Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
Abstract
:1. Introduction
Deposit Name (Location) | Kesikköprü (Ankara) | Çelebi (Kırıkkale) | Karamadazı (Kayseri) | Divriği (Sivas) | Hekimhan (Malatya) | ||
---|---|---|---|---|---|---|---|
A Kafa | B Kafa | Dumluca | Hasançelebi | ||||
Commodity | Fe | Fe, W | Fe | Fe | Fe, Cu | Fe | Fe, Cu, Au |
Host Rock | (1) Marble | (1) Marble | (1) Limestone | (1) Limestone | (1) Limestone | (1) Limestone | (1) Volcanics |
(2) Mafic–ultramafic | (2) Granitoid | (2) Granitoid | (2) Serpantinized ultramafic | (2) Serpantinized ultramafic | (2) Serpantinized ultramafic | (2) Siyenite | |
(3) Granitoid | - | - | (3) Monzonite and monzodiorite | - | (3) Siyenite, granite, and diorite | - | |
Age of Host Rock (Method) | (1) Paleozoic–Mesozoic | (1) Paleozoic–Mesozoic | (1) Permian | (1) Mesozoic | (1) Mesozoic | (1) Mesozoic | (1) 74.26 ± 0.45 to 76.84 ± 0.67 Ma (Ar-Ar) |
(2) Late Cretaceous | (2) 72.9 ± 1.2 to 74.24 ± 0.66 Ma (Ar-Ar) | (2) 48.74 ± 0.67 Ma (Ar-Ar) | (2) Late Cretaceous | (2) Late Cretaceous | (2) Late Cretaceous | (2) 71.27 ± 0.29 to 75.07 ± 0.5 Ma (Ar-Ar, K-Ar, and U-Pb) | |
(3) 72.14 ± 0.81 to 73.41 ± 0.32 Ma (Ar-Ar) | - | - | (3) 62.1 ± 0.3 to 77.4 ± 1.5 Ma (Ar-Ar, K-Ar), 110 ± 5 Ma (Rb-Sr) | - | (3) 67.8 ± 0.4 to 76.6 ± 1.6 Ma (K-Ar) | - | |
Alteration Assemblages | Grt, Px, Ep, Cal, Qz, Phl, Ttn, and Tr | Grt, Px, Ep, and Qz | Grt, Px, Ep, Act, Qz, and Cal | Grt, Px, Ep, Amp, Scp, Ab, Phl, Ba, and Kfs | Se, Qz, Cal, and Ba | Phl, Grt, Px, Cal, and Qz | Scp, Phl, Act, Grt, Px, Se, Qz, Fl, and Ab |
Ore Body Form | Massive, bands, and lenses | Dissemination, massive, and pockets | Pockets, dissemination, and lenses | Pockets, lenses, and massive | Brecciated | Massive | Dissemination, massive, and brecciated |
Ore Minerals | Mag, Hem, Lim, Py, Ccp, Mrc, and Mlc | Mag, Sch, Spc, Hem, Py, and Ccp | Mag, Hem, Py, Ccp, and Mlc | Mag, Py, and Ccp | Hem, Gth, Lim, Py, Ccp, Mlc, and Mrc | Mag, Py, and Hem | Mag, Hem, Gth, Py, and Ccp |
Reserve and Grade | 12.7 Mt at 39%–61% Fe | 0.961 Mt at 35%–42% Fe | 6.4 Mt at 54% Fe | 65.4 Mt at 45%–61% Fe | 5.6 Mt at 57% Fe | 865 Mt at 15% Fe; | |
0.075 Mt at | 0.04–2 ppm Au | ||||||
0.41% W | 0.04%–2.75% Cu | ||||||
Mineralization Age (Method) | - | - | 46.58 ± 0.82 Ma (Ar/Ar) | 73.5 ± 0.40 to 74.34 ± 0.83 Ma (Ar-Ar) | - | - | 68.64 ± 0.42 to 74.92 ± 0.39 Ma (Ar-Ar) |
References | [5,8,19,20,21,22,23,24], This study | [5,8,24,25] | [5,24,26] | [5,26,27,28,29,30,31] | [3,5,29,31] | [5,26,30,32] |
2. Geological Framework
2.1. Regional Geologic Setting
2.2. Local Geology
3. Alteration
4. Mineralization
5. Materials and Methods
5.1. Geochemistry
5.2. Geochronology
5.3. Radiogenic Isotope Geochemistry
5.4. Stable Isotope Geochemistry
6. Results
6.1. Whole Rock Geochemistry
6.1.1. Host Rock
6.1.2. Skarn
6.2. Ar/Ar Geochronology
6.3. Radiogenic Isotopes
6.4. Stable Isotopes
Sample No | Explanation | Mineral | δ18O ‰ | δ2H ‰ | δ13C ‰ | δ34S ‰ | Mineral Pairs (Temperature, °C) * | Used T (°C) in Calculations | Calculated δ18Ofluid ‰ ** | Calculated δ2Hfluid ‰ *** |
---|---|---|---|---|---|---|---|---|---|---|
VSMOW | VSMOW | VPDB | VCDT | |||||||
KK-16-01 | Magnetite ore | Grt | 15.2 | 574 | 18.22 | |||||
KK-16-02 | Exoskarn (Grt ± Px ± Phl) | Grt | 3.3 | CalKK-18-06-GrtKK-16-02 (574 °C) | 574 | 6.32 | ||||
KK-18-01 | Exoskarn (Ep − Grt) | Grt | −0.1 | 574 | 2.92 | |||||
Mag | 3.5 | 517 | 10.37 | |||||||
Cal | 7.8 | 0.01 | CalKK-18-01-EpKK-18-07 (462 °C) | 462 | 5.05 | |||||
KK-18-02 | Sulfide Phase | Py | 6.5 | |||||||
KK-18-04 | Late-stage Cal-Qz Vein | Cal | 24.2 | −6.7 | QzKK-18-09-CalKK-18-04 (123 °C) | 123 | 8.66 | |||
KK-18-05 | Exoskarn (Px ± Grt ± Phl ± Ep) | Grt | −0.7 | 574 | 2.32 | |||||
Mag | 5.2 | QzKK-18-05-MagKK-18-15 (517 °C) | 517 | 12.07 | ||||||
Qz | 11.0 | 405 | 6.58 | |||||||
Cal | 10.1 | 0.8 | QzKK-18-05-CalKK-18-05 (405 °C) | 405 | 6.57 | |||||
KK-18-06 | Exoskarn (Grt ± Px ± Phl) | Cal | 7.1 | −0.7 | 574 | 5.31 | ||||
Py | 4.5 | |||||||||
KK-18-07 | Exoskarn (Ep − Grt) | Ep | 4.9 | −51 | 462 | 5.74 | −15.10 | |||
Py | 7.8 | |||||||||
