Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,720)

Search Parameters:
Keywords = contact pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12563 KiB  
Article
Optimization of Grouser–Track Structural Parameters for Enhanced Tractive Performance in Unmanned Amphibious Tracked Vehicles
by Yaoyao Chen, Xiaojun Xu, Wenhao Wang, Xue Gao and Congnan Yang
Actuators 2025, 14(8), 390; https://doi.org/10.3390/act14080390 - 6 Aug 2025
Abstract
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) [...] Read more.
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) govern pressure–sinkage relationships at the track base, while grouser structural parameters (height, spacing, V-shaped angle) dominate shear stress–displacement dynamics on grouser shear planes. A novel DEM-MBD coupling simulation framework was established through soil parameter calibration and multi-body dynamics modeling, demonstrating that soil thrust increases with grouser height and V-shaped angle, but decreases with spacing, with grouser height exhibiting the highest sensitivity. A soil bin test validated the numerical model’s accuracy and the coupling method’s efficacy. Parametric optimization via the Whale Optimization Algorithm (WOA) achieved a 55.86% increase in drawbar pull, 40.38% reduction in ground contact pressure and 57.33% improvement in maximum gradability. These advancements substantially improve the tractive performance of UATVs in soft beach terrains. The proposed methodology provides a systematic framework for amphibious vehicle design, integrating numerical modeling, high-fidelity simulation, and experimental validation. Full article
Show Figures

Figure 1

14 pages, 5143 KiB  
Article
An Efficient Finite Element Model to Predict the Mechanical Response of Metallic-Reinforced Pressure Vessels
by Ana Lucía León Razo, Miguel Ernesto Gutierrez Rivera, Carlos Enrique Valencia Murillo, Elias Rigoberto Ledesma Orozco and Israel Martinez Ramirez
Hydrogen 2025, 6(3), 55; https://doi.org/10.3390/hydrogen6030055 - 6 Aug 2025
Abstract
In the design of pressure vessels for hydrogen storage, the durability and robustness of the designs are tested by using experimental methods, numerical simulations, or both. However, in the initial design phase, it is widely known that using numerical simulation tools reduces the [...] Read more.
In the design of pressure vessels for hydrogen storage, the durability and robustness of the designs are tested by using experimental methods, numerical simulations, or both. However, in the initial design phase, it is widely known that using numerical simulation tools reduces the cost of performing experiments; therefore, models that provide accurate and reliable results must be developed. This work presents an axisymmetric finite element model to predict the mechanical response of reinforced wire pressure vessels of type II. The main contribution of the present model is the use of equivalent properties and a minor number of contact elements to simulate the behavior of the wire reinforcement, which reduces the computational effort compared to a model with a solid-based mesh. The accuracy of the proposed model is tested against solid elements with very good agreement and experimental results with reasonable agreement. A parametric study was conducted to test the influence of the number of layers of reinforcement, and it was concluded that there is a limit to increasing the number of layers, which does not increase the vessel’s strength considerably, but it does with its mass. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Graphical abstract

