Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization
3.2. Surface Properties and Topography
3.3. Wear
3.4. Electrochemical Evaluation
3.5. Triboelectrochemical Wear on Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maver, U.; Xhanari, K.; Žižek, M.; Gradišnik, L.; Repnik, K.; Potočnik, U.; Finšgar, M. Carboxymethyl cellulose/diclofenac bioactive coatings on AISI 316LVM for controlled drug delivery, and improved osteogenic potential. Carbohydr. Polym. 2020, 230, 115612. [Google Scholar] [CrossRef] [PubMed]
- Pachla, W.; Skiba, J.; Kulczyk, M.; Przybysz, S.; Przybysz, M.; Wróblewska, M.; Diduszko, R.; Stępniak, R.; Bajorek, J.; Radomski, M.; et al. Nanostructurization of 316L type austenitic stainless steels by hydrostatic extrusion. Mater. Sci. Eng. A 2014, 615, 116–127. [Google Scholar] [CrossRef]
- Carreon, H.; Barriuso, S.; Barrera, G.; González-Carrasco, J.L.; Caballero, F.G. Assessment of blasting induced effects on medical 316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques. Surf. Coat. Technol. 2012, 206, 2941–2946. [Google Scholar] [CrossRef]
- López, R.; Menéndez, M.; Fernández, C.; Chmiela, A.; Bernardo-Sánchez, A. The Influence of Carbon Coatings on the Functional Properties of X39Cr13 and 316LVM Steels Intended for Biomedical Applications. Metals 2019, 9, 815. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Hamedi, H.; Isfahani, T. Wear and corrosion properties of mechanically coated 316 stainless Steel-TiC nanocomposites. Results Eng. 2024, 24, 102966. [Google Scholar] [CrossRef]
- Freitas Filho, A.; Silva, G.C.; Rodrigues, S.C.S.; Santos, A.J. Evaluation of the effect of surface modification of Ti64 and 316 L by addition of calcium phosphate through electrical discharge machining process. Tribol. Int. 2023, 180, 108245. [Google Scholar] [CrossRef]
- Thambapillary, S.; Dimitriou, R.; Makridis, K.G.; Fragkakis, E.M.; Bobak, P.; Giannoudis, P.V. Implant longevity, complications and functional outcome following proximal femoral arthroplasty for musculoskeletal tumors: A systematic review. J. Arthroplast. 2013, 28, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Nasiri-Tabrizi, B.; Basirun, W.J.; Walvekar, R.; Yeong, C.H.; Phang, S.W. Exploring the potential of intermetallic alloys as implantable biomaterials: A comprehensive review. Biomater. Adv. 2024, 161, 213854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Zhao, X.; Hu, J.; Wang, R.; Fu, S.; Qin, G. Antibacterial metals and alloys for potential biomedical implants. Bioact. Mater. 2021, 6, 2569–2612. [Google Scholar] [CrossRef] [PubMed]
- Elsa, G.; Hanan, A.; Walvekar, R.; Numan, A.; Khalid, M. Zirconium–Based MXenes: Synthesis, Properties, Applications, and Prospects. Coord. Chem. Rev. 2025, 526, 216355. [Google Scholar] [CrossRef]
- Harun-Ur-Rashid, M.; Foyez, T.; Krishna, S.B.N.; Poda, S.; Imran, A.B. Recent Advances of Silver Nanoparticle-Based Polymer Nanocomposites for Biomedical Applications. RSC Adv. 2025, 15, 8480–8505. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, C.; Shen, Z.; Zhou, L.; Sheng, L.; Xu, D.; Zheng, Y.; Chu, P.K.; Xiao, S.; Ying, T.; et al. Simultaneous Improvement of Wear and Corrosion Resistance of Microarc Oxidation Coatings on ZK61 Mg Alloy by Doping with ZrO2 Nanoparticles. J. Mater. Sci. Technol. 2025, 224, 312–327. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Yu, J.-G.; Ren, Q.-Y.; Zheng, M.-Y.; Cai, Z.-B.; Jiao, Y.-J. Study on the Fretting Corrosion Behavior of Zirconium Alloy in Simulated Primary Coolant Condition. Wear 2025, 570, 206057. [Google Scholar] [CrossRef]
- Niu, D.; Zhang, C.; Sui, X.; Lu, X.; Zhang, X.; Wang, C.; Hao, J.; Shi, Z. Microstructure, mechanical properties and tribo-corrosion mechanism of (CrNbTiAlVMo) coated 316L stainless steel in 3.5 wt% NaCl solution. Tribol. Int. 2022, 173, 107638. [Google Scholar] [CrossRef]
- Davoodi, F.; Atapour, M.; Ashrafizadeh, F.; Rikhtehgaran, R. Dry sliding wear characteristics of NiP/TiN duplex coated aluminium alloy and wear analysis using response surface method. J. Mater. Eng. Perform. 2022, 31, 6360–6372. [Google Scholar] [CrossRef]
- Fook, P.; Berger, D.; Riemer, O.; Karpuschewski, B. Structuring of Bioceramics by Micro-Grinding for Dental Implant Applications. Micromachines 2019, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, S.; Li, J.; Tang, W.; Yu, M.; Ahmed, M.H.; Liang, S.; Zhang, F.; Inokoshi, M.; Yao, C.; et al. Influence of surface treatments on highly translucent zirconia: Mechanical, optical properties and bonding performance. J. Dent. 2025, 154, 105580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Van Meerbeek, B.; Vleugels, J. Importance of tetragonal phase in high-translucent partially stabilized zirconia for dental restorations. Dent. Mater. 2020, 36, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, J.; Zhang, W.; You, L.; Li, J. Ag nanoparticles interlayered Fe3O4/Ag/m(TiO2-ZrO2) magnetic photocatalysts with enhanced stability and photocatalytic performance for Cr(VI) reduction. Appl. Surf. Sci. 2023, 607, 155076. [Google Scholar] [CrossRef]
- Shao, Y.; Jiang, Y.; Wang, Y.; Dong, Q.; Wang, C.; Wang, Y.; Feng, X.; Chu, C.; Bai, J. Electrodepositing Ag on anodized stainless steel for enhanced antibacterial properties and corrosion resistance. J. Funct. Biomater. 2025, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Aissi, M.; Tayyaba, Q.; Er-Ramly, A.; Hermawan, H.; Merzouk, N. Improving the clinical performance of dental implants through advanced surface treatments: The case of Ti and ZrO2 coatings. Metals 2025, 15, 320. [Google Scholar] [CrossRef]
- Bai, L.; Yi, G.; Wan, S.; Wang, W.; Sun, H. Comparison of tribological performances of plasma sprayed YSZ, YSZ/Ag, YSZ/MoO3 and YSZ/Ag/MoO3 coatings from 25 to 800 °C. Wear 2023, 526–527, 204944. [Google Scholar] [CrossRef]
- González-Hernández, A.; Aperador, W.; Flores, M.; Onofre-Bustamante, E.; Bermea, J.E.; Bautista-García, R.; Gamboa-Soto, F. Influence of Deposition Parameters on Structural and Electrochemical Properties of Ti/Ti2N Films Deposited by RF-Magnetron Sputtering. Metals 2022, 12, 1237. [Google Scholar] [CrossRef]
- Guzmán, P.; Yate, L.; Sandoval, M.; Caballero, J.; Aperador, W. Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants. Materials 2017, 10, 842. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Liu, B.; Wang, Y.; Yang, Z.; Wang, Y. Interfacial microstructure and mechanical properties of joints between ZrO2 ceramic and 316 stainless steel brazed using Ag–Cu–In–Ti filler. Vacuum 2023, 218, 112668. [Google Scholar] [CrossRef]
- Irshad, M.; Ibrahim, M.M.; Siddique, S.; Younas, U.; Mersal, G.A.M.; Al-Juaid, S.S.; Irshad, A.; Warsi, M.F. Boosting the properties of Ag-decorated Ni3V2O8 via 1D-CNTs integration for advanced photocatalytic and anti-bacterial performance. Ceram. Int. 2025, 51, 19704–19714. [Google Scholar] [CrossRef]
- Rosalbino, F.; Macciò, D.; Scavino, G. Corrosion behaviour of Zr–Ag alloys for dental implant application. Mater. Sci. Appl. 2023, 14, 501–514. [Google Scholar] [CrossRef]
- Lee, D.W.; Seo, D.-S. Surface Functionalization of Ag-Doped Zirconium Oxide Layers for Molecular Alignment. FlatChem 2025, 50, 100831. [Google Scholar] [CrossRef]
- Nossova, L.; Caravaggio, G. Effect of Dopants on Soot Oxidation over Doped Ag/ZrO2 Catalysts for Catalyzed Gasoline Particulate Filter. Catal. Commun. 2023, 182, 106744. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, N.; Chen, B.; Ma, J.; Song, T.; Wu, X.; Yang, T.; Zhang, X.; Li, Q. Tailoring Microstructure, Mechanical Properties, and Biocompatibility of Zr Alloys via the Addition of Ag. Mater. Sci. Eng. A 2024, 900, 146486. [Google Scholar] [CrossRef]
- Nasir, N.; Rashid, M.H.; Cheema, S.A.; Rasheed, A.; Sabir, N.; Tanveer, Z.; Hassan, T.; Anjam, Q. An Experimental and Simulation Evaluation of the Structural, Morphological and Optical Characters of ZnO-Based Nano-Fibers Doped with Ag and ZrO2. Optik 2022, 265, 169383. [Google Scholar] [CrossRef]
- Kumar, P.; Saravanan, P.; Baskar, G.; Chitrashalini, S.; Omer, S.N.; Subashini, S.; Rajeshkannan, R.; Venkatkumar, S. Synthesis and Characterization of Ag-Decorated ZnO/MgO Nanocomposite Using a Novel Phyto-Assisted Biomimetic Approach for Anti-Microbial and Anti-Biofilm Applications. Inorg. Chem. Commun. 2024, 170, 113443. [Google Scholar] [CrossRef]
- Khan, A.; Zaid, M.; Ameen, F.; Khan, M.A.; Kumar, S.; Al-Masri, A.A.; Islam, M.A. Colossal Antibacterial, Antibiofilm and Solar Light-Driven Photocatalytic Activity of Nanoenhanced Conjugate of Bimetallic Ag-Zr Nanoparticles with Graphene Oxide. J. Mol. Struct. 2024, 1300, 137223. [Google Scholar] [CrossRef]
- Simon, S.M.; Prakashan, V.P.; Sajna, M.S.; Chandran, A.; George, G.; Barmiah, E.K.; Jose, G.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V. Development and Characterizations of Ag Nanoparticles Decorated TiO2-ZrO2 Coatings as Electrode Material for Supercapacitors. Results Surf. Interfaces 2023, 10, 100098. [Google Scholar] [CrossRef]
- Chouhan, L.; Bouzerar, G.; Srivastava, S.K. d0 Ferromagnetism in Ag-Doped Monoclinic ZrO2 Compounds. Vacuum 2020, 182, 109716. [Google Scholar] [CrossRef]
- Saleh, M.; Isik, Z.; Belibagli, P.; Arslan, H.; Gonca, S.; Özdemir, S.; Kudaibergenov, N.; Khataee, A.; Dizge, N. Fabrication of Ag Nanoparticles Coated Leonardite Basalt Ceramic Membrane with Improved Antimicrobial Properties for DNA Cleavage, E. coli Removal and Antibiofilm Effects. J. Ind. Eng. Chem. 2023, 128, 532–541. [Google Scholar] [CrossRef]
- Gambardella, A.; Berni, M.; Graziani, G.; Kovtun, A.; Liscio, A.; Russo, A.; Visani, A.; Bianchi, M. Nanostructured Ag Thin Films Deposited by Pulsed Electron Ablation. Appl. Surf. Sci. 2019, 475, 917–925. [Google Scholar] [CrossRef]
- Shang, X.; Liang, Y.; Wang, P.; Wu, Y. Synergistic Mechanism of the Fretting Wear Resistance of Fe2O3/Ag Nanostructured Coatings Prepared by Sliding Friction and Magnetron Sputtering. Wear 2024, 546–547, 205313. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Hu, X.; Zhang, L.; Shi, X.; Li, Z. Simulation and Experimental Study on Frictional Wear of Plough Blades in Soil Cultivation Process Based on the Archard Model. Biosyst. Eng. 2024, 248, 190–205. [Google Scholar] [CrossRef]
- Elahi Haghighi, N.; Hadianfard, M.J. Fabrication of Ni–ZrO2 Nanocomposites through a New Electroforming Bath and Assessment of Their Morphology, Wear, and Corrosion Resistance. Heliyon 2024, 10, e35779. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xie, F.; Wu, X.; Li, L.; Luo, R.; Yang, H.; Wang, S. Preparation and Friction Wear Performance of ZrO2/MoS2 PEO Composite Coating. Tribol. Int. 2025, 202, 110312. [Google Scholar] [CrossRef]
- Pogodin, A.; Filep, M.; Malakhovska, T.; Vakulchak, V.; Komanicky, V.; Vorobiov, S.; Izai, V.; Shender, I.; Bilanych, V.; Kokhan, O.; et al. Recrystallization Effect on Mechanical Parameters and Increasing of Ag⁺ Ionic Conductivity in Ag7(Si1−xGex)S5I Ceramic Materials. Solid State Sci. 2023, 140, 107203. [Google Scholar] [CrossRef]
- Mourya, A.K.; Gaikwad, G.S.; Singh, R.P.; Khagar, P.S.; Uke, S.J.; Wankhade, A.V. ZnO/Ag2ZrO3 Nanocomposites: A Tailored Nanostructure for Enhanced Supercapacitor, Photocatalytic & Antimicrobial Applications. J. Alloys Compd. 2024, 1004, 175792. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Q.; Xia, S.; Yang, X.; Lei, J.; Sun, Q.; Chen, X.; Shao, J.; Tang, X.; Zhou, G. A Cu-Ag Double-Layer Coating Strategy for Stable and Reversible Zn Metal Anodes. J. Colloid Interface Sci. 2024, 665, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Moreno Amado, M.; Alfonso, J.E.; Olaya Florez, J.J. Effect of Al and Ag Dopants on the Corrosion Resistance of the AISI 316L-YSZ System. Ceram. Int. 2019, 45, 566–572. [Google Scholar] [CrossRef]
- Moayedee, Y.; Nikzad, L.; Fakhraei, O.; Paykar, Z.; Zekavat, E. Improvement of Mechanical, Biological, and Electrochemical Properties of Ti6Al4V Alloy Modified with Nb and Ag for Biomedical Applications. J. Alloys Compd. 2024, 972, 172736. [Google Scholar] [CrossRef]
- Mina, A.; Caicedo, J.C.; Aperador, W. Sequential Analysis of Electrochemical Properties of Β–Tricalcium Phosphate/Chitosan Coatings Obtained on 316L Stainless Steel. Int. J. Electrochem. Sci. 2013, 8, 11186–11200. [Google Scholar] [CrossRef]
- Kuptsov, K.A.; Kiryukhantsev-Korneev, P.V.; Sheveyko, A.N.; Shtansky, D.V. Comparative Study of Electrochemical and Impact Wear Behavior of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN Coatings. Surf. Coat. Technol. 2013, 216, 273–281. [Google Scholar] [CrossRef]
- Aperador, W.; Orozco-Hernández, G.; Aperador, J.; Bautista-Ruiz, J. Microstructural, Electrochemical, Mechanical, and Biocompatibility Characterization of ReN Thin Films Synthesized by DC Sputtering on Ti6Al4V Substrates. Metals 2025, 15, 272. [Google Scholar] [CrossRef]
- Zhang, J.P.; He, G.; Zhu, L.Q.; Liu, M.; Pan, S.S.; Zhang, L.D. Effect of oxygen partial pressure on the structural and optical properties of ZnO film deposited by reactive sputtering. Appl. Surf. Sci. 2007, 253, 9414–9421. [Google Scholar] [CrossRef]
- Ou, S.-F.; Chung, R.-J.; Lin, L.-H.; Chiang, Y.-C.; Huang, C.-F.; Ou, K.-L. A mechanistic study on the antibacterial behavior of silver doped bioceramic. J. Alloys Compd. 2015, 629, 362–367. [Google Scholar] [CrossRef]
- Biju, R.F.; Jaffrin, G.; Jobisha, J.; Matharasi, A.; Prabha, S.; Vinisha, V.; Linet, M.; Mani, A.M. Structural, spectroscopic, thermal and morphological evaluation of biogenic ZnO/Ag nanocomposite using Moringa oleifera seed extract for enhanced antimicrobial efficacy. Chem. Phys. Impact 2025, 10, 100850. [Google Scholar] [CrossRef]
Ar/O2 | Rs Ω cm2 | C1 μF cm−2 | α1 | R1 kΩ cm2 | C2 μF cm−2 | α2 | R2 kΩ cm2 |
---|---|---|---|---|---|---|---|
12.5% | 55.06 ± 2.75 | 45.28 ± 2.26 | 0.88 ± 0.02 | 3.56 ± 0.18 | 610.24 ± 30.5 | 0.84 ± 0.02 | 8.14 ± 0.41 |
25% | 64.03 ± 3.20 | 39.41 ± 1.97 | 0.89 ± 0.03 | 4.62 ± 0.23 | 504.36 ± 25.2 | 0.82 ± 0.03 | 9.47 ± 0.47 |
37.5% | 53.04 ± 2.65 | 35.37 ± 1.77 | 0.87 ± 0.02 | 5.8 ± 0.29 | 344.45 ± 17.22 | 0.91 ± 0.03 | 14.52 ± 0.73 |
50% | 45.02 ± 2.25 | 32.41 ± 1.62 | 0.95 ± 0.02 | 6.8 ± 0.34 | 287.39 ± 14.3 | 0.96 ± 0.02 | 38.83 ± 1.94 |
316LVM | 12.05 ± 0.60 | 14.57 ± 0.73 | 0.84 ± 0.03 | 3.14 ± 0.16 | 205.32 ± 10.2 | 0.89 ± 0.02 | 5.98 ± 0.30 |
Ar/O2 | 12.5% | 25% | 37.5% | 50% | 316LVM |
---|---|---|---|---|---|
Icorr (A/cm2) | 1.92 × 10−7 | 9.99 × 10−8 | 6.77 × 10−8 | 3.32 × 10−8 | 6.02 × 10−7 |
Ecorr (V) | −0.57 | −0.47 | −0.32 | −0.28 | −0.13 |
Vcorr mm/y | 0.00209 | 0.00109 | 0.00074 | 0.00036 | 0.0067 |
% IE | 68.11 | 83.41 | 88.75 | 94.49 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aperador, W.; Orozco-Hernández, G. Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions. Coatings 2025, 15, 862. https://doi.org/10.3390/coatings15080862
Aperador W, Orozco-Hernández G. Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions. Coatings. 2025; 15(8):862. https://doi.org/10.3390/coatings15080862
Chicago/Turabian StyleAperador, Willian, and Giovany Orozco-Hernández. 2025. "Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions" Coatings 15, no. 8: 862. https://doi.org/10.3390/coatings15080862
APA StyleAperador, W., & Orozco-Hernández, G. (2025). Improvement in the Corrosion and Wear Resistance of ZrO2-Ag Coatings on 316LVM Stainless Steel Under Tribocorrosive Conditions. Coatings, 15(8), 862. https://doi.org/10.3390/coatings15080862