KK-18-09 | Late-stage Cal-Qz Vein | Qz | 26.9 | 123 | 8.73 | |||||
KK-18-14 | Exoskarn (Px ± Grt ± Phl ± Ep) | Phl | 6.3 | −67 | 528 | 8.67 | −52.10 | |||
KK-18-15 | Exoskarn (Px ± Grt ± Phl ± Ep) | Phl | 6.5 | −64 | CalKK-18-05-PhlKK-18-15 (528 °C) | 528 | 8.87 | −49.10 | ||
Mag | 2.9 | 517 | 9.77 |
7. Discussion
7.1. Temporal Relationship Between the Kesikköprü Granitoid and Mineralization, and Constraints on Other Magmatic–Hydrothermal Systems
7.2. Tectonic Setting and Petrogenesis of the Kesikköprü Granitoid
7.3. Physico-Chemical and Isotopic Constraints on the Skarn Formation
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Act | Actinolite | JAL | Geochemical Analyses Laboratory |
AKM | Akdağmadeni Massif | Lim | limonite |
Ab | Albite | LREE | light REE |
Adr | Andradite | Mlc | malachite |
ALKOS | silica-oversaturated alkaline plutons | Mrc | marcasite |
ALKUS | silica-undersaturated alkaline plutons | Kfs | K-feldspar |
Amp | amphibole | KM | Kırşehir Massif |
ASÜBTAM | Scientific and Technological Application and Research Center of Aksaray University | LILE | Large Ion Lithophile Element |
Ba | Barite | MM | Menderes Massif |
BE | Bulk Earth | MORB | Mid-Ocean Ridge Basalt |
CACC | Central Anatolian Crystalline Complex | Mag | magnetite |
CAG | Central Anatolian Granitoids | MTA | General Directorate of Mineral Exploration and Research |
CAM | Central Anatolian Metamorphics | NGIL | Nevada Isotope Geochronology Laboratory |
CAO | Central Anatolian Ophiolites | NM | Niğde Massif |
Cal | calcite | OIB | Ocean Island Basalt |
CEASs | central-eastern Anatolian alkaline syenitoids | ORG | Ocean Ridge Granite |
CF-IRMS | Continuous-Flow Isotope Ratio Mass Spectrometer | Pent | Pentlandite |
CP | Central Pontide | Phl | phlogopite |
Ccp | chalcopyrite | Post-COLG | Post-Collision Granitoid |
DM | Depleted Mantle | Py | pyrite |
DSF | Dead Sea Fault | Px | pyroxene |
EFZ | Ecemiş Fault Zone | Qz | quartz |
EMI | Enriched Mantle I | REE | rare earth elements |
EP | Eastern Pontide | RSZ | Rhodope–Strandja Zone |
Ep | epidote | Scp | Scapolite |
Fl | Flourite | Sch | Scheelite |
Gth | goethite | Se | sericite |
Grt | garnet | Spc | Specularite |
Grs | Grossular | Syn-COLG | Syn-Collision Granite |
Gt | billion metric tons | SZ | Sakarya Zone |
Hem | hematite | TB | Thrace Basin |
HFSE | High-Field-Strength Element | TC/EA | Thermo-Combustion Elemental Analyzer |
HIMU | High Mantle U/Pb ratio | TGFZ | Tuz Gölü Fault Zone |
HREE | heavy REE | TIMS | thermal ionization mass spectrometer |
IAESZ | İzmir–Ankara–Erzincan Suture Zone | Ttn | titanite |
ICIT | In-Core Irradiation Tube | Tr | tremolite |
ICP-MS | inductively coupled plasma mass spectrometer | VAG | volcanic arc granite |
IOCG | iron oxide–copper–gold | VCDT | Vienna Canyon Diablo Troilite |
IPS | Intra-Pontide Suture | VPDB | Vienna Pee Dee Belemnite |
IRMS | Isotope Ratio Mass Spectrometer | VSMOW | Vienna Standard Mean Ocean Water |
ITS | Inner-Tauride Suture | WDXRF | wavelength dispersive X-Ray fluorescence |
IZ | Istanbul Zone | WPG | within-plate granite |
References
- Tuck, C.C. Iron ore. In 2018 Minerals Yearbook; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2021; pp. 39.1–39.11. [Google Scholar]
- Statista. Global Usable Iron Ore Production 2010–2024. Available online: https://www.statista.com/statistics/589945/iron-ore-production-gross-weight-worldwide/ (accessed on 8 April 2025).
- Cihnioğlu, M.; İşbaşarır, O.; Ceyhan, Ü.; Adıgüzel, O. Türkiye Demir Envanteri; MTA Publication: Ankara, Türkiye, 1994; pp. 1–408. (In Turkish) [Google Scholar]
- Hastorun, S. The mineral industry of Turkey. In 2014 Minerals Yearbook (Turkey); U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2016; pp. 46.1–46.26. [Google Scholar]
- General Directorate of Mineral Research and Exploration (MTA). Türkiye Yer Altı Kaynakları (İllere göre); Yer Bilimleri ve Kültür Serisi-5; MTA Publication: Ankara, Türkiye, 2009; pp. 1–602. (In Turkish) [Google Scholar]
- General Directorate of Mining and Petroleum Affairs (MAPEG). Mineral Production Statistics in Türkiye. Available online: https://www.mapeg.gov.tr/Sayfa/Madenistatistik (accessed on 8 April 2025).
