Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,038)

Search Parameters:
Keywords = contact structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7293 KiB  
Article
Evaluation of Photogrammetric Methods for Displacement Measurement During Structural Load Testing
by Ante Marendić, Dubravko Gajski, Ivan Duvnjak and Rinaldo Paar
Remote Sens. 2025, 17(15), 2569; https://doi.org/10.3390/rs17152569 (registering DOI) - 24 Jul 2025
Abstract
The safety and longevity of engineering structures depend on precise and timely monitoring, especially during load testing inspections. Conventional displacement measurement methods—such as LVDT sensors, GNSS, RTS, and levels—each present benefits and limitations in terms of accuracy, applicability, and practicality. Photogrammetry has emerged [...] Read more.
The safety and longevity of engineering structures depend on precise and timely monitoring, especially during load testing inspections. Conventional displacement measurement methods—such as LVDT sensors, GNSS, RTS, and levels—each present benefits and limitations in terms of accuracy, applicability, and practicality. Photogrammetry has emerged as a promising alternative, offering non-contact measurement, cost-effectiveness, and adaptability in challenging environments. This study investigates the potential of photogrammetric methods for determining structural displacements during load testing in real-world conditions where such approaches remain underutilized. Two photogrammetric techniques were tested: (1) a single-image homography-based approach, and (2) a multi-image bundle block adjustment (BBA) approach using both UAV and tripod-mounted imaging platforms. Displacement results from both methods were compared against reference measurements obtained by traditional LVDT sensors and robotic total station. The study evaluates the influence of different camera systems, image acquisition techniques, and processing methods on the overall measurement accuracy. The findings suggest that the photogrammetric method, especially when optimized, can provide reliable displacement data with sub-millimeter accuracy, highlighting their potential as a viable alternative or complement to established geodetic and sensor-based approaches in structural testing. Full article
Show Figures

Figure 1

16 pages, 7562 KiB  
Article
Unnatural Amino Acid Photo-Crosslinking Sheds Light on Gating of the Mechanosensitive Ion Channel OSCA1.2
by Scarleth Duran-Morales, Rachel Reyes-Lizana, German Fernández, Macarena Loncon-Pavez, Yorley Duarte, Valeria Marquez-Miranda and Ignacio Diaz-Franulic
Int. J. Mol. Sci. 2025, 26(15), 7121; https://doi.org/10.3390/ijms26157121 - 23 Jul 2025
Abstract
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to [...] Read more.
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to OSCA gating remain unresolved. Here, we combined the genetic encoding of the photoactivatable crosslinker p-benzoyl-L-phenylalanine (BzF) with functional Ca2+ imaging and molecular dynamics simulations to dissect the roles of specific residues in OSCA1.2 gating. Targeted UV-induced crosslinking at positions F22, H236, and R343 locked the channel in a non-conducting state, indicating their functional relevance. Structural analysis revealed that these residues are strategically positioned: F22 interacts with lipids near the activation gate, H236 lines the lipid-filled cavity, and R343 forms cross-subunit contacts. Together, these results support a model in which mechanical gating involves a distributed network of residues across multiple channel regions, allosterically converging on the activation gate. This study expands our understanding of mechanotransduction by revealing how distant structural elements contribute to force sensing in OSCA channels. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

