Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,616)

Search Parameters:
Keywords = construction transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5438 KiB  
Article
Research on Dynamic Particle Swarm Optimization for Multi-Objective Reconnaissance Task Allocation of UAVs
by Suyu Wang, Peihong Qiao, Quan Yue, Zhenlei Xu and Qichen Shang
Drones 2025, 9(8), 556; https://doi.org/10.3390/drones9080556 (registering DOI) - 7 Aug 2025
Abstract
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in [...] Read more.
With the increasingly widespread application of unmanned aerial vehicle (UAV) systems in disaster monitoring, urban management, logistics transportation, and reconnaissance, efficient dynamic task allocation has become a key issue in improving task execution efficiency. To address the challenges posed by dynamic changes in task objectives and resource constraints that traditional task allocation methods struggle with in complex environments, this paper proposes a multi-objective particle swarm optimization algorithm, DCMPSO, for UAV dynamic reconnaissance task allocation. First, the framework of DCMPSO is constructed, dividing the optimization of dynamic problems into three parts: environment change detection, environment change response, and actual optimization, with the designed strategy of range prediction strategy based on centroid translation. Then, simulation experiments are conducted to verify the effectiveness of the algorithm mechanisms through ablation experiments and to demonstrate the superiority of DCMPSO in convergence and distribution compared to DNSGA-II and SGEA through comparative experiments. Finally, a multi-UAV dynamic task allocation model is established and optimized, proving that DCMPSO can correctly solve the UAV dynamic multi-objective allocation problem and effectively find its optimal solution, providing an effective solution for practical applications. Full article
6 pages, 1076 KiB  
Proceeding Paper
Applying Transformer-Based Dynamic-Sequence Techniques to Transit Data Analysis
by Bumjun Choo and Dong-Kyu Kim
Eng. Proc. 2025, 102(1), 12; https://doi.org/10.3390/engproc2025102012 - 7 Aug 2025
Abstract
Transit systems play a vital role in urban mobility, yet predicting individual travel behavior within these systems remains a complex challenge. Traditional machine learning approaches struggle with transit trip data because each trip may consist of a variable number of transit legs, leading [...] Read more.
Transit systems play a vital role in urban mobility, yet predicting individual travel behavior within these systems remains a complex challenge. Traditional machine learning approaches struggle with transit trip data because each trip may consist of a variable number of transit legs, leading to missing data and inconsistencies when using fixed-length tabular representations. To address this issue, we propose a transformer-based dynamic-sequence approach that models transit trips as variable-length sequences, allowing for flexible representation while leveraging the power of attention mechanisms. Our methodology constructs trip sequences by encoding each transit leg as a token, incorporating travel time, mode of transport, and a 2D positional encoding based on grid-based spatial coordinates. By dynamically skipping missing legs instead of imputing artificial values, our approach maintains data integrity and prevents bias. The transformer model then processes these sequences using self-attention, effectively capturing relationships across different trip segments and spatial patterns. To evaluate the effectiveness of our approach, we train the model on a dataset of urban transit trips and predict first-mile and last-mile travel times. We assess performance using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Experimental results demonstrate that our dynamic-sequence method yields up to a 30.96% improvement in accuracy compared to non-dynamic methods while preserving the underlying structure of transit trips. This study contributes to intelligent transportation systems by presenting a robust, adaptable framework for modeling real-world transit data. Our findings highlight the advantages of self-attention-based architectures for handling irregular trip structures, offering a novel perspective on a data-driven understanding of individual travel behavior. Full article
Show Figures

Figure 1

40 pages, 87432 KiB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
Show Figures