- State Planning Organization of Türkiye (DPT). Madencilik Özel İhtisas Komisyonu Raporu Metal Madenler Alt Komisyonu Demir Çalışma Grubu Raporu. In Sekizinci Beş Yıllık Kalkınma Planı; DPT Publication: Ankara, Türkiye, 2001; pp. 1–59. (In Turkish) [Google Scholar]
- Kuşcu, İ.; Tosdal, R.M.; Gençalioğlu-Kuşcu, G. Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geol. Rev. 2019, 107, 119–154. [Google Scholar] [CrossRef]
- Okay, A.İ.; Tüysüz, O. Tethyan sutures of northern Turkey. Geol. Soc. Lond. Spec. Publ. 1999, 156, 475–515. [Google Scholar] [CrossRef]
- Erler, A.; Bayhan, H. Mineral Deposits Related with Central Anatolian Granitoids. In Proceedings of the Ofiyolit-Granitoyid İlişkisi ile Gelişen Demir Yatakları Sempozyumu, Sivas, Türkiye, 10–13 September 1998; pp. 83–96. [Google Scholar]
- Kuşcu, İ.; Erler, A. Mineralization events in a collision related setting: The Central Anatolian Crystalline Complex. Int. Geol. Rev. 1998, 40, 552–565. [Google Scholar] [CrossRef]
- Genç, Y.; Yürür, M.T. Savcılıebeyit (Kaman-Kırşehir) gold mineralization and its genetic relationship with post-collisional exhumation and extensional tectonics in Central Anatolia, Turkey. Yerbilimleri 2018, 39, 155–176. [Google Scholar] [CrossRef]
- Göncüoğlu, M.C.; Toprak, V.; Kuşcu, İ.; Erler, A.; Olgun, E. Orta Anadolu Masifinin Batı Bölümünün Jeolojisi, Bölüm 1: Güney Kesim; Report No: 2909; TPAO Publication: Ankara, Türkiye, 1991. (In Turkish) [Google Scholar]
- Özce Mining Company. Iron Ore Production in the Kesikköprü Iron Deposit. Available online: https://www.ozcemaden.com/demir-cevheri-uretimi (accessed on 8 April 2025).
- Güngör, K. Production of Heavy-Media-Quality Magnetite Concentrate from Kesikköprü Iron Ore Tailings. Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 2010. [Google Scholar]
- Ünlü, T. Türkiye Demir Yatakları Arama Çalışmalarında 1. Derecede Ağırlıklı Hedef Saha Seçimi ve Maden Jeolojisi Araştırmaları ile İlgili Proje Teklifi; Report No: 8593; MTA Publication: Ankara, Türkiye, 1989. (In Turkish) [Google Scholar]
- Işık, V. The ductile shear zone in granitoid of the Central Anatolian Crystalline Complex, Turkey: Implications for the origins of the Tuzgölü basin during the Late Cretaceous extensional deformation. J. Asian Earth Sci. 2009, 34, 507–521. [Google Scholar] [CrossRef]
- Lefebvre, C.; Meijers, M.J.M.; Kaymakci, N.; Peynircioğlu, A.; Langereis, C.G.; Van Hinsbergen, D.J.J. Reconstructing the geometry of central Anatolia during the late Cretaceous: Large-scale Cenozoic rotations and deformation between the Pontides and Taurides. Earth Planet. Sci. Lett. 2013, 366, 83–98. [Google Scholar] [CrossRef]
- Seymen, İ. Stratigraphy and metamorphism of the Kırşehir Massif around Kaman (Kırşehir-Turkey). Bull. Geol. Soc. Turk. 1981, 24, 7–14. [Google Scholar]
- Bayhan, H. Kesikköprü skarn kuşağının (Bala-Ankara) mineralojisi ve petrojenezi. Hacettepe Üniversitesi Yerbilimleri 1984, 11, 45–59. (In Turkish) [Google Scholar]
- Bayhan, H. Geochemistry and genetic interpretation of the Çelebi Instrusion in the Inner Anatolian Granitoid Belt. Geol. Eng. 1986, 29, 27–36, (In Turkish with English abstract). [Google Scholar]
- Bayhan, H. Kesikköprü (Bala-Ankara) yöresindeki Fe, Pb-Zn ve florit cevherleşmelerinin mineralojisi. Cumhuriyet Üniversitesi Mühendislik Fakültesi Dergisi 1990, 6–7, 25–33. (In Turkish) [Google Scholar]
- Doğan, B.; Ünlü, T.; Sayılı, S. An approach to the origin of Kesikköprü (Bala-Ankara) iron deposit. Bull. Miner. Res. 1998, 120, 1–35. [Google Scholar]
- Kuşcu, İ. Potential of porphyry Cu mineralization in central Anatolia. Mining Turkey Magazine, October 2014; 38–41. [Google Scholar]
- Kuşcu, İ. Geochemistry and mineralogy of the skarns in the Çelebi District, Kırıkkale, Turkey. Turk. J. Earth Sci. 2001, 10, 121–132. [Google Scholar]
- Kuşcu, İ.; Tosdal, R.M.; Gencalioğlu-Kuşcu, G.; Friedman, R.; Ullrich, T.D. Late Cretaceous to Middle Eocene magmatism and metallogeny of a portion of the southeastern Anatolian orogenic belt, east-central Turkey. Econ. Geol. 2013, 108, 641–666. [Google Scholar] [CrossRef]
- Zeck, H.P.; Ünlü, T. Murmano plütonu’nun yaşı ve ofiyolitle olan ilişkisi (Divriği-Sivas). MTA Derg. 1988, 108, 82–97. [Google Scholar]
- Yılmazer, E.; Kuşcu, İ.; Demirela, G. A-B-Kafa Mineralizations in Divriği: Alteration zoning and zoning. Geol. Bull. Turk. 2003, 46, 17–34. [Google Scholar]
- Boztuğ, D.; Harlavan, Y. K–Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. Int. J. Earth Sci. 2008, 97, 585–599. [Google Scholar] [CrossRef]
- Marschik, R.; Spikings, R.; Kuşcu, İ. Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in central Anatolia, Turkey. Miner. Depos. 2008, 43, 111–124. [Google Scholar] [CrossRef]