17 pages, 2538 KiB  
Article
Influence of Abrasive Flow Rate and Feed Rate on Jet Lag During Abrasive Water Jet Cutting of Beech Plywood
by Monika Sarvašová Kvietková, Ondrej Dvořák, Chia-Feng Lin, Dennis Jones, Petr Ptáček and Roman Fojtík
Appl. Sci. 2025, 15(15), 8687; https://doi.org/10.3390/app15158687 (registering DOI) - 6 Aug 2025
Abstract
Cutting beech plywood using abrasive water jet (AWJ) technology represents a significant area of research due to increasing demands for precision, quality, and environmental sustainability in manufacturing processes within the woodworking industry. AWJ technology enables non-contact cutting of materials without causing thermal deformation [...] Read more.
Cutting beech plywood using abrasive water jet (AWJ) technology represents a significant area of research due to increasing demands for precision, quality, and environmental sustainability in manufacturing processes within the woodworking industry. AWJ technology enables non-contact cutting of materials without causing thermal deformation or mechanical damage, which is crucial for preserving the structural integrity and mechanical properties of the plywood. This article investigates cutting beech plywood using technical methods using an abrasive water jet (AWJ) at 400 MPa pressure, with Australian garnet (80 MESH) as the abrasive material. It examines how abrasive mass flow rate, traverse speed, and material thickness affect AWJ lag, which in turn influences both cutting quality and accuracy. Measurements were conducted with power abrasive mass flow rates of 250, 350, and 450 g/min and traverse speeds of 0.2, 0.4, and 0.6 m/min. Results show that increasing the abrasive mass flow rate from 250 g/min to 350 g/min slightly decreased the AWJ cut width by 0.05 mm, while further increasing to 450 g/min caused a slight increase of 0.1 mm. Changes in traverse speed significantly influenced cut width; increasing the traverse speed from 0.2 m/min to 0.4 m/min widened the AWJ by 0.21 mm, while increasing it to 0.6 m/min caused a slight increase of 0.18 mm. For practical applications, it is recommended to use an abrasive mass flow rate of around 350 g/min combined with a traverse speed between 0.2 and 0.4 m/min when cutting beech plywood with AWJ. This balance minimizes jet lag and maintains high surface quality comparable to conventional milling. For thicker plywood, reducing the traverse speed closer to 0.2 m/min and slightly increasing the abrasive flow should ensure clean cuts without compromising surface integrity. Full article
Show Figures

Figure 1

26 pages, 8019 KiB  
Article
Tribo-Dynamic Investigation of Cryogenic Ball Bearings Considering Varying Traction Parameters
by Shijie Zhang, Shuangshuang Jia, Yuhao Zhao, Jing Wei and Yanyang Zi
Lubricants 2025, 13(8), 352; https://doi.org/10.3390/lubricants13080352 - 5 Aug 2025
Abstract
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and [...] Read more.
The traction behavior in cryogenic solid-lubricated ball bearings (CSLBBs) used in liquid rocket engines (LREs) affects not only the dynamic response of the bearing but also the lubricity and wear characteristics of the solid lubrication coating. The traction coefficient between the ball and raceway depends on factors such as contact material, relative sliding velocity, and contact pressure. However, existing traction curve models for CSLBBs typically consider only one or two of these factors, limiting the accuracy and applicability of theoretical predictions. In this study, a novel traction model for CSLBBs is proposed, which incorporates the combined effects of contact material, relative sliding velocity, and contact pressure. Based on this model, a tribo-dynamic framework is developed to investigate the tribological and dynamic behavior of CSLBBs. The model is validated through both theoretical analysis and experimental data. Results show that the inclusion of solid lubricant effects significantly alters the relative sliding and frictional forces between the rolling elements and the raceway. These changes in turn influence the impact dynamics between the rolling elements and the cage, leading to notable variations in the bearing’s vibrational response. The findings may offer valuable insights for the wear resistance and vibration reduction design of CSLBBs. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 25
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

