is primarily composed of oxides and hydroxides of iron, aluminum, and silica. Based on their grain size, these wastes are geotechnically classified as low plasticity silts, with permeability ranging from 10−8 m/s to less than 10−9 m/s. Batch and column flow tests, along with metal transport tests using heavy metal-contaminated wastewater, reveal that these tailings have an adsorption capacity for metals such as nickel (Ni) and zinc (Zn) ranging from 2000 to 6000 mg/kg of solid. This high adsorption capacity surpasses that of many clayey soils used for sealing municipal, industrial, mining, and metallurgical waste deposits. Additionally, these wastes can neutralize the acidity of wastewater. The results indicate that the mineralogical composition and pH of these tailings are key factors determining their adsorption characteristics and mechanisms. Due to their characteristics, these tailings could be evaluated for use as low-permeability reactive geochemical barriers (LPRGB) in the conditioning of repositories for the storage of industrial, urban, mining and metallurgical waste. This would allow large volumes of tailings to be repurposed effectively. Full article
Show Figures

Figure 1

21 pages, 2702 KiB  
Article
Potential Risks and Spatial Variation of Heavy Metals in Water and Surface Sediment of Pattani Bay, Thailand
by Kanjana Imsilp, Pattanasuda Sirinupong, Pun Yeesin, Wachiryah Thong-asa and Phanwimol Tanhan
Toxics 2025, 13(6), 477; https://doi.org/10.3390/toxics13060477 - 5 Jun 2025
Viewed by 611
Abstract
This investigation examined the physicochemical characteristics and heavy metal contamination within the surface sediments and aquatic environments of Pattani Bay, Thailand, throughout both wet and dry seasons. The sediments were primarily composed of fine-grained materials, specifically silt and clay, and exhibited greater propensity [...] Read more.
This investigation examined the physicochemical characteristics and heavy metal contamination within the surface sediments and aquatic environments of Pattani Bay, Thailand, throughout both wet and dry seasons. The sediments were primarily composed of fine-grained materials, specifically silt and clay, and exhibited greater propensity to absorb heavy metals from water. Notably elevated concentrations of Cd and Pb were detected, particularly within riverine sediment deposits. This indicates that riverine inputs are significant pathways of the contamination and potentially associated with historical mining activities. Seasonal fluctuations affected physicochemical parameters as well as metal concentrations. The heightened levels of Cd and Pb during the wet season were attributed to runoff phenomena. Pollution indices including the Contamination Factor (CF), pollution load index (PLI), and geoaccumulation index (Igeo) demonstrated moderate to extremely high contamination levels of Cd and Pb in certain areas. The Principal Component Analysis (PCA) suggested possible similar sources for multiple metals including Cd, Cu, Pb, and Zn. The results showed that the heavy metal pollution present is serious, especially for Cd and Pb. These could lead to high ecological health risks and so it is necessary to focus on implementing environmental management strategies for Pattani Bay. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Graphical abstract