- Öztürk, H.; Kasapçı, C.; Cansu, Z.; Hanilçi, N. Geochemical characteristics of iron ore deposits in central eastern Turkey: An approach to their genesis. Int. Geol. Rev. 2016, 58, 1673–1690. [Google Scholar] [CrossRef]
- Kuşcu, İ.; Yılmazer, E.; Güleç, N.; Bayır, S.; Demirela, G.; Gençalioğlu Kuşcu, G.; Kuru, G.S.; Kaymakçı, N. U-Pb and 40Ar-39Ar Geochronology and isotopic constraints on the genesis of copper-gold−bearing iron oxide deposits in the Hasançelebi district, Eastern Turkey. Econ. Geol. 2011, 106, 261–288. [Google Scholar] [CrossRef]
- Boroviczeny, F. 200/240 Nolu Ruhsat Sahasinin Kesikköprü Yakinindaki Demir Yataği Hakkindaki Rapor; Report No: 3481; MTA Publication: Ankara, Türkiye, 1964. (In Turkish) [Google Scholar]
- Brennich, G. Çelebi-Kesikköprü-Hirfanli Bölgesinde Manyetit Zuhurlari Hakkinda Rapor; Report No: 2755; MTA Publication: Ankara, Türkiye, 1960. (In Turkish) [Google Scholar]
- Demiröz, T.; Ceylan, Ü.; Okşaş, M. Kesikköprü-Bala-Ankara Madentepe Büyükocak Boyali in Demir Yataklari Fizibilite Etüdü; Report No: 8286; MTA Publication: Ankara, Türkiye, 1986. (In Turkish) [Google Scholar]
- İşbaşarır, O.; Arda, N.; Tosun, S. Kesikköprü (Bala-Ankara) Demir Yatağı Maden Geçidi, Suluocak ve Boyalı in Ocağı Detay Jeoloji ve Jeofizik Raporu; Report No: 10649; MTA Publication: Ankara, Türkiye, 2004. (In Turkish) [Google Scholar]
- Öztürk, K.; Kurt, M.; Öztürk, M.; Sarı, İ. Ankara–Bala–Kesikköprü, Madentepe, Büyükocak, Çataldere, Camiisagir Demir Yatakları Jeoloji ve Rezerv Raporu; Report No: 7355; MTA Publication: Ankara, Türkiye, 1983. (In Turkish) [Google Scholar]
- Öztürk, K.; Öztürk, M. Ankara-Bala-Yukarıtepeköy-Kartalkaya Demir Cevherleşmesi Jeoloji Etüd ve Arama Raporu; Report No: 7357; MTA Publication: Ankara, Türkiye, 1983. (In Turkish) [Google Scholar]
- Öztürk, M. Ankara-Keskin-Çelebi, Kırşehir-Kaman, Nevşehir-Hacıbektaş Yörelerindeki Demir Zuhurlarının Jeoloji Raporu; Report No: 7158; MTA Publication: Ankara, Türkiye, 1981. (In Turkish) [Google Scholar]
- Sözen, A. Kesikköprü, Madentepe Manyetit Zuhur Hakkinda Rapor; Report No: 4212; MTA Publication: Ankara, Türkiye, 1970. (In Turkish) [Google Scholar]
- Sungurlu, B. Kesikköprü-Çelebi-Hirfanli Bölgesinin Manyetit Zuhurlari Hakkinda Rapor; Report No: 4231; MTA Publication: Ankara, Türkiye, 1970. (In Turkish) [Google Scholar]
- Yaz, N.; Sözen, A. Kesikköprü-Çelebi-Hirfanli Bölgesinin Manyetit + Hematit Zuhurlari Hakkinda Rapor; Report No: 4440; MTA Publication: Ankara, Türkiye, 1967. (In Turkish) [Google Scholar]
- Wondenmagegnahu, T.W. Mineralogy, Chemistry and Physical Properties of the Magnetite Ore Deposits Around Kesikköprü Village and the Surrounding Areas. Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 1990. [Google Scholar]
- Robertson, A.H.F.; Dixon, J.E. Introduction: Aspects of the Geological Evolution of the Eastern Mediterranean. Geol. Soc. Lond. Spec. Publ. 1984, 17, 1–74. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Yilmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Görür, N.; Tüysüz, O.; Sengör, A.M.C. Tectonic evolution of the Central Anatolian Basins. Int. Geol. Rev. 1998, 40, 831–850. [Google Scholar] [CrossRef]
- Akıman, O.; Erler, A.; Göncüoğlu, M.C.; Güleç, N.; Geven, A.; Türeli, T.K.; Kadıoğlu, Y.K. Geochemical characteristics of granitoids along the western margin of the Central Anatolian Crystalline Complex and their tectonic implications. Geol. J. 1993, 28, 371–382. [Google Scholar] [CrossRef]
- Erkan, Y.; Ataman, G. A study on the age of metamorphism of central Anatolian massive (Kırşehir region) by K-Ar method. Yerbilimleri 1981, 8, 27–30. [Google Scholar]
- Göncüoğlu, M.C. Geochronological data from the southern part (Niğde area) of the Central Anatolian Massif. Miner. Res. Tech. Inst. Turk. Bull. 1986, 105–106, 83–96. [Google Scholar]
- Whitney, D.L.; Hamilton, M.A. Timing of high-grade metamorphism in central Turkey and the assembly of Anatolia. J. Geol. Soc. 2004, 161, 823–828. [Google Scholar] [CrossRef]
- Alpaslan, M.; Guzeou, J.C.; Bonhomme, M.; Boztuğ, D. Metamorphism and age of the Fındıcak metamorphics of Yıldızeli metasedimentary group. Geol. Bull. Turk. 1996, 39, 19–29. [Google Scholar]
- Whitney, D.L.; Teyssier, C.; Fayon, A.K.; Hamilton, M.A.; Heizler, M. Tectonic controls on metamorphism, partial melting, and intrusion: Timing and duration of regional metamorphism and magmatism in the Niğde Massif, Turkey. Tectonophysics 2003, 376, 37–60. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Heizler, M.T. Gneiss domes, metamorphic core complexes, and wrench zones: Thermal and structural evolution of the Niğde Massif, central Anatolia. Tectonics 2007, 26, TC5002. [Google Scholar] [CrossRef]
- Yalınız, M.K.; Floyd, P.A.; Göncüoğlu, M.C. Supra-subduction zone ophiolites of Central Anatolia: Geochemical evidence from the Sarikaraman Ophiolite, Aksaray, Turkey. Mineral. Mag. 1996, 60, 697–710. [Google Scholar] [CrossRef]