14 pages, 623 KiB  
Article
Forest- and Nature-Based Recreation for Older Adults: Preferences, Well-Being, and the Need for Inclusive Planning
by Yaara Spiegel, Noga Collins-Kreiner and Eran Ketter
Forests 2025, 16(8), 1213; https://doi.org/10.3390/f16081213 - 23 Jul 2025
Abstract
This study provides user-centered insights into how inclusive forest design can support the physical, emotional, and social well-being of older adults. It operationalizes universal design principles in natural settings and confirms their relevance through empirical evidence. With the acceleration of global population aging, [...] Read more.
This study provides user-centered insights into how inclusive forest design can support the physical, emotional, and social well-being of older adults. It operationalizes universal design principles in natural settings and confirms their relevance through empirical evidence. With the acceleration of global population aging, adapting forest recreation environments to meet the specific needs of older adults is increasingly urgent. This study investigates how infrastructure influences both participation and emotional well-being among older visitors to forest recreation areas. Data were collected from 446 participants aged 65 and older, using a structured survey distributed through in-person contact and digital snowball sampling. Participants reported their infrastructure preferences and their emotional responses related to forest visits. The findings show that older adults highly value site cleanliness, shaded seating, accessible restrooms, and clear signage. Expectations varied significantly according to health status, age group, and visitation frequency. Emotional well-being was positively associated with both comfort and visit frequency. These results demonstrate how inclusive infrastructure plays a vital role in supporting older adults’ access to and enjoyment of forest environments. The study affirms that universally designed forests not only reduce barriers but also promote psychological health and active aging, contributing to developing more equitable and sustainable nature-based recreation areas. Full article
(This article belongs to the Special Issue The Sustainable Use of Forests in Tourism and Recreation)
39 pages, 714 KiB  
Review
Exploring the Evolving Role of Pharmaceutical Services in Community Pharmacies: Insights from the USA, England, and Portugal
by M. Luísa G. Cunha Leal, Ana Rita Rodrigues, Victoria Bell and Mário Forrester
Healthcare 2025, 13(15), 1786; https://doi.org/10.3390/healthcare13151786 - 23 Jul 2025
Abstract
Chronic diseases are a leading cause of death worldwide and have a significant negative impact on public health, overall well-being, national economies, and the long-term sustainability of already burdened health systems. In addressing some of the current health challenges, the contribution of pharmacists [...] Read more.
Chronic diseases are a leading cause of death worldwide and have a significant negative impact on public health, overall well-being, national economies, and the long-term sustainability of already burdened health systems. In addressing some of the current health challenges, the contribution of pharmacists and community pharmacies is of particular significance. Pharmacists play a vital role in the medication use process, enhancing the efficacy of pharmacological interventions and facilitating the delivery of health services. Community pharmacies occupy a key position within the healthcare system, acting as a primary point of contact with the public and frequently representing the most accessible healthcare facility for patients. In recent times, community pharmacies have undergone a process of adaptation, shifting from a narrow focus on the dispensing of medications towards a more comprehensive approach that is patient-centered and incorporates a range of healthcare services, while also prioritizing the quality of the services provided. This work aims to explore the role of pharmacists in the provision of pharmaceutical services in three countries with distinct healthcare systems, examining how these services operate, the requirements for their delivery, the associated remuneration structures, and the extent of out-of-pocket costs for patients—ultimately analyzing their impact on health outcomes. Full article
20 pages, 5786 KiB  
Article
Effect of Hole Diameter on Failure Load and Deformation Modes in Axially Compressed CFRP Laminates
by Pawel Wysmulski
Materials 2025, 18(15), 3452; https://doi.org/10.3390/ma18153452 - 23 Jul 2025
Abstract
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2 [...] Read more.
This study presents a detailed analysis of the influence of hole presence and size on the behavior of CFRP composite plates subjected to axial compression. The plates were manufactured by an autoclave method from eight-ply laminate in a symmetrical fiber arrangement [45°/−45°/90°/0°2/90°/−45°/45°]. Four central hole plates of 0 mm (reference), 2 mm, 4 mm, and 8 mm in diameter were analyzed. Tests were conducted using a Cometech universal testing machine in combination with the ARAMIS digital image correlation (DIC) system, enabling the non-contact measurement of real-time displacements and local deformations in the region of interest. The novel feature of this work was its dual use of independent measurement methods—machine-based and DIC-based—allowing for the assessment of boundary condition effects and grip slippage on failure load accuracy. The experiments were carried out until complete structural failure, enabling a post-critical analysis of material behavior and failure modes for different geometric configurations. The study investigated load–deflection and load–shortening curves, failure mechanisms, and ultimate loads. The results showed that the presence of a hole leads to localized deformation, a change in the failure mode, and a nonlinear reduction in load-carrying capacity—by approximately 30% for the largest hole. These findings provide complementary data for the design of thin-walled composite components with technological openings and serve as a robust reference for numerical model validation. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