Figure 1

30 pages, 8483 KiB  
Article
Research on Innovative Design of Two-in-One Portable Electric Scooter Based on Integrated Industrial Design Method
by Yang Zhang, Xiaopu Jiang, Shifan Niu and Yi Zhang
Sustainability 2025, 17(15), 7121; https://doi.org/10.3390/su17157121 - 6 Aug 2025
Abstract
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty [...] Read more.
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty fades for users, the usage frequency declines, resulting in considerable resource wastage. This research collected user needs via surveys and employed the KJ method (affinity diagram) to synthesize fragmented insights into cohesive thematic clusters. Subsequently, a hierarchical needs model for electric scooters was constructed using analytical hierarchy process (AHP) principles, enabling systematic prioritization of user requirements through multi-criteria evaluation. By establishing a house of quality (HoQ), user needs were transformed into technical characteristics of electric scooter products, and the corresponding weights were calculated. After analyzing the positive and negative correlation degrees of the technical characteristic indicators, it was found that there are technical contradictions between functional zoning and compact size, lightweight design and material structure, and smart interaction and usability. Then, based on the theory of inventive problem solving (TRIZ), the contradictions were classified, and corresponding problem-solving principles were identified to achieve a multi-functional innovative design for electric scooters. This research, leveraging a systematic industrial design analysis framework, identified critical pain points among electric scooter users, established hierarchical user needs through priority ranking, and improved product lifecycle sustainability. It offers novel methodologies and perspectives for advancing theoretical research and design practices in the electric scooter domain. Full article
Show Figures

Figure 1

14 pages, 849 KiB  
Article
Autonomous Last-Mile Logistics in Emerging Markets: A Study on Consumer Acceptance
by Emerson Philipe Sinesio, Marcele Elisa Fontana, Júlio César Ferro de Guimarães and Pedro Carmona Marques
Logistics 2025, 9(3), 106; https://doi.org/10.3390/logistics9030106 - 6 Aug 2025
Abstract
Background: Rapid urbanization has intensified the challenges of freight transport, particularly in last-mile (LM) delivery, leading to rising costs and environmental externalities. Autonomous vehicles (AVs) have emerged as a promising innovation to address these issues. While much of the existing literature emphasizes business [...] Read more.
Background: Rapid urbanization has intensified the challenges of freight transport, particularly in last-mile (LM) delivery, leading to rising costs and environmental externalities. Autonomous vehicles (AVs) have emerged as a promising innovation to address these issues. While much of the existing literature emphasizes business and operational perspectives, this study focuses on the acceptance of AVs from the standpoint of e-consumers—individuals who make purchases via digital platforms—in an emerging market context. Methods: Grounded in an extended Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), which is specifically suited to consumer-focused technology adoption research, this study incorporates five constructs tailored to AV adoption. Structural Equation Modeling (SEM) was applied to survey data collected from 304 e-consumers in Northeast Brazil. Results: The findings reveal that performance expectancy, hedonic motivation, and environmental awareness exert significant positive effects on acceptance and intention to use AVs for LM delivery. Social influence shows a weaker, yet still positive, impact. Importantly, price sensitivity exhibits a minimal effect, suggesting that while consumers are generally cost-conscious, perceived value may outweigh price concerns in early adoption stages. Conclusions: These results offer valuable insights for policymakers and logistics providers aiming to implement consumer-oriented, cost-effective AV solutions in LM delivery, particularly in emerging economies. The findings emphasize the need for strategies that highlight the practical, emotional, and environmental benefits of AVs to foster market acceptance. Full article
(This article belongs to the Section Last Mile, E-Commerce and Sales Logistics)
Show Figures

Figure 1

21 pages, 21837 KiB  
Article
Decoding China’s Transport Decarbonization Pathways: An Interpretable Spatio-Temporal Neural Network Approach with Scenario-Driven Policy Implications
by Yanming Sun, Kaixin Liu and Qingli Li
Sustainability 2025, 17(15), 7102; https://doi.org/10.3390/su17157102 - 5 Aug 2025
Abstract
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation [...] Read more.
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation carbon emissions (TCEs) in China. Aiming at the spatio-temporal characteristics of transportation carbon emissions, a CNN-BiLSTM neural network model is constructed for the first time for prediction, and an improved whale optimization algorithm (EWOA) is introduced for hyperparameter optimization, finding that the prediction model combining spatio-temporal characteristics has a more significant prediction accuracy, and scenario forecasting was carried out using the prediction model. Research indicates that over the past three decades, TCEs have demonstrated a rapid growth trend. Under the baseline, green, low-carbon, and high-carbon scenarios, peak carbon emissions are expected in 2035, 2031, 2030, and 2040. The adoption of a low-carbon scenario represents the most advantageous pathway for the sustainable progression of China’s transportation sector. Consequently, it is imperative for China to accelerate the formulation and implementation of low-carbon policies, promote the application of clean energy and facilitate the green transformation of the transportation sector. These efforts will contribute to the early realization of dual-carbon goals with a positive impact on global sustainable development. Full article
Show Figures

Figure 1

15 pages, 3235 KiB  
Article
Research on the Characteristics of the Aeolian Environment in the Coastal Sandy Land of Mulan Bay, Hainan Island
by Zhong Shuai, Qu Jianjun, Zhao Zhizhong and Qiu Penghua
J. Mar. Sci. Eng. 2025, 13(8), 1506; https://doi.org/10.3390/jmse13081506 - 5 Aug 2025
Abstract
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation [...] Read more.
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation instrument from 2020 to 2024, studying the coastal aeolian environment and sediment transport distribution characteristics in the region. Its findings provide a theoretical basis for comprehensively analyzing the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results show the following: (1) The annual average threshold wind velocity for sand movement in the study area is 6.84 m/s, and the wind speed frequency (frequency of occurrence) is 51.54%, dominated by easterly (NE, ENE) and southerly (S, SSE) winds. (2) The drift potential (DP) refers to the potential amount of sediment transported within a certain time and spatial range, and the annual drift potential (DP) and resultant drift potential (RDP) of Mulan Bay from 2020 to 2024 were 550.82 VU and 326.88 VU, respectively, indicating a high-energy wind environment. The yearly directional wind variability index (RDP/DP) was 0.59, classified as a medium ratio and indicating blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 249.45°, corresponding to a WSW direction, indicating that the sand in Mulan Bay is generally transported in the southwest direction. (3) When the measured data extracted from the sand accumulation instrument in the study area from 2020 to 2024 were used for statistical analysis, the results showed that the total sediment transport rate (the annual sediment transport of the observation section) in the study area was 110.87 kg/m·a, with the maximum sediment transport rate in the NE direction being 29.26 kg/m·a. These results suggest that when sand fixation systems are constructed for relevant infrastructure in the region, the construction direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 5978 KiB  
Review
Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024)
by Yongfu Li, Xiao Zhang, Yang Zhao, Xiaolin Yin, Xiong Wu and Liping Su
Atmosphere 2025, 16(8), 934; https://doi.org/10.3390/atmos16080934 - 4 Aug 2025
Viewed by 176
Abstract
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications [...] Read more.
Against the backdrop of multifaceted strategies to combat climate change, understanding soil erosion’s role in carbon cycling is critical due to terrestrial carbon pool vulnerability. This study integrates bibliometric methods with visualization tools (CiteSpace, VOSviewer) to analyze 3880 Web of Science core publications (1994–2024, inclusive), constructing knowledge graphs and forecasting trends. The results show exponential publication growth, shifting from slow development (1994–2011) to rapid expansion (2012–2024), aligning with international climate policy milestones. The Chinese Academy of Sciences led productivity (519 articles), while the US demonstrated major influence (H-index 117; 52,297 citations), creating a China–US bipolar research pattern. It was also found that Dutch journals dominate this research field. A keyword analysis revealed a shift from erosion-driven carbon transport to ecosystem service assessments. Emerging hotspots include microbial community regulation, climate–erosion feedback, and model–policy integration, though developing country collaboration remains limited. Future research should prioritize isotope tracing, multiscale modeling, and studies in ecologically vulnerable regions to enhance global soil carbon management. This study provides a novel analytical framework and forward-looking perspective for the soil erosion research on soil carbon cycling, serving as an extension of climate change mitigation strategies. Full article
Show Figures

Figure 1

87 pages, 28919 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 - 4 Aug 2025
Viewed by 111
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Viewed by 192
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

28 pages, 2335 KiB  
Article
Fine-Tuning Pre-Trained Large Language Models for Price Prediction on Network Freight Platforms
by Pengfei Lu, Ping Zhang, Jun Wu, Xia Wu, Yunsheng Mao and Tao Liu
Mathematics 2025, 13(15), 2504; https://doi.org/10.3390/math13152504 - 4 Aug 2025
Viewed by 197
Abstract
Various factors influence the formation and adjustment of network freight prices, including transportation costs, cargo characteristics, and policies and regulations. The interaction of these factors increases the difficulty of accurately predicting network freight prices through regressions or other machine learning models, especially when [...] Read more.
Various factors influence the formation and adjustment of network freight prices, including transportation costs, cargo characteristics, and policies and regulations. The interaction of these factors increases the difficulty of accurately predicting network freight prices through regressions or other machine learning models, especially when the amount and quality of training data are limited. This paper introduces large language models (LLMs) to predict network freight prices using their inherent prior knowledge. Different data sorting methods and serialization strategies are employed to construct the corpora of LLMs, which are then tested on multiple base models. A few-shot sample dataset is constructed to test the performance of models under insufficient information. The Chain of Thought (CoT) is employed to construct a corpus that demonstrates the reasoning process in freight price prediction. Cross entropy loss with LoRA fine-tuning and cosine annealing learning rate adjustment, and Mean Absolute Error (MAE) loss with full fine-tuning and OneCycle learning rate adjustment to train the models, respectively, are used. The experimental results demonstrate that LLMs are better than or competitive with the best comparison model. Tests on a few-shot dataset demonstrate that LLMs outperform most comparison models in performance. This method provides a new reference for predicting network freight prices. Full article
Show Figures

Figure 1

25 pages, 4751 KiB  
Article
Dynamic Evolution and Resilience Enhancement of the Urban Tourism Ecological Health Network: A Case Study in Shanghai, China
by Man Wei and Tai Huang
Systems 2025, 13(8), 654; https://doi.org/10.3390/systems13080654 - 2 Aug 2025
Viewed by 234
Abstract
Urban tourism has evolved into a complex adaptive system, where unregulated expansion disrupts the ecological balance and intensifies resource stress. Understanding the dynamic evolution and resilience mechanisms of the tourism ecological health network (TEHN) is essential for supporting sustainable urban tourism as a [...] Read more.
Urban tourism has evolved into a complex adaptive system, where unregulated expansion disrupts the ecological balance and intensifies resource stress. Understanding the dynamic evolution and resilience mechanisms of the tourism ecological health network (TEHN) is essential for supporting sustainable urban tourism as a coupled human–natural system. Using Shanghai as a case study, we applied the “vigor–organization–resilience–services” (VORS) framework to evaluate ecosystem health, which served as a constraint for constructing the TEHN, using the minimum cumulative resistance (MCR) model for the period from 2001 to 2023. A resilience framework integrating structural and functional dimensions was further developed to assess spatiotemporal evolution and guide targeted enhancement strategies. The results indicated that as ecosystem health degraded, particularly in peripheral areas, the urban TEHN in Shanghai shifted from a dispersed to a centralized structure, with limited connectivity in the periphery. The resilience of the TEHN continued to grow, with structural resilience remaining at a high level, while functional resilience still required enhancement. Specifically, the low integration and limited choice between the tourism network and the transportation system hindered tourists from selecting routes with higher ecosystem health indices. Enhancing functional resilience, while sustaining structural resilience, is essential for transforming the TEHN into a multi-centered, multi-level system that promotes efficient connectivity, ecological sustainability, and long-term adaptability. The results contribute to a systems-level understanding of tourism–ecology interactions and support the development of adaptive strategies for balancing network efficiency and environmental integrity. Full article
(This article belongs to the Section Complex Systems and Cybernetics)
Show Figures

Figure 1

16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 - 2 Aug 2025
Viewed by 285
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 - 2 Aug 2025
Viewed by 337
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 - 1 Aug 2025
Viewed by 212
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

Back to TopTop