- Göncüoğlu, M.C.; Türeli, T.K. Petrology and geodynamic interpretation of plagiogranites from Central Anatolian Ophiolites (Aksaray-Turkey). Turk. J. Earth Sci. 1993, 2, 195–203. [Google Scholar]
- Yılmaz, S.; Boztuğ, D. Petrology of the Hasançelebi Syenitic Pluton from the Central-Eastern Anatolian Alkaline Province, Hekimhan-Malatya District, Turkey. In Proceedings of the EUG VI, Strasbourg, France, 1–4 March 1991; p. 246. [Google Scholar]
- Otlu, N.; Boztuğ, D. The coexistency of the silica oversaturated (ALKOS) and undersaturated alkaline (ALKUS) rocks in the Kortundağ and Baranadağ plutons from the Central Anatolian alkaline plutonism, E Kaman/NW Kırşehir, Turkey. Turk. J. Earth Sci. 1998, 7, 241–258. [Google Scholar]
- Erler, A.; Bayhan, H. General evalution and problems of the central Anatolian granitoids. Yerbilimleri. 1995, 17, 49–69. [Google Scholar]
- Erler, A.; Akiman, O.; Unan, C.; Dalkilic, F.; Dalkilic, Β.; Geven, A.; Önen, P. Petrology and geochemistry of the magmatic rocks of the Kirsehir Massif at Kaman (Kirsehir) and Yozgat regions. TÜBİTAK Doğa-Tr. J. Eng. Environ. Sci. 1991, 15, 76–100. [Google Scholar]
- Erler, A.; Göncüoğlu, M.C. Geologic and tectonic setting of the Yozgat Batholith, Northern Central Anatolian Crystalline Complex, Turkey. Int. Geol. Rev. 1996, 38, 714–726. [Google Scholar] [CrossRef]
- Köksal, S.; Romer, R.L.; Göncüoğlu, M.C.; Toksoy-Köksal, F. Timing of post-collision H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). Int. J. Earth Sci. 2004, 93, 974–989. [Google Scholar] [CrossRef]
- Ataman, G. Ankara’nın güneydoğusundaki granitik-granodiyoritik kütlelerden Cefalıkdağın radyometrik yaşı hakkında ön çalışma. Hacet. Üniversitesi Fen Ve Mühendislik Bilim. Dergisi 1972, 2, 44–49. [Google Scholar]
- Ayan, M. Contribution a L’etude Petrografhique et Geologique de la Region Situee an North-East de Kaman; No: 15; MTA Publication: Ankara, Türkiye, 1963. [Google Scholar]
- Boztuğ, D.; Tichomirowa, M.; Bombach, K. 207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous godynamic evolution of the central Anatolian crust, Turkey. J. Asian Earth Sci. 2007, 31, 71–86. [Google Scholar] [CrossRef]
- Boztuğ, D.; Jonckheere, R.C.; Heizler, M.; Ratschbacher, L.; Harlavan, Y.; Tichomirova, M. Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics 2009, 473, 223–233. [Google Scholar] [CrossRef]
- Güleç, N. Rb-Sr isotope data from the Ağaçören granitoid (East of Tuz Gölü), geochronological and genetical implications. Turk. J. Earth Sci. 1994, 3, 39–43. [Google Scholar]
- Gündoğdu, M.N.; Bros, R.; Kuruç, A.; Bayhan, H. Rb–Sr whole rock systematics of the Bayındır (Kaman-Kırşehir) feldspathoidal syenites. In Proceedings of the Hacettepe University 20th Anniversary of Earth Sciences Symposium, Ankara, Türkiye, 25–27 October 1988; p. 55. [Google Scholar]
- Isik, V.; Lo, C.H.; Göncüoğlu, C.; Demirel, S. 39Ar/40Ar ages from the Yozgat Batholith: Preliminary data on the timing of Late Cretaceous extension in the Central Anatolian Crystalline Complex, Turkey. J. Geol. 2008, 116, 510–526. [Google Scholar] [CrossRef]
- İlbeyli, N.; Pearce, J.A.; Thirwall, M.F.; Mitchell, J.G. Petrogenesis of collision-related plutonics in central Anatolia, Turkey. Lithos 2004, 72, 163–182. [Google Scholar] [CrossRef]
- Kadioglu, Y.K.; Dilek, Y.; Güleç, N.; Foland, K.A. Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. J. Geol. 2003, 111, 671–690. [Google Scholar] [CrossRef]
- Kadıoglu, Y.K.; Dilek, Y.; Foland, K.A. Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Dilek, Y., Pavlides, S., Eds.; Special Paper; Geological Society of America: Boulder, CO, USA, 2006; Volume 409, pp. 381–415. [Google Scholar] [CrossRef]
- Kalkancı, Ş. Etude Géologique et Pétrochimique du Sud de le Region de Suşehri. Géochronologie du Massif Syenitque de Kösedağ (NE de Sivas-Turquie). Ph.D. Thesis, L’Univérsite de Grenoble, Saint-Martin-d’Hères, France, 1974. [Google Scholar]
- Köksal, S.; Möller, A.; Göncüoglu, M.C.; Frei, D.; Gerdes, A. Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey). Contrib. Mineral. Petrol. 2012, 163, 725–743. [Google Scholar] [CrossRef]
- Kuruç, A. Rb–Sr Geochemistry of Syenitoids from Kaman–Kırşehir Region. Master’s Thesis, Hacettepe University, Ankara, Türkiye, 1990. [Google Scholar]
- Tatar, S.; Boztuǧ, D. The syn-collisional Danacıobası biotite leucogranite derived from the crustal thickening in central Anatolia (Kırıkkale), Turkey. Geol. J. 2005, 40, 571–591. [Google Scholar] [CrossRef]
- Terzi, M.H. The Mineralogy, Petrography and Geochemistry of Kesikköprü Fe-Oxide Deposit, Bala-Ankara. Master’s Thesis, Aksaray University, Aksaray, Türkiye, 2014. [Google Scholar]