25 pages, 13994 KiB  
Article
A Semi-Autonomous Aerial Platform Enhancing Non-Destructive Tests
by Simone D’Angelo, Salvatore Marcellini, Alessandro De Crescenzo, Michele Marolla, Vincenzo Lippiello and Bruno Siciliano
Drones 2025, 9(8), 516; https://doi.org/10.3390/drones9080516 - 23 Jul 2025
Abstract
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, [...] Read more.
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, designed to perform non-destructive in-contact inspections of iron structures. The system is intended to operate in complex and potentially hazardous environments, where autonomous execution is supported by shared-control strategies that include human supervision. A parallel force–impedance control framework is implemented to enable smooth and repeatable contact between a sensor for ultrasonic testing (UT) and the inspected surface. During interaction, the arm applies a controlled push to create a vacuum seal, allowing accurate thickness measurements. The control strategy is validated through repeated trials in both indoor and outdoor scenarios, demonstrating consistency and robustness. The paper also addresses the mechanical and control integration of the complex robotic system, highlighting the challenges and solutions in achieving a responsive and reliable aerial platform. The combination of semi-autonomous control and human-in-the-loop operation significantly improves the effectiveness of inspection tasks in hard-to-reach environments, enhancing both human safety and task performance. Full article
(This article belongs to the Special Issue Unmanned Aerial Manipulation with Physical Interaction)
Show Figures

Figure 1

28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Figure 1

13 pages, 896 KiB  
Article
Impact of Delivery Method on Initiation and Continuation of Breastfeeding: A Prospective Cohort Study
by İlke Özer Aslan, Mustafa Törehan Aslan, Nebibe Can, Özlem Sevinç Ergül and Nihal Çallıoğlu
Children 2025, 12(8), 966; https://doi.org/10.3390/children12080966 - 23 Jul 2025
Abstract
Background/Objectives: Cesarean delivery often leads to delayed breastfeeding initiation, potentially affecting infant health compared with vaginal delivery. This prospective observational study (conducted between August 2022 and January 2024) comparatively evaluates the impact of delivery method—vaginal, planned cesarean, and emergency cesarean—on breastfeeding initiation [...] Read more.
Background/Objectives: Cesarean delivery often leads to delayed breastfeeding initiation, potentially affecting infant health compared with vaginal delivery. This prospective observational study (conducted between August 2022 and January 2024) comparatively evaluates the impact of delivery method—vaginal, planned cesarean, and emergency cesarean—on breastfeeding initiation and continuation and examines the maternal factors influencing these outcomes. Materials and Methods: We enrolled 338 mother–infant pairs at a tertiary university hospital. Breastfeeding effectiveness was assessed using the Bristol Breastfeeding Assessment Tool (BBAT) at birth and at one, three, and six months postpartum. Rates of breastfeeding continuation and formula supplementation were documented through structured interviews. Results: The mothers who delivered vaginally had a significantly higher rate of breastfeeding within one hour after birth (85.5%) compared with planned (57.9%) and emergency cesarean sections (64.9%) (p < 0.001). Baseline BBAT scores were higher for vaginal births but converged across the groups by one month postpartum (p > 0.05). At six months, breastfeeding continuation rates remained high (94.4–95.2%) irrespective of delivery method. Conclusions: Delivery method exerts a transient effect on breastfeeding initiation. With lactation support, the mothers delivering by cesarean section achieved comparable breastfeeding outcomes within the first month postpartum. These findings reinforce the importance of Baby-Friendly Hospital Initiative (BFHI) practices, including immediate skin-to-skin contact, effective pain management, and lactation counseling, in ensuring equitable breastfeeding outcomes. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

15 pages, 7165 KiB  
Article
Structural and Performance Studies of Lanthanum–Nitrogen Co-Doped Titanium Dioxide Thin Films Under UV Aging
by Pengcheng Cao, Li Zhang and Yanbo Yuan
Micromachines 2025, 16(8), 842; https://doi.org/10.3390/mi16080842 - 23 Jul 2025
Abstract
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray [...] Read more.
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray diffraction (XRD) analysis revealed that La-N co-doping inhibits the phase transition from anatase to rutile, significantly enhancing the phase stability of the films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterizations indicated that co-doping increased the density and surface uniformity of the films, thereby delaying the expansion of cracks and increase in roughness induced by UV exposure. Energy-dispersive X-ray spectroscopy (EDS) results confirmed the successful incorporation of La and N into the TiO2 lattice, enhancing the chemical stability of the films. Contact angle tests demonstrated that La-N co-doping markedly improved the hydrophobicity of the films, inhibiting the rapid decay of hydrophilicity during UV aging. After three years of UV aging, the co-doped films maintained high structural integrity and photocatalytic performance, exhibiting excellent resistance to UV aging. These findings offer new insights into the long-term stability of photovoltaic self-cleaning materials. Full article
Show Figures