26 pages, 11494 KiB  
Article
Establishment of Hollow Flexible Model with Two Types of Bonds and Calibration of the Contact Parameters for Wheat Straw
by Huinan Huang, Yan Zhang, Guangyu Hou, Baohao Su, Hao Yin, Zijiang Fu, Yangfan Zhuang, Zhijun Lv, Hui Tian and Lianhao Li
Agriculture 2025, 15(15), 1686; https://doi.org/10.3390/agriculture15151686 - 4 Aug 2025
Viewed by 138
Abstract
In view of the lack of accurate model in the discrete element study during straw comprehensive utilization (crushing, mixing, and baling), wheat straw was taken as the research object to calibrate the simulation parameters using EDEM 2023. The intrinsic and contact mechanical parameters [...] Read more.
In view of the lack of accurate model in the discrete element study during straw comprehensive utilization (crushing, mixing, and baling), wheat straw was taken as the research object to calibrate the simulation parameters using EDEM 2023. The intrinsic and contact mechanical parameters of wheat straw were measured, and a test of the angle of repose (AOR), extrusion test and bending test were carried out. On this basis, a discrete element model (DEM) of hollow flexibility by using cylindrical particles was developed. The optimal combination of contact mechanical parameters was obtained through AOR tests based on the Box–Behnken design (BBD), coefficients of static friction, rolling friction, and restitution between wheat straw and wheat straw-45 steel are separately 0.227, 0.136, 0.479, 0.271, 0.093, and 0.482, AOR is 18.66°. Meanwhile, optimal combinations of bond contact parameters were determined by the BBD. The calibrated parameters were used to conduct extrusion and bending tests. Results show that the average values of peak extrusion force and peak bending pressure are 23.20 N and 3.92 N, which have relative discrepancy of 3.25% and 3.59% compared to physical test measurements. The results can provide model reference for the optimization design such as feed processing equipment, baler, and mixer. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 12003 KiB  
Article
Corrosion Mechanism of Austenitic Stainless Steel in Simulated Small Modular Reactor Primary Water Chemistry
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Metals 2025, 15(8), 875; https://doi.org/10.3390/met15080875 (registering DOI) - 4 Aug 2025
Viewed by 78
Abstract
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis [...] Read more.
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis of impedance spectra with a distribution of relaxation times revealed contributions from the oxide layer and its interface with the coolant. Glow-Discharge Optical Emission Spectroscopy (GDOES) was used to estimate the thickness and elemental composition of the formed oxides. A quantitative interpretation of the impedance data using the Mixed-Conduction Model allowed us to estimate the kinetic and transport parameters of oxide growth and dissolution, as well as iron dissolution through oxide. The film thicknesses following exposure agreed with ex-situ analyses. The obtained corrosion and release rates were used for comparison with laboratory and industrial data in nominal pressurized water reactor primary coolants. Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

32 pages, 14398 KiB  
Article
Crushing Removal Conditions and Experimental Research on Abrasive Water Jets Impacting Rock
by Hongqi Wang, Ruifu Yuan, Xinmin Zhang, Penghui Zai, Junkai Fan and Junhao Deng
Lubricants 2025, 13(8), 348; https://doi.org/10.3390/lubricants13080348 - 4 Aug 2025
Viewed by 94
Abstract
This paper describes the complex process of rock crushing removal by AWJ impact from the microscopic perspective. The acceleration and deceleration mechanism of abrasive particles throughout the whole process of single abrasive particles impacting rocks, the spherical cavity expansion mechanism of the abrasive [...] Read more.
This paper describes the complex process of rock crushing removal by AWJ impact from the microscopic perspective. The acceleration and deceleration mechanism of abrasive particles throughout the whole process of single abrasive particles impacting rocks, the spherical cavity expansion mechanism of the abrasive particles’ impact on the rock, and the elastic contact force of the collision between the abrasive particles and rock were investigated; a mathematical model of AWJ’s impact on the rock crushing removal conditions was established; and the threshold values of the jet impact parameters were obtained. The mathematical model of the rock crushing removal conditions was verified through numerical simulation and jet impact experiments. The research results show that the theoretical value of the jet impact velocity that meets the conditions for limestone crushing removal is greater than or equal to 36 m/s, and the theoretical value of the pressure is greater than or equal to 2.7 MPa. Numerical simulation was used to obtain the displacement of marked points, stress, and strain variation in marked elements of rock under different impact velocities. The effect of impact rock breaking obtained through the experiment demonstrates the correspondence between the test pressure and the theoretical pressure, which verifies the accuracy of the mathematical model of the rock crushing removal conditions. Full article
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
Response Surface Optimization Design for High-Speed Ball Bearing Double-Lip Seals Considering Wear Characteristics
by Hengdi Wang, Yulu Yue, Yongcun Cui, Lina Lou and Chang Li
Lubricants 2025, 13(8), 343; https://doi.org/10.3390/lubricants13080343 - 1 Aug 2025
Viewed by 219
Abstract
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to [...] Read more.
This paper focuses on the sealing failure problem of double-lip seal rings for high-speed ball bearings used in unmanned aerial vehicles. By using ANSYS 2023R1 software, a thermal–stress–wear coupled finite element model was established. Taking the contact pressure and volume loss due to wear as indicators to evaluate sealing performance, this study analyzed the influence of lip seal structural parameters on sealing performance, performed response surface optimization of the seal structure parameters and conducted a comparative test on lip seals before and after optimization. The research results show that the contact pressure at the main lip of the lip seal was the greatest, which was 0.79 MPa, and the volume loss due to wear lip seal was 7.94 × 10−7 mm3. Optimal sealing performance is achieved when the seal lip inclination angle is 41.68°, the middle width of the lip seal is 0.153 mm, the main lip height is 0.179 mm, the spring center distance is 0.37 mm and the radial interference is 0.0034 mm. After optimization, the grease leakage rate of the sealing ring decreased by 48% compared to before optimization. Full article
Show Figures