- Zeck, H.P.; Ünlü, T. Parallel whole rock isochrons from a composite, monzonitic pluton, Alpine belt, Central Anatolia, Turkey. Neues Jahrbuch für Mineralogie Monatshefte 1987, 5, 193–204. [Google Scholar]
- Göncüoğlu, M.C.; Toprak, V.; Kuşcu, İ.; Erler, A.; Olgun, E.; Rojay, B. Orta Anadolu Masifinin Batı Bölümünün Jeolojisi, Bölüm 2: Orta Kesim; Report No: 3155; TPAO publication: Ankara, Türkiye, 1992. (In Turkish) [Google Scholar]
- Göncüoğlu, M.C.; Erler, A.; Toprak, V.; Olgun, E.; Yalınız, K.; Kuşcu, İ.; Köksal, S.; Dirik, K. Orta Anadolu Masifinin Orta Bölümünün Jeolojisi, Bölüm 3: Orta Kızılırmak Tersiyer Baseni’nin Jeolojik Evrimi; Report No: 3313; TPAO publication: Ankara, Türkiye, 1993. (In Turkish) [Google Scholar]
- Akçay, A.E.; Dönmez, M.; Kara, H.; Yergök, A.F.; Esentürk, K. 1:100.000 Ölçekli Türkiye Jeoloji Haritaları: Kırşehir-J30 Paftası; No: 91; MTA Publication: Ankara, Türkiye, 2008. (In Turkish) [Google Scholar]
- Bailey, E.B.; Mc Callien, W.J. Ankara melanjı ve Anadolu şariyajı. Bull. Min. Res. Exp. 1950, 40, 17–21. (In Turkish) [Google Scholar]
- Kuşcu, İ.; Gençalioğlu Kuşcu, G.; Meinert, L.D.; Floyd, P.A. Tectonic setting and petrogenesis of the Çelebi granitoid (Kırıkkale-Turkey) and comparasion with world skarn granitoids. J. Geochem. Exp. 2002, 76, 175–194. [Google Scholar] [CrossRef]
- Orhan, A. Mineralogy, fluid inclusions and carbon isotopes of the Kaman iron deposits, Central Anatolia, Turkey: Implication for ore genesis and hydrothermal evolution. Ore Geol. Rev. 2020, 127, 103808. [Google Scholar] [CrossRef]
- Kuşcu, İ.; Gençalioğlu Kuşcu, G.; Sarac, C.; Meinert, L.D. An approach to geochemical characterization of productive versus barren granitoids in terms of iron in Central Turkey. J. Asian Earth Sci. 2004, 24, 311–325. [Google Scholar] [CrossRef]
- Vefa Mineral Mining Incorporation. Operation and assessment report of the Bugüz iron ore. Kırşehir, Türkiye, 2018; Unpublished Technical Report. [Google Scholar]
- Mercan, M.; Tiringa, D.; Canıgür, C.; Taştan, M. Ankara-Bala-Kesikköprü demir sahası yeni bulgular. MTA Doğal Kay. Ekon. Bült. 2020, 29, 125–129. (In Turkish) [Google Scholar]
- Staudacher, T.; Jessberger, E.K.; Dorflinger, D.; Kiko, J. A refined ultrahigh-vacuum furnace for rare gas analysis. J. Phys. E Sci. Instrum. 1978, 11, 781. [Google Scholar] [CrossRef]
- Lee, J.Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Koppers, A.A. ArArCALC-software for 40Ar/39Ar age calculations. Comp. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Renne, P.R.; Swisher, C.C.; Deino, A.L.; Karner, D.B.; Owens, T.L.; DePaolo, D.J. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 1998, 145, 117–152. [Google Scholar] [CrossRef]
- Min, K.; Mundil, R.; Renne, P.R.; Ludwig, K.R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 2000, 64, 73–98. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Shand, S.J. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite; John Wiley & Sons: New York, NY, USA, 1943. [Google Scholar]
- Güllü, B.; Akşit, A. Fingerprint of magma mixture in the leucogranites: Spectroscopic and petrochemical approach, Kalebalta-Central Anatolia, Türkiye. Open Geosci. 2023, 15, 20220548. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace-element discrimation diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Cox, K.G.; Bell, J.D.; Pankhurst, R.J. The Interpretation of Igneous Rocks; George Allen and Unwin: London, UK, 1979; p. 450. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of subcontinental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.J., Norry, M.J., Eds.; Shiva Publishing: Nantwich, Cheshire, UK, 1983; pp. 230–249. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Developments in Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. [Google Scholar] [CrossRef]
- Christiansen, E.H.; Keith, J.D. Trace element systematics in silicic magmas: A metallogenic perspective. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration; Wyman, D.A., Ed.; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 1996; Volume 12, pp. 115–151. [Google Scholar]
- Brooks, C.; Hart, S.R.; Wendt, I. Realistic use of two-error regression treatments as appliedto rubidium-strontium data. Rev. Geophy. 1972, 10, 551–577. [Google Scholar] [CrossRef]
- Dilek, Y.; Thy, P. Age and petrogenesis of plagiogranite intrusions in the Ankara mélange, central Turkey. Isl. Arc 2006, 15, 44–57. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data; Longman Scientific and Technical: Essex, UK, 1993; p. 352. [Google Scholar]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology, 2nd ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Meinert, L.D.; Hedenquist, J.W.; Satoh, H.; Matsuhisa, Y. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Orhan, A.; Mutlu, H.; Fallick, A.E. Fluid infiltration effects on stable isotope systematics of the Susurluk skarn deposit, NW Turkey. J. Asian Earth Sci. 2011, 40, 550–568. [Google Scholar] [CrossRef]