Figure 1

20 pages, 3625 KiB  
Article
Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions
by Willian Aperador and Giovany Orozco-Hernández
Coatings 2025, 15(8), 862; https://doi.org/10.3390/coatings15080862 - 22 Jul 2025
Abstract
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess [...] Read more.
This study investigates the development of silver (Ag)-doped zirconia (ZrO2) coatings deposited on 316LVM stainless steel via the unbalanced magnetron sputtering technique. The oxygen content in the Ar/O2 gas mixture was systematically varied (12.5%, 25%, 37.5%, and 50%) to assess its influence on the resulting coating properties. In response to the growing demand for biomedical implants with improved durability and biocompatibility, the objective was to develop coatings that enhance both wear and corrosion resistance in physiological environments. The effects of silver incorporation and oxygen concentration on the structural, tribological, and electrochemical behavior of the coatings were systematically analyzed. X-ray diffraction (XRD) was employed to identify crystalline phases, while atomic force microscopy (AFM) was used to characterize surface topography prior to wear testing. Wear resistance was evaluated using a ball-on-plane tribometer under simulated prosthetic motion, applying a 5 N load with a bone pin as the counter body. Corrosion resistance was assessed through electrochemical impedance spectroscopy (EIS) in a physiological solution. Additionally, tribocorrosive performance was investigated by coupling tribological and electrochemical tests in Ringer’s lactate solution, simulating dynamic in vivo contact conditions. The results demonstrate that Ag doping, combined with increased oxygen content in the sputtering atmosphere, significantly improves both wear and corrosion resistance. Notably, the ZrO2-Ag coating deposited with 50% O2 exhibited the lowest wear volume (0.086 mm3) and a minimum coefficient of friction (0.0043) under a 5 N load. This same coating also displayed superior electrochemical performance, with the highest charge transfer resistance (38.83 kΩ·cm2) and the lowest corrosion current density (3.32 × 10−8 A/cm2). These findings confirm the high structural integrity and outstanding tribocorrosive behavior of the coating, highlighting its potential for application in biomedical implant technology. Full article
Show Figures

Figure 1

12 pages, 793 KiB  
Article
Large Game as a Key Factor in the Maintenance of Tuberculosis in a Multi-Species Scenario in Southern Portugal: A Preliminary Statistical Study
by Maria Pureza Ferreira, Madalena Vieira-Pinto, Yolanda Vaz and Ana Carolina Abrantes
Zoonotic Dis. 2025, 5(3), 21; https://doi.org/10.3390/zoonoticdis5030021 - 22 Jul 2025
Abstract
Knowing the specific characteristics and animal tuberculosis risk factors present and applying good practices are crucial points in combating tuberculosis (TB) in a Mediterranean multi-species scenario. The objective of this work is to statistically analyze the association between the existence of TB in [...] Read more.
Knowing the specific characteristics and animal tuberculosis risk factors present and applying good practices are crucial points in combating tuberculosis (TB) in a Mediterranean multi-species scenario. The objective of this work is to statistically analyze the association between the existence of TB in areas with a marked game–livestock interface, with various complementary factors found in 30 extensive farms in southern Portugal, such as the number of animals of each large game species present in the territory and the frequency of their sightings. Collecting this information, an inferential statistical analysis was conducted to obtain information on the association type between TB occurrence in the farms and the presence of highlighted factors. The main statistical results show an association between the presence of large game species and TB occurrence in the analyzed areas. Thus, in a multi-species scenario, large game species are a crucial component in TB maintenance, namely when stricter contact occurs. This could be one of the reasons why TB continues to circulate and why the eradication process is so difficult; the risk of zoonotic transmission is evident. It is crucial to apply biosecurity tools to improve the alignment and structure of natural resource management strategies. Full article
Show Figures

Figure 1

29 pages, 2729 KiB  
Article
Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases
by Paul Andrei Negru, Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit and Gabriela Bungau
Curr. Issues Mol. Biol. 2025, 47(7), 577; https://doi.org/10.3390/cimb47070577 - 21 Jul 2025
Viewed by 162
Abstract
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize [...] Read more.
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

19 pages, 3407 KiB  
Article
Surface Property Differences of European Larch Sapwood and Heartwood After Sanding
by Agnieszka Laskowska, Karolina Lipska, Teresa Kłosińska, Anna Piwek and Piotr Boruszewski
Coatings 2025, 15(7), 860; https://doi.org/10.3390/coatings15070860 - 21 Jul 2025
Viewed by 164
Abstract
The sapwood and heartwood of European larch (Larix decidua Mill.) are both used in industrial applications, but they differ in structure and composition, which may lead to surface property differences. This study compared their surface characteristics (on radial and tangential sections) after [...] Read more.
The sapwood and heartwood of European larch (Larix decidua Mill.) are both used in industrial applications, but they differ in structure and composition, which may lead to surface property differences. This study compared their surface characteristics (on radial and tangential sections) after sanding with aluminium oxide papers of four grit sizes (P60, P120, P180, P240). Surface roughness (Ra, Rz), wettability (contact angle with two reference liquids: water and diiodomethane, 3 and 30 s after droplet deposition), surface free energy, and colour parameters (L*, a*, b*) were analysed. Microscopic measurements were also performed to assess anatomical differences between sapwood and heartwood. The results showed no significant differences in roughness (Ra, Rz) between sapwood and heartwood. Measurement direction and sandpaper grit accounted for about 80% of variability in roughness parameters. Wettability was mainly influenced by wood area, with its effect ranging from 55% to 89% depending on measurement time. The sapwood was characterised by the lower wettability on the tangential section, while the heartwood was characterised by the lower wettability on the radial section. This was examined for the contact angle tests performed 3 s after the water droplet had been applied to the wood surface. Such dependencies were not observed after 30 s. Sapwood exhibited higher surface free energy (SFE) values than heartwood. The greatest colour change ΔE, at level 2.59, was noted for the heartwood on the radial section after sanding with P240 sandpaper. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

18 pages, 11176 KiB  
Article
Impact Mechanical Properties of Magnesium Alloy Structures with Annularly Distributed Multi-Sphere Point Contacts
by Xiaoting Sun, Guibo Yu, Qiao Ma, Yi Wang and Wei Wang
Crystals 2025, 15(7), 665; https://doi.org/10.3390/cryst15070665 - 21 Jul 2025
Viewed by 129
Abstract
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An [...] Read more.
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An annularly distributed multi-sphere point contact structure was designed and fabricated on a magnesium alloy substrate based on the Hertz contact theory. The accuracy of the finite element numerical model, constructed using Abaqus/Explicit, was verified through hydraulic impact tests. The impact mechanical properties of the structure were studied by analyzing the influence of the number, diameter, and cavity radius of hemispheres using an experimentally verified finite element model. The axial and radial deformations of the structure were compared and analyzed. The research findings indicate that the deformation and impact resistance of the structure can be greatly influenced by increasing the number of hemispheres, enlarging the hemisphere diameter, and incorporating internal cavities. Specifically, with 6 hemispheres, each with a diameter of Φ 6 mm and a cavity radius of R1.5 mm, the axial and radial deformations are only 1.03 mm and 3.02 mm, respectively. The contact area of a single hemisphere is 7.16 mm2. The study offers new perspectives on choosing buffer structures in high-impact environments. Full article
Show Figures

Figure 1

39 pages, 7187 KiB  
Review
Surface Coatings on Biomedical Magnesium Alloys
by Jiapeng Ren, Zhenyu Zhao, Hua Li, Dongsheng Wang, Cijun Shuai and Youwen Yang
Materials 2025, 18(14), 3411; https://doi.org/10.3390/ma18143411 - 21 Jul 2025
Viewed by 215
Abstract
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex [...] Read more.
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex physiological interactions, including flow erosion, corrosion fatigue, stress coupling effects, and dynamic wear under bodily conditions. Surface coating technology has been recognized as an effective strategy to prevent direct contact between magnesium substrates and corrosive media. This review systematically examines the fundamental degradation mechanisms of magnesium alloys in both vivo and vitro environments, presents recent advances in surface modification coatings for magnesium alloys, and critically analyses the interaction mechanisms between modified layers and electrolyte solutions. Special emphasis is placed on revealing the formation mechanisms, structural characteristics, and fracture behaviors of conversion coatings. Furthermore, the study discusses the current challenges in biomedical surface modification of magnesium alloys, proposes potential solutions to enhance their clinical applicability, and outlines future research directions to fully exploit the development potential of these advanced biomaterials. Full article
Show Figures

Figure 1

Back to TopTop