Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,285)

Search Parameters:
Keywords = contact conductance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3940 KiB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 (registering DOI) - 6 Aug 2025
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Figure 1

14 pages, 5143 KiB  
Article
An Efficient Finite Element Model to Predict the Mechanical Response of Metallic-Reinforced Pressure Vessels
by Ana Lucía León Razo, Miguel Ernesto Gutierrez Rivera, Carlos Enrique Valencia Murillo, Elias Rigoberto Ledesma Orozco and Israel Martinez Ramirez
Hydrogen 2025, 6(3), 55; https://doi.org/10.3390/hydrogen6030055 - 6 Aug 2025
Abstract
In the design of pressure vessels for hydrogen storage, the durability and robustness of the designs are tested by using experimental methods, numerical simulations, or both. However, in the initial design phase, it is widely known that using numerical simulation tools reduces the [...] Read more.
In the design of pressure vessels for hydrogen storage, the durability and robustness of the designs are tested by using experimental methods, numerical simulations, or both. However, in the initial design phase, it is widely known that using numerical simulation tools reduces the cost of performing experiments; therefore, models that provide accurate and reliable results must be developed. This work presents an axisymmetric finite element model to predict the mechanical response of reinforced wire pressure vessels of type II. The main contribution of the present model is the use of equivalent properties and a minor number of contact elements to simulate the behavior of the wire reinforcement, which reduces the computational effort compared to a model with a solid-based mesh. The accuracy of the proposed model is tested against solid elements with very good agreement and experimental results with reasonable agreement. A parametric study was conducted to test the influence of the number of layers of reinforcement, and it was concluded that there is a limit to increasing the number of layers, which does not increase the vessel’s strength considerably, but it does with its mass. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Graphical abstract

17 pages, 2538 KiB  
Article
Influence of Abrasive Flow Rate and Feed Rate on Jet Lag During Abrasive Water Jet Cutting of Beech Plywood
by Monika Sarvašová Kvietková, Ondrej Dvořák, Chia-Feng Lin, Dennis Jones, Petr Ptáček and Roman Fojtík
Appl. Sci. 2025, 15(15), 8687; https://doi.org/10.3390/app15158687 (registering DOI) - 6 Aug 2025
Abstract
Cutting beech plywood using abrasive water jet (AWJ) technology represents a significant area of research due to increasing demands for precision, quality, and environmental sustainability in manufacturing processes within the woodworking industry. AWJ technology enables non-contact cutting of materials without causing thermal deformation [...] Read more.
Cutting beech plywood using abrasive water jet (AWJ) technology represents a significant area of research due to increasing demands for precision, quality, and environmental sustainability in manufacturing processes within the woodworking industry. AWJ technology enables non-contact cutting of materials without causing thermal deformation or mechanical damage, which is crucial for preserving the structural integrity and mechanical properties of the plywood. This article investigates cutting beech plywood using technical methods using an abrasive water jet (AWJ) at 400 MPa pressure, with Australian garnet (80 MESH) as the abrasive material. It examines how abrasive mass flow rate, traverse speed, and material thickness affect AWJ lag, which in turn influences both cutting quality and accuracy. Measurements were conducted with power abrasive mass flow rates of 250, 350, and 450 g/min and traverse speeds of 0.2, 0.4, and 0.6 m/min. Results show that increasing the abrasive mass flow rate from 250 g/min to 350 g/min slightly decreased the AWJ cut width by 0.05 mm, while further increasing to 450 g/min caused a slight increase of 0.1 mm. Changes in traverse speed significantly influenced cut width; increasing the traverse speed from 0.2 m/min to 0.4 m/min widened the AWJ by 0.21 mm, while increasing it to 0.6 m/min caused a slight increase of 0.18 mm. For practical applications, it is recommended to use an abrasive mass flow rate of around 350 g/min combined with a traverse speed between 0.2 and 0.4 m/min when cutting beech plywood with AWJ. This balance minimizes jet lag and maintains high surface quality comparable to conventional milling. For thicker plywood, reducing the traverse speed closer to 0.2 m/min and slightly increasing the abrasive flow should ensure clean cuts without compromising surface integrity. Full article
Show Figures

Figure 1

26 pages, 3368 KiB  
Article
Effective Ciprofloxacin Removal from Deionized and Salt Water by Sulfonated Pentablock Copolymer (NexarTM)
by Simona Filice, Simona Crispi, Viviana Scuderi, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Molecules 2025, 30(15), 3275; https://doi.org/10.3390/molecules30153275 - 5 Aug 2025
Abstract
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin [...] Read more.
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin antibiotic from water in a sustainable approach. The removal efficiency of Nexar film was evaluated in aqueous or salty (NaCl 0.5 M) ciprofloxacin solutions as a function of contact time and the initial ciprofloxacin concentration. In the investigated conditions, the polymeric film totally removed ciprofloxacin in MilliQ solution while its removal efficiency in salty solution was approximately 73%. This lower value is due to the presence of Na+ ions that compete with antibiotic molecules for adsorption on active surface sites of the polymeric film. No further release of adsorbed antibiotic molecules occurred. The kinetic studies, conducted for ciprofloxacin adsorption on Nexar film in both MilliQ and salty solutions, revealed that the overall sorption process is controlled by the rate of surface reaction between ciprofloxacin molecules and active sites on Nexar surface. Furthermore, at equilibrium conditions, the isotherm model that best fits experimental parameters was not linear. This indicates that the competition between the solute and the solvent for binding sites on the adsorbent should be considered to describe adsorption processes in both MilliQ and salty solutions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Figure 1

38 pages, 3784 KiB  
Article
Comparative Analysis of the Effects of Contact and Online Biology Teaching
by Ines Radanović, Slavica Šimić Šašić and Mirela Sertić Perić
Educ. Sci. 2025, 15(8), 1000; https://doi.org/10.3390/educsci15081000 - 5 Aug 2025
Abstract
This study investigates the effectiveness of contact and online biology teaching by assessing student performance and gathering perceptions from students, teachers, and parents. Conducted in autumn 2021 with 3035 students, 124 biology teachers, and 719 parents, this study combined post-instruction assessments of student [...] Read more.
This study investigates the effectiveness of contact and online biology teaching by assessing student performance and gathering perceptions from students, teachers, and parents. Conducted in autumn 2021 with 3035 students, 124 biology teachers, and 719 parents, this study combined post-instruction assessments of student performance in knowledge reproduction and conceptual understanding with questionnaires examining perceptions of contact and online biology teaching effectiveness across students, teachers, and parents. To investigate how various teaching-related factors influence perceived understanding of biological content, we applied a CHAID-based decision tree model to questionnaire responses from students, teachers, and parents. Results indicated that students value engaging, flexible instruction, sufficient time to complete tasks and support for independent thinking. Teachers emphasized their satisfaction with teaching and efforts to support student understanding. In contact lessons, students preferred problem-solving, teacher guidance, and a stimulating environment. In online learning, they preferred low-stress, interesting lessons with room for independent work. Parents emphasized satisfaction with their child’s learning and the importance of a focused, stimulating environment. This comparative analysis highlights the need for student-centered, research-based biology teaching in both formats, supported by teachers and delivered in a motivating environment. The results offer practical insights for improving biology instruction in different teaching modalities. Full article
(This article belongs to the Section STEM Education)
Show Figures

Figure 1

16 pages, 3291 KiB  
Article
A Discrete Element Model for Characterizing Soil-Cotton Seeding Equipment Interactions Using the JKR and Bonding Contact Models
by Xuyang Ran, Long Wang, Jianfei Xing, Lu Shi, Dewei Wang, Wensong Guo and Xufeng Wang
Agriculture 2025, 15(15), 1693; https://doi.org/10.3390/agriculture15151693 (registering DOI) - 5 Aug 2025
Abstract
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction [...] Read more.
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction between soil particles and cotton seeding equipment under DSSI in Xinjiang. The discrete element method (DEM) simulation framework was employed to compare the performance of the Johnson-Kendall-Roberts (JKR) model and Bonding model in simulating contact between soil particles. The models’ ability to simulate the angle of repose was investigated, and shear tests were conducted. The simulation results showed that both models had comparable repose angles, with relative errors of 0.59% for the JKR model and 0.36% for the contact model. However, the contact model demonstrated superior predictive accuracy in simulating direct shear test results, predicting an internal friction angle of 35.8°, with a relative error of 5.8% compared to experimental measurements. In contrast, the JKR model exhibited a larger error. The Bonding model provides a more accurate description of soil particle contact. Subsoiler penetration tests showed that the maximum penetration force was 467.2 N, closely matching the simulation result of 485.3 N, which validates the reliability of the model parameters. The proposed soil simulation framework and calibrated parameters accurately represented soil mechanical properties, providing a robust basis for discrete element modeling and structural optimization of soil-tool interactions in cotton field tillage machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

20 pages, 4676 KiB  
Article
Multifunctional, Biocompatible Hybrid Surface Coatings Combining Antibacterial, Hydrophobic and Fluorescent Applications
by Gökçe Asan and Osman Arslan
Polymers 2025, 17(15), 2139; https://doi.org/10.3390/polym17152139 - 5 Aug 2025
Abstract
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles [...] Read more.
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles can be embedded together with inorganic and organic surface coatings and silicon quantum dots for symbiotic antibacterial character and UV-excited visible light fluorescent features. Additionally, fluorosilane material can be coupled with this prepolymeric structure to add the hydrophobic feature, showing water contact angles around 120°, providing self-cleaning features. Optical properties of the components and the final material were investigated by UV-Vis spectroscopy and PL analysis. Atomic investigations and structural variations were detected by XPS, SEM, and EDX atomic mapping methods, correcting the atomic entities inside the coating. FT-IR tracked surface features, and statistical analysis of the quantum dots and nanoparticles was conducted. Multifunctional final materials showed antibacterial properties against E. coli and S. aureus, exhibiting self-cleaning features with high surface contact angles and visible light fluorescence due to the silicon quantum dot incorporation into the sol-gel-produced nanocomposite hybrid structure. Full article
(This article belongs to the Special Issue Polymer Coatings for High-Performance Applications)
Show Figures

Figure 1

27 pages, 11494 KiB  
Article
Establishment of Hollow Flexible Model with Two Types of Bonds and Calibration of the Contact Parameters for Wheat Straw
by Huinan Huang, Yan Zhang, Guangyu Hou, Baohao Su, Hao Yin, Zijiang Fu, Yangfan Zhuang, Zhijun Lv, Hui Tian and Lianhao Li
Agriculture 2025, 15(15), 1686; https://doi.org/10.3390/agriculture15151686 - 4 Aug 2025
Abstract
In view of the lack of accurate model in the discrete element study during straw comprehensive utilization (crushing, mixing, and baling), wheat straw was taken as the research object to calibrate the simulation parameters using EDEM 2023. The intrinsic and contact mechanical parameters [...] Read more.
In view of the lack of accurate model in the discrete element study during straw comprehensive utilization (crushing, mixing, and baling), wheat straw was taken as the research object to calibrate the simulation parameters using EDEM 2023. The intrinsic and contact mechanical parameters of wheat straw were measured, and a test of the angle of repose (AOR), extrusion test and bending test were carried out. On this basis, a discrete element model (DEM) of hollow flexibility by using cylindrical particles was developed. The optimal combination of contact mechanical parameters was obtained through AOR tests based on the Box–Behnken design (BBD), coefficients of static friction, rolling friction, and restitution between wheat straw and wheat straw-45 steel are separately 0.227, 0.136, 0.479, 0.271, 0.093, and 0.482, AOR is 18.66°. Meanwhile, optimal combinations of bond contact parameters were determined by the BBD. The calibrated parameters were used to conduct extrusion and bending tests. Results show that the average values of peak extrusion force and peak bending pressure are 23.20 N and 3.92 N, which have relative discrepancy of 3.25% and 3.59% compared to physical test measurements. The results can provide model reference for the optimization design such as feed processing equipment, baler, and mixer. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 12003 KiB  
Article
Corrosion Mechanism of Austenitic Stainless Steel in Simulated Small Modular Reactor Primary Water Chemistry
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Metals 2025, 15(8), 875; https://doi.org/10.3390/met15080875 (registering DOI) - 4 Aug 2025
Abstract
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis [...] Read more.
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis of impedance spectra with a distribution of relaxation times revealed contributions from the oxide layer and its interface with the coolant. Glow-Discharge Optical Emission Spectroscopy (GDOES) was used to estimate the thickness and elemental composition of the formed oxides. A quantitative interpretation of the impedance data using the Mixed-Conduction Model allowed us to estimate the kinetic and transport parameters of oxide growth and dissolution, as well as iron dissolution through oxide. The film thicknesses following exposure agreed with ex-situ analyses. The obtained corrosion and release rates were used for comparison with laboratory and industrial data in nominal pressurized water reactor primary coolants. Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

13 pages, 1412 KiB  
Article
Person-to-Person Transmission During a Norovirus Outbreak in a Korean Kindergarten: A Retrospective Cohort Study
by Yongho Park, Hyelim Jang, Jieun Jang and Ji-Hyuk Park
Children 2025, 12(8), 1027; https://doi.org/10.3390/children12081027 - 4 Aug 2025
Abstract
Objectives: Norovirus outbreaks occur in densely populated environments, such as long-term care facilities, hospitals, and schools. On 22 October 2022, an outbreak of acute gastroenteritis was reported at a kindergarten in Korea. An epidemiologic investigation was conducted to identify the source of the [...] Read more.
Objectives: Norovirus outbreaks occur in densely populated environments, such as long-term care facilities, hospitals, and schools. On 22 October 2022, an outbreak of acute gastroenteritis was reported at a kindergarten in Korea. An epidemiologic investigation was conducted to identify the source of the infection and prevent further spread. Methods: Rectal swab and environmental samples were collected for bacterial and viral testing. A retrospective cohort study was conducted among 114 kindergarteners at the kindergarten. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated to assess associations of contact with the primary case, as well as food and water consumption. Results: Of the kindergarteners, 28 out of 114 (24.6%) met the case definition. The primary case occurred on 19 October, and subsequent cases began on 21 October. Sharing the same four-year-old class as the primary case (RR, 2.56; 95% CI, 1.35–4.87), being in the same regular class (RR, 2.37; 95% CI, 1.27–4.41), being on the same floor during after-school class (RR, 3.49; 95% CI, 1.74–7.00), and attending the same English class (RR, 1.98; 95% CI, 1.05–3.72) were statistically significant. Consumption of drinking water on the third floor and fourth floor on 20 October had significantly higher and lower RRs, respectively. Norovirus was detected in 9 out of 18 rectal swab samples (50.0%). Conclusions: This norovirus outbreak at the kindergarten was presumed to have been caused by person-to-person transmission from the primary case. Isolation and restriction of symptomatic children in kindergartens should be thoroughly implemented. Additionally, enhanced surveillance among family members of affected individuals is necessary to prevent further outbreaks. Full article
(This article belongs to the Section Pediatric Infectious Diseases)
Show Figures

26 pages, 4329 KiB  
Article
Surveying the Perspectives of Parents and Professionals on Providing Upright, Hands-Free, Self-Initiated Mobility to Children with Severe Physical and Communication Disabilities
by Fei Luo, Sarah W. Blackstone, Jesse Canchola and Vicki Casella
Children 2025, 12(8), 1024; https://doi.org/10.3390/children12081024 - 4 Aug 2025
Viewed by 27
Abstract
Background/Objectives: Children with severe physical and communication disabilities face many challenges. They have very limited opportunities for upright, hands-free, self-initiated mobility. Current findings in neuroscience and theories on child development suggest that self-initiated mobility can have positive cascading effects on various developmental [...] Read more.
Background/Objectives: Children with severe physical and communication disabilities face many challenges. They have very limited opportunities for upright, hands-free, self-initiated mobility. Current findings in neuroscience and theories on child development suggest that self-initiated mobility can have positive cascading effects on various developmental areas, including language and communication. This study was conducted to examine the current use of hands-free support walkers with children who have severe physical and communication disabilities and use augmentative and alternative communication and to identify the benefits and problems perceived by their parents and professionals from different disciplines. Methods: Online surveys were utilized to collect information from 127 participants, including 31 parents and 96 professionals or paraprofessionals. Results: The participants reported that these children could perform various motor activities in the hands-free support walkers to achieve different goals. Benefits identified by both parents and professionals included providing a way to exercise and stay active, improving motor control, enhancing independence, and bringing enjoyment. Professionals also observed positive impacts on communication, vocalization, use of eye contact, and problem solving. Conclusions: Results suggest that children with severe physical and communication disabilities can benefit from the upright, hands-free, self-initiated mobility provided by hands-free support walkers. Clinical implications and needs for future research are discussed. Full article
(This article belongs to the Special Issue The Rehabilitation of Children with Disabilities: Latest Advances)
Show Figures

Figure 1

17 pages, 7323 KiB  
Article
Line Laser 3D Measurement Method and Experiments of Gears
by Yanqiang Sun, Zhaoyao Shi, Bo Yu and Meichuan Li
Photonics 2025, 12(8), 782; https://doi.org/10.3390/photonics12080782 - 4 Aug 2025
Viewed by 83
Abstract
Line laser measurement, as a typical method of laser triangulation, makes the acquisition of 3D tooth-surface data more accurate, efficient, and informative. Thus, a line laser 3D measurement model of gears is established, and a specialized polyhedral artifact with specific geometric features is [...] Read more.
Line laser measurement, as a typical method of laser triangulation, makes the acquisition of 3D tooth-surface data more accurate, efficient, and informative. Thus, a line laser 3D measurement model of gears is established, and a specialized polyhedral artifact with specific geometric features is invented to determine the pose parameters of the line laser sensor in measuring space. Based on this, a single-spindle gear-measuring instrument is developed and a series of experimental studies are conducted for gears with different module and flank directions in this instrument, including profile deviation, helix deviation, pitch deviation, topological deviation, etc. A comparative experiment with traditional contact measurement methods validates the correctness of the methods mentioned in this paper for the accurate evaluation of tested gears. In further research, the mining and utilization of big data obtained from the line laser 3D measurement of gears will be an important topic. Full article
(This article belongs to the Special Issue Advancements in Optical Metrology and Imaging)
Show Figures

Figure 1

13 pages, 1060 KiB  
Article
Condition Changes Before and After the Coronavirus Disease 2019 Pandemic in Adolescent Athletes and Development of a Non-Contact Medical Checkup Application
by Hiroaki Kijima, Toyohito Segawa, Kimio Saito, Hiroaki Tsukamoto, Ryota Kimura, Kana Sasaki, Shohei Murata, Kenta Tominaga, Yo Morishita, Yasuhito Asaka, Hidetomo Saito and Naohisa Miyakoshi
Sports 2025, 13(8), 256; https://doi.org/10.3390/sports13080256 - 4 Aug 2025
Viewed by 112
Abstract
During the coronavirus 2019 pandemic, sports activities were restricted, raising concerns about their impact on the physical condition of adolescent athletes, which remained largely unquantified. This study was designed with two primary objectives: first, to precisely quantify and elucidate the differences in the [...] Read more.
During the coronavirus 2019 pandemic, sports activities were restricted, raising concerns about their impact on the physical condition of adolescent athletes, which remained largely unquantified. This study was designed with two primary objectives: first, to precisely quantify and elucidate the differences in the physical condition of adolescent athletes before and after activity restrictions due to the pandemic; and second, to innovatively develop and validate a non-contact medical checkup application. Medical checks were conducted on 563 athletes designated for sports enhancement. Participants were junior high school students aged 13 to 15, and the sample consisted of 315 boys and 248 girls. Furthermore, we developed a smartphone application and compared self-checks using the application with in-person checks by orthopedic surgeons to determine the challenges associated with self-checks. Statistical tests were conducted to determine whether there were statistically significant differences in range of motion and flexibility parameters before and after the pandemic. Additionally, items with discrepancies between values self-entered by athletes using the smartphone application and values measured by specialists were detected, and application updates were performed. Student’s t-test was used for continuous variables, whereas the chi-square test was used for other variables. Following the coronavirus 2019 pandemic, athletes were stiffer than during the pre-pandemic period in terms of hip and shoulder joint rotation range of motion and heel–buttock distance. The dominant hip external rotation decreased from 53.8° to 46.8° (p = 0.0062); the non-dominant hip external rotation decreased from 53.5° to 48.0° (p = 0.0252); the dominant shoulder internal rotation decreased from 62.5° to 54.7° (p = 0.0042); external rotation decreased from 97.6° to 93.5° (p = 0.0282), and the heel–buttock distance increased from 4.0 cm to 10.4 cm (p < 0.0001). The heel–buttock distance and straight leg raising angle measurements differed between the self-check and face-to-face check. Although there are items that cannot be accurately evaluated by self-check, physical condition can be improved with less contact by first conducting a face-to-face evaluation under appropriate guidance and then conducting a self-check. These findings successfully address our primary objectives. Specifically, we demonstrated a significant decline in the physical condition of adolescent athletes following pandemic-related activity restrictions, thereby quantifying their impact. Furthermore, our developed non-contact medical checkup application proved to be a viable tool for monitoring physical condition with reduced contact, although careful consideration of measurable parameters is crucial. This study provides critical insights into the long-term effects of activity restrictions on young athletes and offers a practical solution for health monitoring during infectious disease outbreaks, highlighting the potential for hybrid checkup approaches. Full article
Show Figures

Graphical abstract

22 pages, 5293 KiB  
Article
Membrane Distillation for Water Desalination: Assessing the Influence of Operating Conditions on the Performance of Serial and Parallel Connection Configurations
by Lebea N. Nthunya and Bhekie B. Mamba
Membranes 2025, 15(8), 235; https://doi.org/10.3390/membranes15080235 - 4 Aug 2025
Viewed by 164
Abstract
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre [...] Read more.
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre membrane modules connected in parallel and series in direct contact membrane distillation (DCMD) for the first time. The configurations were evaluated under varying process parameters such as temperature (50–70 °C), flow rates (22.1–32.3 mL·s−1), magnesium concentration as scalant (1.0–4.0 g·L−1), and flow direction (co-current and counter-current), assessing their influence on temperature gradients (∆T), flux and pH stability, salt rejection, and crystallisation. Interestingly, the parallel module configuration maintained high operational stability with uniform flux and temperature differences (∆T) even at high recovery factors (>75%). On one hand, the serial configuration experienced fluctuating ∆T caused by thermal and concentration polarisation, causing an early crystallisation (abrupt drop in feed conductivity). Intensified polarisation effects with accelerated crystallisation increased the membrane risk of wetting, particularly at high recovery factors. Despite these changes, the salt rejection remained relatively high (99.9%) for both configurations across all tested conditions. The findings revealed that acidification trends caused by MgSO4 were configuration-dependent, where the parallel setup-controlled rate of pH collapse. This study presented a novel framework connecting membrane module architecture to mass and heat transfer phenomena, providing a transformative DCMD module configuration design in water desalination. These findings not only provide the critical knowledge gaps in DCMD module configurations but also inform optimisation of MD water desalination to achieve high recovery and stable operation conditions under realistic brine composition. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

Back to TopTop