Figure 1

13 pages, 2698 KiB  
Article
Study of the Stress–Strain State of the Structure of the GP-50 Support Bushing Manufactured by 3D Printing from PLA Plastic
by Almat Sagitov, Karibek Sherov, Didar Berdimuratova, Ainur Turusbekova, Saule Mendaliyeva, Dinara Kossatbekova, Medgat Mussayev, Balgali Myrzakhmet and Sabit Magavin
J. Compos. Sci. 2025, 9(8), 408; https://doi.org/10.3390/jcs9080408 - 1 Aug 2025
Viewed by 258
Abstract
This article analyzes statistics on the failure of technological equipment, assemblies, and mechanisms of agricultural (and other) machines associated with the breakdown or failure of gear pumps. It was found that the leading causes of gear pump failures are the opening of gear [...] Read more.
This article analyzes statistics on the failure of technological equipment, assemblies, and mechanisms of agricultural (and other) machines associated with the breakdown or failure of gear pumps. It was found that the leading causes of gear pump failures are the opening of gear teeth contact during pump operation, poor assembly, wear of bushings, thrust washers, and gear teeth. It has also been found that there is a problem related to the restoration, repair, and manufacture of parts in the conditions of enterprises serving the agro-industrial complex of the Republic of Kazakhstan (AIC RK). This is due to the lack of necessary technological equipment, tools, and instruments, as well as centralized repair and restoration bases equipped with the required equipment. This work proposes to solve this problem by applying AM technologies to the repair and manufacture of parts for agricultural machinery and equipment. The study results on the stress–strain state of support bushings under various pressures are presented, showing that a fully filled bushing has the lowest stresses and strains. It was also found that bushings with 50% filling and fully filled bushings have similar stress and strain values under the same pressure. The difference between them is insignificant, especially when compared to bushings with lower filling. This means that filling the bushing by more than 50% does not provide a significant additional reduction in stresses. In terms of material and printing time savings, 50% filling may also be the optimal option. Full article
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
An Experimental Study on the Impact of Roughness Orientation on the Friction Coefficient in EHL Contact
by Matthieu Cordier, Yasser Diab, Jérôme Cavoret, Fida Majdoub, Christophe Changenet and Fabrice Ville
Lubricants 2025, 13(8), 340; https://doi.org/10.3390/lubricants13080340 - 31 Jul 2025
Viewed by 291
Abstract
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a [...] Read more.
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a twin-disc machine. Three pairs of discs of identical material (nitrided steel) and geometry were tested: a smooth pair (the root mean square surface roughness Sq = 0.07 µm), a pair with transverse roughness and another with longitudinal roughness. The two rough pairs have similar roughness amplitudes (Sq = 0.5 µm). A comparison of the friction generated by these different pairs was carried out to highlight the effect of the roughness orientation under different operating conditions (oil injection temperature from 60 to 80 °C, Hertzian pressure from 1.2 to 1.5 GPa and mean rolling speed from 5 to 30 m/s). Throughout all the tests conducted in this study, longitudinal roughness resulted in higher friction than transverse, with an increase of up to 30%. Moreover, longitudinal roughness is more sensitive to variations in operating conditions. Finally, in all tests, the asperities of longitudinal roughness were found to influence the friction behaviour, unlike transverse roughness. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 - 31 Jul 2025
Viewed by 208
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 (registering DOI) - 31 Jul 2025
Viewed by 324
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