24 pages, 6093 KiB  
Article
Evaluation and Source Analysis of Plant Heavy Metal Pollution in Kalamaili Mountain Nature Reserve
by Jialin Li, Abdugheni Abliz, Buasi Nueraihemaiti, Dongping Guo and Xianhe Liu
Plants 2025, 14(10), 1521; https://doi.org/10.3390/plants14101521 - 19 May 2025
Viewed by 474
Abstract
Plants serve as vital components of ecosystems, with their contamination status acting as sensitive indicators of environmental pollution. Therefore, the precise assessment of plant heavy metal contamination and source identification are crucial for regional ecological conservation and sustainable development. This study investigated heavy [...] Read more.
Plants serve as vital components of ecosystems, with their contamination status acting as sensitive indicators of environmental pollution. Therefore, the precise assessment of plant heavy metal contamination and source identification are crucial for regional ecological conservation and sustainable development. This study investigated heavy metal pollution in four characteristic plant species (Anabasis aphylla L., Alhagi camelorum Fisch., Reaumuria songonica (PalL)Maxim., and Haloxylon ammodendron (C. A. Mey.) Bunge.) within the Kalamaili Mountain Nature Reserve, employing comprehensive methodologies including pollution indices, bioconcentration factors (BCFs), absolute principal component score–multiple linear regression (APCS-MLR), and the random forest model (RF). The key findings revealed the following: The soil exhibited severe Cd and Hg contamination. The plant Cr concentrations exceeded standard limits by 31.89 to 147 fold. The Pb, Hg, and As content in plants showed significant differences. The plants displayed differential metal enrichment capacities, ranked as Cr (BCF = 3.28) > Hg (1.22) > Cd (0.92) > Cu (0.25) > Zn (0.15) > Pb (0.125) > As (0.125), highlighting Cr, Hg, and Cd as priority ecological hazards. Complex interactions were observed, with Reaumuria songonica (PalL)Maxim. showing strong Cd soil–plant correlation (r = 0.78), whereas Alhagi camelorum Fisch. demonstrated negative associations (Cd: r = −0.21). APCS-MLR identified mining/smelting as primary contributors to Cd (63.49%), Zn (55.66%), and Cr (45.51%), while transportation dominated Pb emissions (72.92%). Mercury pollution originated from mixed sources (56.18%), likely involving atmospheric deposition, and RF modeling corroborated these patterns, confirming industrial and transportation synergies for Cd, Zn, Cr, Cu, Hg, and As, with Pb predominantly linked to vehicular emissions. This multidisciplinary approach provides scientific evidence for establishing heavy metal monitoring systems and formulating targeted remediation strategies in arid ecologically fragile regions. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

36 pages, 16597 KiB  
Article
Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
by Erkan Yılmazer and Mustafa Haydar Terzi
Minerals 2025, 15(5), 528; https://doi.org/10.3390/min15050528 - 15 May 2025
Viewed by 595
Abstract
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to [...] Read more.
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to partially peraluminous properties. Sr-Nd isotope data and the geochemical characteristics of the Kesikköprü granitoid indicate a metasomatized mantle origin, with its ultimate composition arising from crustal contamination and magma mixing along with fractional crystallization in a post-collisional setting. The 40Ar/39Ar geochronology reveals a total fusion age of 73.41 ± 0.32 Ma for the biotite of the Kesikköprü granitoid. The alteration pattern in the deposit is characterized by an endoskarn zone comprising garnet–pyroxene (±phlogopite ± epidote) and an exoskarn zone displaying a zoning of garnet (±pyroxene ± phlogopite), pyroxene (±garnet ± phlogopite ± epidote), epidote–garnet, and epidote-rich subzones. Magnetite is extracted from massive lenses within the exoskarn zones and shows vein, disseminated, banded, massive, and brecciated textures. The low potassium content of phlogopites which are associated with magnetite mineralization prevents the determination of a reliable alteration age. δ18O thermometry reveals a temperature range between 462 and 528 °C for the magnetite mineralization. According to geochemical (trace and rare earth elements), stable (δ18O, δ2H, δ34S, and δ13C), and radiogenic (87Sr/86Sr and 143Nd/144Nd) isotope data, the hydrothermal fluid responsible for the alteration and mineralization is related to the Kesikköprü granitoid, from which a significant magmatic component originates initially, followed by meteoric fluids at lower temperatures (123 °C) during the late-stage formation of calcite–quartz veins. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

15 pages, 6305 KiB  
Article
A Study on the Spectral Characteristics of 83.4 nm Extreme Ultraviolet Filters
by Qian Liu, Aiming Zhou, Hanlin Wang, Pingxu Wang, Chen Tao, Guang Zhang, Xiaodong Wang and Bo Chen
Coatings 2025, 15(5), 535; https://doi.org/10.3390/coatings15050535 - 30 Apr 2025
Viewed by 620
Abstract
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the [...] Read more.
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the nickel mesh-supported indium (In) filter, and their spectral characteristics were comprehensively studied. The material and thickness of the filter were chosen based on atomic scattering principles, determined through theoretical calculation and software simulation. The metal film was deposited using the vacuum-resistive thermal evaporation method. The measured transmission of the filter was 10.06% at 83.4 nm. The surface elements of the sample were analyzed using X-ray photoelectron spectroscopy (XPS). The surface and cross-sectional morphologies of the filter were observed using a scanning electron microscope (SEM). The impact of the oxide layer and carbon contamination on the filter’s transmittance was investigated using an ellipsometer. A multilayer “In-In2O3-C” model was established to determine the thickness of both the oxide layer and carbon contamination layer on the filter. This model introduces the filling factor based on the original model and considers the diffusion of the contamination layer, resulting in more accurate fitting results. The transmittance of the filter in the visible light range was measured using a UV-VIS spectrophotometer, and the measurement error was analyzed. This article provides preparation methods and test methods for the 83.4 nm EUV filter and conducts a detailed analysis of the spectral characteristics of the prepared optical filters, which hold significant value for space exploration applications. Full article
Show Figures

Figure 1

24 pages, 3124 KiB  
Article
Trends in Polychlorinated Biphenyl Contamination in Bucharest’s Urban Soils: A Two-Decade Perspective (2002–2022)
by Mirela Alina Sandu, Mihaela Preda, Veronica Tanase, Denis Mihailescu, Ana Virsta and Veronica Ivanescu
Processes 2025, 13(5), 1357; https://doi.org/10.3390/pr13051357 - 29 Apr 2025
Viewed by 688
Abstract
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that were widely used in industrial applications throughout the 20th century. Due to their chemical stability, resistance to degradation and ability to bioaccumulate and biomagnify through food chains, PCBs pose long-term environmental and health risks. Due [...] Read more.
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that were widely used in industrial applications throughout the 20th century. Due to their chemical stability, resistance to degradation and ability to bioaccumulate and biomagnify through food chains, PCBs pose long-term environmental and health risks. Due to these characteristics, PCBs have been globally regulated as persistent organic pollutants (POPs), despite being banned from production in most countries decades ago. This study investigates temporal trends in PCB contamination in urban soils of Bucharest over a 20-year period (2002–2022), focusing on six principal congeners (PCB 28, 52, 101, 138, 153, and 180) sampled from 13 locations, including roadsides and urban parks. Gas chromatography and spatial analysis using inverse distance weighting (IDW) revealed a marked reduction in Σ6PCB concentrations, declining from 0.0159 mg/kg in 2002 to 0.0065 mg/kg in 2022, with statistically significant differences confirmed by Kruskal–Wallis analysis (p < 0.05). This decline is primarily attributed to reduced emissions, source control measures, and natural attenuation. However, the persistence of PCBs in localized hotspots is influenced by secondary dispersion mechanisms, such as atmospheric deposition and surface runoff, which redistribute contaminants rather than eliminate them. Health risk assessments via ingestion, dermal absorption, and inhalation routes confirmed negligible carcinogenic risk for both adults and children. Although measurable progress has been achieved, the persistence of localized contamination underscores the need for targeted remediation strategies and sustained environmental monitoring to protect vulnerable urban areas from recontamination. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

26 pages, 14766 KiB  
Article
Genesis and Magmatic Evolution of the Gejiu Complex in Southeastern Yunnan, China
by Chuntian Wang, Jiasheng Wang, Xiaojun Zheng, Rong Wang and Bin Ye
Appl. Sci. 2025, 15(8), 4242; https://doi.org/10.3390/app15084242 - 11 Apr 2025
Viewed by 479
Abstract
Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex [...] Read more.
Gejiu, a prominent tin–polymetallic ore district, is distinguished by its diverse mineral complexes. However, the genesis of these complexes and their relationship with mineralization remain inadequately studied. This study utilized whole-rock geochemical analyses to investigate the magmatic sources and petrogenesis of different complex types, aiming to elucidate their implications for tin–polymetallic mineralization. The results indicate that gabbro, monzonite, diorite, and syenite are derived from enriched mantle-derived magmas and have undergone limited crustal contamination. Granites are formed by the mixing of mantle- and crust-derived magmas, involving both physical mixing and chemical diffusion. Major and trace element characteristics suggest that the Gejiu granites predominantly exhibit features of both A-type and I-type granites. Harker diagrams and whole-rock indicators, such as Nb/Ta and Zr/Hf, suggest that granites experienced a two-stage fractional crystallization process, ultimately forming highly evolved biotite monzogranite. Fractional crystallization is the dominant mechanism controlling magmatic evolution, while high-temperature melting and biotite decomposition reactions are critical for the formation of the world-class Gejiu tin deposit. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 5953 KiB  
Article
Memory Devices with HfO2 Charge-Trapping and TiO2 Channel Layers: Fabrication via Remote and Direct Plasma Atomic Layer Deposition and Comparative Performance Evaluation
by Inkook Hwang, Jiwon Kim, Joungho Lee, Yeonwoong Jung and Changbun Yoon
Materials 2025, 18(5), 948; https://doi.org/10.3390/ma18050948 - 21 Feb 2025
Cited by 1 | Viewed by 901
Abstract
With the improvement of integration levels to several nanometers or less, semiconductor leakage current has become an important issue, and oxide-based semiconductors, which have replaced Si-based channel layer semiconductors, have attracted attention. Herein, we fabricated capacitors with a metal–insulator–semiconductor–metal structure using HfO2 [...] Read more.
With the improvement of integration levels to several nanometers or less, semiconductor leakage current has become an important issue, and oxide-based semiconductors, which have replaced Si-based channel layer semiconductors, have attracted attention. Herein, we fabricated capacitors with a metal–insulator–semiconductor–metal structure using HfO2 thin films deposited at 240 °C and TiO2 thin films deposited at 300 °C via remote plasma (RP) and direct plasma (DP) atomic layer deposition and analyzed the effects of the charge-trapping and semiconducting properties of these films. Charge-trapping memory (CTM) devices with HfO2 (charge-trapping layer) and TiO2 (semiconductor) films were fabricated and characterized in terms of their memory properties. Al2O3 thin films were used as blocking and tunneling layers to prevent the leakage of charges stored in the charge-trapping layer. For the TiO2 layer, the heat-treatment temperature was optimized to obtain an anatase phase with optimal semiconductor properties. The memory characteristics of the RP HfO2–TiO2 CTM devices were superior to those of the DP HfO2–TiO2 CTM devices. This result was ascribed to the decrease in the extent of damage and contamination observed when the plasma was spaced apart from the deposited HfO2 and TiO2 layers (i.e., in the case of RP deposition) and the reduction in the concentration of oxygen vacancies at the interface and in the films. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors: Synthesis, Structure, and Applications)
Show Figures

Figure 1

14 pages, 7444 KiB  
Article
The Geochemical Characteristics and Exploitation Threshold of Copper in the Cultivated Soils of Guanzhong Plain, Shaanxi Province
by Yuchen Yan, Zhongfang Yang, Shengfei Yang, Anmin Xu and Duoxun Xu
Agronomy 2025, 15(2), 256; https://doi.org/10.3390/agronomy15020256 - 21 Jan 2025
Cited by 1 | Viewed by 872
Abstract
Moderate copper (Cu) intake is beneficial for human health; however, China has not established recommended Cu levels in major food crops and their cultivation lands. This study focuses on the Guanzhong Plain in Shaanxi Province, where we collected geochemical survey data at a [...] Read more.
Moderate copper (Cu) intake is beneficial for human health; however, China has not established recommended Cu levels in major food crops and their cultivation lands. This study focuses on the Guanzhong Plain in Shaanxi Province, where we collected geochemical survey data at a scale of 1:250,000 and gathered 77 sets of wheat seed and root soil samples. We identified the Cu content and distribution characteristics within both soil and wheat grains in the area. Key factors influencing the bioaccumulation factor (BAF) of Cu in wheat were selected to establish a predictive model using artificial neural networks (ANN). Additionally, we determined recommended thresholds for Cu content in both the wheat and soil. The findings indicated, as follows, that: (1) the soil Cu content ranged from 13.00 to 98.00 mg/kg, with an average concentration of 32.21 mg/kg. Higher levels were found near alluvial deposits along the Qinling Mountains, showing a pattern of higher concentrations in the south than in the north; (2) the concentration of Cu in wheat grains varied from 2.94 to 6.34 mg/kg, with an average of 4.56 mg/kg; importantly, none exceeded the NY861-2004 permissible contamination limits; and (3) we recommend optimal ranges for Cu content for wheat grains of 3.16–10.00 mg/kg and establishing thresholds for cu-rich agricultural lands suitable for growing wheat of 20.80–50.00 mg/kg. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

26 pages, 4346 KiB  
Article
Effect of Diatomite Application on the Removal of Biogenic Pollutants in Rain Gardens
by Agnieszka Grela, Michał Łach, Justyna Pamuła, Karolina Łach, Izabela Godyń, Dagmara Malina, Zbigniew Wzorek, Kinga Setlak and Damian Grela
Materials 2024, 17(24), 6279; https://doi.org/10.3390/ma17246279 - 22 Dec 2024
Viewed by 1374
Abstract
Due to its structure and properties, diatomite from a deposit in Jawornik Ruski (Subcarpathian Voivodeship) can be used as a sorbent in rain gardens. The purpose of the current research is to analyze how enriching the substrate used in a rain garden with [...] Read more.
Due to its structure and properties, diatomite from a deposit in Jawornik Ruski (Subcarpathian Voivodeship) can be used as a sorbent in rain gardens. The purpose of the current research is to analyze how enriching the substrate used in a rain garden with diatomite can affect the removal of biogenic pollutants. This study was carried out under laboratory conditions using retention columns, two experimental columns with different contents of diatomite, and a control column without the addition of diatomite. Analyses of the materials used included studies of the characteristics of the rain garden layers (water permeability and granulometric analysis) and characterization of the diatomite (SEM images, oxide and phase composition, leachability, and BET). The effects of diatomite on pollutant removal were studied for NH4+, PO43−, NO3. The results showed approximately 3-fold higher reductions in the concentration of NH4+ and PO43− in the columns with the addition of diatomite than in the control one (reduction in the concentration of NH4+ by 93 and 94% and of PO43− by 94 and 98% with the addition of 20 and 30% diatomite contents, respectively). The study results confirmed the possibility of removing contaminants using diatomite, thus reducing their entry into the aquatic environment. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
Show Figures

Graphical abstract

33 pages, 13995 KiB  
Article
Ventilation Optimization Based on Spatial-Temporal Distribution and Removal Efficiency of Patient-Exhaled Pollutants in Hospital Wards During the Post-Epidemic Period
by Min Chen and Qingyu Wang
Buildings 2024, 14(12), 3827; https://doi.org/10.3390/buildings14123827 - 28 Nov 2024
Cited by 1 | Viewed by 941
Abstract
Given the potential risks of unknown and emerging infectious respiratory diseases, prioritizing an appropriate ventilation strategy is crucial for controlling aerosol droplet dispersion and mitigating cross-infection in hospital wards during post-epidemic periods. This study optimizes the layout of supply diffusers and exhaust outlets [...] Read more.
Given the potential risks of unknown and emerging infectious respiratory diseases, prioritizing an appropriate ventilation strategy is crucial for controlling aerosol droplet dispersion and mitigating cross-infection in hospital wards during post-epidemic periods. This study optimizes the layout of supply diffusers and exhaust outlets in a typical two-bed ward, employing a downward-supply and bottom-exhaust airflow pattern. Beyond ventilation, implementing strict infection control protocols is crucial, including regular disinfection of high-touch surfaces. CO2 serves as a surrogate for exhaled gaseous pollutants, and a species transport model is utilized to investigate the airflow field under various configurations of vents. Comparisons of CO2 concentrations at the respiratory planes of patients, accompanying staff (AS), and healthcare workers (HCWs) across nine cases are reported. A discrete phase model (DPM) is employed to simulate the spatial-temporal dispersion characteristics of four different particle sizes (3 μm, 12 μm, 20 μm, and 45 μm) exhaled by the infected patient (Patient 1) over 300 s. Ventilation effectiveness is evaluated using indicators like contaminant removal efficiency (CRE), suspension rate (SR), deposition rate (DER), and removal rate (RR) of aerosol droplets. The results indicate that Case 9 exhibits the highest CRE across all respiratory planes, indicating the most effective removal of gaseous pollutants. Case 2 shows the highest RR at 50.3%, followed by Case 1 with 40.4%. However, in Case 2, a significant portion of aerosol droplets diffuse towards Patient 2, potentially increasing the cross-infection risk. Balancing patient safety with pollutant removal efficacy, Case 1 performs best in the removal of aerosol droplets. The findings offer novel insights for the practical implementation of ventilation strategies in hospital wards, ensuring personnel health and safety during the post-epidemic period. Full article
(This article belongs to the Special Issue Research on Ventilation and Airflow Distribution of Building Systems)
Show Figures

Figure 1

24 pages, 5860 KiB  
Article
Temporal and Spatial Variations in Microplastic Concentrations in Small Headwater Basins in the Southern Blue Ridge Mountains, North Carolina, USA
by Jerry Miller, Nathaniel Barrett, Jason Love, Austin Gray, Robert Youker, Chloe Hall, Noa Meiri, Megan Gaesser, Georgeanna Randall, Reagan Jarrett and Juliet Spafford
Environments 2024, 11(11), 240; https://doi.org/10.3390/environments11110240 - 30 Oct 2024
Cited by 1 | Viewed by 2792
Abstract
Microplastics (MPs) are ubiquitous contaminants of emerging concern that require additional study in freshwater streams. We examined the spatial-temporal variations in MP concentrations and characteristics within two headwater basins in the Southern Appalachian Mountains of western North Carolina over ~1 year. Atmospheric samples [...] Read more.
Microplastics (MPs) are ubiquitous contaminants of emerging concern that require additional study in freshwater streams. We examined the spatial-temporal variations in MP concentrations and characteristics within two headwater basins in the Southern Appalachian Mountains of western North Carolina over ~1 year. Atmospheric samples were also collected to determine the significance of atmospheric MP deposition to these relatively small streams. MP concentrations in both basins were within the upper quartile of those reported globally, reaching maximum values of 65.1 MPs/L. Approximately 90% of MPs were fibers. MP composition was dominated by polystyrene, polyamides, and polyethylene terephthalate. Spatially, concentrations were highly variable and increased with development, indicating anthropogenic inputs from urbanized areas. MP concentrations were also elevated in forested tributary subbasins with limited anthropogenic activity, suggesting atmospheric deposition was an important MPs source. Significant atmospheric inputs are supported by high atmospheric depositional rates (ranging between 7.6 and 449.8 MPs/m2/day across our study sites) and similarities in morphology, color, and composition between atmospheric and water samples. Temporally, MP concentrations during storm events increased, decreased, or remained the same in comparison to base flows, depending on the site. The observed spatial and temporal variations in concentrations appear to be related to the complex interplay between precipitation and runoff intensities, channel transport characteristics, and MP source locations and contributions. Full article
Show Figures

Figure 1

Back to TopTop