- Oyman, T.; Özgenç, İ.; Tokcaer, M.; Akbulut, M. Petrology, geochemistry, and evolution of the iron skarns along the northern contact of the Eğrigöz Plutonic Complex, Western Anatolia, Turkey. Turk. J. Earth Sci. 2013, 22, 61–97. [Google Scholar] [CrossRef]
- Oyman, T. Geochemistry, mineralogy and genesis of the Ayazmant Fe–Cu skarn deposit in Ayvalık, (Balikesir), Turkey. Ore Geol. Rev. 2010, 37, 175–201. [Google Scholar] [CrossRef]
- Ozturk, Y.Y.; Helvaci, C. Skarn alteration and Au-Cu mineralization associated with Tertiary granitoids in northwestern Turkey: Evidence from the Evciler deposit, Kazdag Massif, Turkey. Econ. Geol. 2008, 103, 1665–1682. [Google Scholar] [CrossRef]
- Sipahi, F.; Akpınar, İ.; Eker, Ç.S.; Kaygusuz, A.; Vural, A.; Yılmaz, M. Formation of the Eğrikar (Gümüşhane) Fe–Cu skarn type mineralization in NE Turkey: U–Pb zircon age, lithogeochemistry, mineral chemistry, fluid inclusion, and O-H-C-S isotopic compositions. J. Geochem. Exp. 2017, 182, 32–52. [Google Scholar] [CrossRef]
- Yılmazer, E.; Güleç, N.; Kuşcu, İ.; Lentz, D.R. Geology, geochemistry, and geochronology of Fe-oxide Cu (±Au) mineralization associated with Şamlı pluton, western Turkey. Ore Geol. Rev. 2014, 57, 191–215. [Google Scholar] [CrossRef]
- Demir, Y.; Uysal, İ.; Kandemir, R.; Jauss, A. Geochemistry, fluid inclusion and stable isotope constraints (C and O) of the Sivrikaya Fe-skarn mineralization (Rize, NE Turkey). Ore Geol. Rev. 2017, 91, 153–172. [Google Scholar] [CrossRef]
- Coleman, M.L. Sulphur isotopes in petrology. J. Geol. Soc. 1977, 133, 593–608. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 1993, 57, 1079–1091. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 1993, 120, 247–263. [Google Scholar] [CrossRef]
- Zheng, Y.F. Oxygen isotope fractionation in magnetites: Structural effect and oxygen inheritance. Chem. Geol. 1995, 121, 309–316. [Google Scholar] [CrossRef]
- Zheng, Y.F. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 1999, 33, 109–126. [Google Scholar] [CrossRef]
- Suzuoki, T.; Epstein, S. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta 1976, 40, 1229–1240. [Google Scholar] [CrossRef]
- Graham, C.M.; Sheppard, S.M.; Heaton, T.H. Experimental hydrogen isotope studies-I. systematics of hydrogen isotope fractionation in the systems epidote-H2O, zoisite-H2O and AlO(OH)-H2O. Geochim. Cosmochim. Acta 1980, 44, 353–364. [Google Scholar] [CrossRef]
- Epstein, S.; Sharp, R.P.; Gow, J. Six-year record of hydrogen and oxygen isotope variations in South Pole firn. J. Geophys. Res. 1965, 70, 1809–1814. [Google Scholar] [CrossRef]
- Epstein, S.; Sharp, R.P.; Gow, J. Antarctic ice sheet: Stable isotope analysis of Byrd Station cores and interhemispheric climatic implications. Science 1970, 168, 1570–1572. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. The Cornubian batholiths, SW England: D/H and 18O/16O studies of kaolinite and other alteration minerals. J. Geol. Soc. 1977, 133, 573–591. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. Stable isotope geochemistry of fluids. Phys. Chem. Earth 1981, 13–14, 419–445. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Gençalioğlu-Kuşcu, G.; Göncüoğlu, M.C.; Kuşcu, İ. Post-collisional magmatism on the northern margin of the Taurides and its geological implications: Geology and petrology of the Yahyalı-Karamadazı Granitoid. Turk. J. Earth Sci. 2001, 10, 103–119. [Google Scholar]
- Kuşcu, İ. Skarns and skarn deposits of Turkey. In Mineral Resources of Turkey; Modern Approaches in Solid Earth, Sciences; Pirajno, F., Ünlü, T., Dönmez, C., Şahin, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 16, pp. 283–336. [Google Scholar] [CrossRef]
- Gürgen, M. A Geological Evaluation of Distinct Intrusion-Related Mineralization Styles at the Çubuklu Prospect (Yahyalı, Central Anatolia). Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 2024. [Google Scholar]
- Tükel, F.Ş.; Tiringa, D.; Hanilçi, N.; Ateşçi, B.; Aysal, N.; Alan, İ. Geochemistry and U-Pb dating of the Yahyalı pluton and associated skarn occurrences, SW Kayseri (Central Türkiye): Geodynamic significance and relation to mineralization. J. Geochem. Exp. 2025, 274, 107756. [Google Scholar] [CrossRef]
- Delibaş, O. The Role of Magma Mixing Processes in the Formation of Iron, Copper, Molybdenum and Lead Mineralizations of Kırıkkale-Yozgat Region. Ph.D. Thesis, Hacettepe University, Ankara, Türkiye, 2009. [Google Scholar]
- Delibaş, O.; Genç, Y.; De Campos, C.P. Magma mixing and unmixing related mineralization in the Karacaali Magmatic Complex, central Anatolia, Turkey. Geol. Soc. Lond. Spec. Publ. 2011, 350, 149–173. [Google Scholar] [CrossRef]
- Delibaş, O.; Genc, Y. Re-Os molybdenite ages of granitoid-hosted Mo–Cu occurrences from central Anatolia (Turkey). Ore Geol. Rev. 2012, 44, 39–48. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Gençalioğlu-Kuşcu, G.; Floyd, P.A. Mineral compositional and textural evidence for magma mingling in the Saraykent volcanics. Lithos 2001, 56, 207–230. [Google Scholar] [CrossRef]
- Boztuğ, D. S-I-A type intrusive associations: Geodynamic significance of synchronism between metamorphism and magmatism in Central Anatolia, Turkey. Geol. Soc. Lond. Spec. Publ. 2000, 173, 441–485. [Google Scholar] [CrossRef]
- Meinert, L.D. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Bowman, J.R.; Covert, J.J.; Clark, A.H.; Mathieson, G.A. The CanTung E Zone scheelite skarn orebody, Tungsten, Northwest Territories; oxygen, hydrogen, and carbon isotope studies. Econ. Geol. 1985, 80, 1872–1895. [Google Scholar] [CrossRef]
- Marcke de Lummen, V.G. Oxygen and hydrogen isotope evidence for influx of magmatic water in the formation of W-Mo-and Sn-bearing skarns in pelitic rocks at Costabonne, France, and Land’s End, England. In Proceedings of the 7th Quadrennial IAGOD Symposium, Stuttgart, Germany, 18–22 August 1988; pp. 355–362. [Google Scholar]
- Williams-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. 100th anniversary special paper. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Ayuso, R.A.; Barton, M.D.; Blakely, R.J.; Bodnar, R.J.; Dilles, J.H.; Graybeal, F.T.; Mars, J.C.; McPhee, D.K.; Seal, R.R.; Taylor, R.D.; et al. Porphyry Copper Deposit, Model; US Geological Survey Scientific Investigations Report (2010-5070-B); US Geological Survey: Reston, VA, USA, 2010; p. 169. [Google Scholar]
- Monecke, T.; Monecke, J.; Reynolds, T.J.; Tsuruoka, S.; Bennett, M.M.; Skewes, W.B.; Palin, R.M. Quartz solubility in the H2O-NaCl system: A framework for understanding vein formation in porphyry copper deposits. Econ. Geol. 2018, 113, 1007–1046. [Google Scholar] [CrossRef]
- Meinert, L.D.; Brooks, J.W.; Myers, G.L. Whole rock geochemistry and contrast among skarn types. In Geology and Ore Deposits of the Great Basin: Reno, Nevada; Buffa, R.H., Coyner, A.R., Eds.; Fieldtrip Guidebook Compendium; Geological Society of Nevada: Reno, NV, USA, 1991; Volume 1, pp. 72–80. [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. In 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
Sample No | Explanation | Rb | Sr | 87Sr/86Sr | Std. Error * | (87Sr/86Sr)i | εSr | (εSr)i | Sm | Nd | 143Nd/144Nd | Std. Error * | (143Nd/144Nd)i | εNd | (εNd)i |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | ppm | ||||||||||||
KK-16-01 | Magnetite ore | 0.40 | 14.00 | 0.707964 | ±25 | 0.707878 | 44.89 | 44.96 | 0.15 | 1.00 | 0.512247 | ±8 | 0.512181 | −7.63 | −7.08 |
KK-16-02 | Exoskarn (Grt ± Px ± Phl) | 0.60 | 6.50 | - | ±0 | - | - | - | 0.12 | 0.80 | 0.512161 | ±24 | 0.512095 | −9.30 | −8.75 |
KK-16-03 | Endoskarn (Grt − Px ± Phl ± Ep) | 2.80 | 829.00 | 0.708846 | ±8 | 0.708836 | 57.41 | 58.56 | 3.99 | 20.60 | 0.512287 | ±2 | 0.512202 | −6.85 | −6.67 |
KK-16-04 | Granitoid | 200.70 | 460.20 | 0.710242 | ±10 | 0.708924 | 77.21 | 59.80 | 3.87 | 25.00 | 0.512272 | ±2 | 0.512204 | −7.14 | −6.63 |
KK-16-05 | Mafic–ultramafic | 14.20 | 355.80 | 0.709416 | ±7 | 0.709122 | 65.49 | 64.48 | 1.80 | 6.10 | 0.512498 | ±3 | 0.512181 | −2.73 | −4.42 |
KK-16-06 | Exoskarn (Px ± Grt ± Phl ± Ep) | 0.90 | 5.50 | - | ±0 | - | - | - | 0.58 | 2.90 | 0.512188 | ±7 | 0.512100 | −8.78 | −8.66 |
KK-16-07 | Endoskarn (Grt − Px ± Phl ± Ep) | 11.20 | 193.60 | 0.709558 | ±12 | 0.709383 | 67.51 | 66.33 | 2.88 | 12.50 | 0.512288 | ±3 | 0.512187 | −6.83 | −6.97 |
KK-16-08 | Granitoid | 195.60 | 306.30 | 0.711355 | ±9 | 0.709422 | 93.01 | 66.88 | 4.49 | 26.00 | 0.512262 | ±2 | 0.512186 | −7.33 | −6.98 |
2-1 | Granitoid | 194.00 | 433.80 | 0.709607 | ±3 | 0.708256 | 68.20 | 50.33 | 4.02 | 24.80 | 0.512313 | ±2 | 0.512242 | −6.34 | −5.89 |
4-2 | Granitoid | 179.80 | 445.10 | 0.709956 | ±5 | 0.708735 | 73.16 | 57.13 | 5.43 | 31.20 | 0.512291 | ±2 | 0.512214 | −6.77 | −6.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmazer, E.; Terzi, M.H. Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye). Minerals 2025, 15, 528. https://doi.org/10.3390/min15050528
Yılmazer E, Terzi MH. Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye). Minerals. 2025; 15(5):528. https://doi.org/10.3390/min15050528
Chicago/Turabian StyleYılmazer, Erkan, and Mustafa Haydar Terzi. 2025. "Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)" Minerals 15, no. 5: 528. https://doi.org/10.3390/min15050528
APA StyleYılmazer, E., & Terzi, M. H. (2025). Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye). Minerals, 15(5), 528. https://doi.org/10.3390/min15050528