17 pages, 5896 KiB  
Article
Simulation Study of the Effect of Oil Injection Speed on the Air Curtain of High-Speed Bearings
by Yanfang Dong, Botao Ye, Zibo Yan, Hai Zhang, Wei Yu, Jianyong Sun and Wenbo Zhou
Lubricants 2025, 13(8), 334; https://doi.org/10.3390/lubricants13080334 - 30 Jul 2025
Viewed by 225
Abstract
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and [...] Read more.
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and its lubrication mechanism in the high-speed rotary bearing. In the process of high-speed bearing operation, the lubricant is subject to the combined effect of centrifugal force and contact pressure, gradually spreads to both sides of the steel ball, and forms a stable oil film after injection from the nozzle. However, due to the influence of high pressure distribution in the contact area, the actual formation of the oil film coverage is relatively limited. In order to further optimize the lubrication effect, this study focuses on investigating the influence law of different injection speeds and rotational speeds on the bearing air curtain effect. The results of the study show that when the air curtain effect is enhanced, there will be significant shear interference on the trajectory of the lubricant, which is manifested in the phenomenon of “buckling” at the end of the lubricant, thus reducing the lubrication efficiency. To address this problem, this study innovatively proposes the air curtain obstruction coefficient K as a quantitative evaluation index, and through numerical simulation, it is found that the lubricant can effectively overcome the air curtain obstruction and achieve a better lubrication coverage when the value of K is reduced to below 0.4. Based on this finding, the study further confirmed that the lubrication efficiency of bearings can be significantly improved under different operating conditions by rationally regulating the injection rate. Full article
Show Figures

Figure 1

17 pages, 5245 KiB  
Article
Discrete Element Analysis of Grouting Reinforcement and Slurry Diffusion in Overburden Strata
by Pengfei Guo, Weiquan Zhao, Yahui Ma and Huiling Gen
Appl. Sci. 2025, 15(15), 8464; https://doi.org/10.3390/app15158464 - 30 Jul 2025
Viewed by 138
Abstract
Research on the grouting reinforcement mechanism of overburden is constrained by the concealed and heterogeneous nature of geotechnical media, posing dual challenges in theoretical analysis and process visualization. Based on discrete element numerical simulations and laboratory tests, an analytical model for grouting reinforcement [...] Read more.
Research on the grouting reinforcement mechanism of overburden is constrained by the concealed and heterogeneous nature of geotechnical media, posing dual challenges in theoretical analysis and process visualization. Based on discrete element numerical simulations and laboratory tests, an analytical model for grouting reinforcement in overburden layers is developed, revealing the influence of grouting pressure on slurry diffusion shape and distance. The results indicate the following: (1) Contact parameters of overburden and cement particles were obtained through laboratory tests. A grouting model for the overburden layer was established using the discrete element method. After optimizing particle coarsening and the contact model, the simulation more accurately represented slurry diffusion characteristics such as compaction, splitting, and permeability. (2) By monitoring porosity and coordination number distributions near grouting holes before and after injection using circular measurement, the discrete element simulation clearly visualizes the slurry reinforcement range. The reinforcement mechanism is attributed to the combined effects of pore structure compaction (reduced porosity) and cementation within the overburden (increased coordination number). (3) Based on slurry diffusion results, a functional relationship between slurry diffusion radius and grouting pressure is established. Error analysis shows that the modified formula improves the goodness of fit by 34–39% compared to the classical formula (Maag, cylindrical diffusion). The discrete element analysis method proposed in this study elucidates the mechanical mechanisms of overburden grouting reinforcement at the particle scale and provides theoretical support for visual evaluation of concealed structures and optimization of grouting design. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop