Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024)
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Selection and Processing
2.2. Analytical Methods
3. Results
3.1. Publication Trend Analysis
3.2. Analysis of Scientific Collaboration Networks
3.2.1. Analysis of Author Co-Authorship Networks
3.2.2. Analysis of Institutional Co-Authorship Networks
3.2.3. Analysis of Country/Region Co-Authorship Networks
3.2.4. Analysis of Journal Influence in the Research Field
3.3. Research Themes and Development Trends
3.3.1. Keyword Co-Occurrence Analysis
3.3.2. Theme Evolution Path
3.3.3. Frontier Trend Prediction
- The key regulatory role of the bacterial community (6.11) in the carbon cycle, which was revealed in the field of microbial mechanisms [79].
- Establishment of a high-precision quantitative method for ecosystem service assessment (7.49), which can be used in weighing ecological functions [80].
- The innovation direction, involving restoration strategies designed to optimize soil carbon sequestration by improving water use efficiency (8.54) [81].
4. Discussion
4.1. The Correlation Between Research Trends and Policy-Driven Topics
4.2. The Evolution Characteristics of Academic Cooperation Network
4.3. Gradient Difference of National Scientific Research Competitiveness
4.4. Suggestions for Future Research
4.4.1. Building a Deeper Understanding of Fundamental Mechanisms
4.4.2. Innovation in Technological Methodologies
4.4.3. Expanding Policy-Relevant Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USDA-ARSI | United States Department of Agriculture—Agricultural Research Service |
WEPP | Water Erosion Prediction Project |
H | H-index |
IF | journal impact factors |
RUSLE | the Revised Universal Soil Loss Equation |
Bibliometric–SLR | Bibliometric–Systematic Literature Review |
US | United States |
COTC | sum of times cited |
CSIC | Spanish National Research Council |
TLS | total link strength |
SOC | soil organic carbon |
SIC | soil inorganic carbon |
LDN | land degradation neutrality |
WoS | Web of Science |
North–South | Global North and Global South |
References
- Hu, T.; Sun, Y. Interpretation of IPCC AR6 on human influence on the climate system. Clim. Change Res. 2021, 17, 644–651. [Google Scholar] [CrossRef]
- Zou, C.; Ma, F.; Pan, S.; Lin, M.; Zhang, G.; Xiong, B.; Wang, Y.; Liang, Y.; Yang, Z. Earth energy evolution, human development and carbon neutral strategy. Pet. Explor. Dev. 2022, 49, 468–488. [Google Scholar] [CrossRef]
- Chen, L.-F.; He, Z.-B.; Du, J.; Yang, J.-J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Remy de Courcelles, V.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Dynarski, K.A.; Bossio, D.A.; Scow, K.M. Dynamic stability of soil carbon: Reassessing the “permanence” of soil carbon sequestration. Front. Environ. Sci. 2020, 8, 514701. [Google Scholar] [CrossRef]
- Yang, J.; Li, A.; Yang, Y.; Li, G.; Zhang, F. Soil organic carbon stability under natural and anthropogenic-induced perturbations. Earth-Sci. Rev. 2020, 205, 103199. [Google Scholar] [CrossRef]
- Mueller-Nedebock, D.; Chaplot, V. Soil carbon losses by sheet erosion: A potentially critical contribution to the global carbon cycle. Earth Surf. Process. Landf. 2015, 40, 1803–1813. [Google Scholar] [CrossRef]
- Chaplot, V.; Cooper, M. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 2015, 243, 205–213. [Google Scholar] [CrossRef]
- Ran, L.; Fang, N.; Wang, X.; Piao, S.; Chan, C.N.; Li, S.; Zeng, Y.; Shi, Z.; Tian, M.; Xu, Y.J. Substantially enhanced landscape carbon sink due to reduced terrestrial-aquatic carbon transfer through soil conservation in the Chinese Loess Plateau. Earth’s Future 2023, 11, e2023EF003602. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Lugato, E.; Smith, P.; Borrelli, P.; Panagos, P.; Ballabio, C.; Orgiazzi, A.; Fernandez-Ugalde, O.; Montanarella, L.; Jones, A. Soil erosion is unlikely to drive a future carbon sink in Europe. Sci. Adv. 2018, 4, eaau3523. [Google Scholar] [CrossRef]
- de Nijs, E.A.; Cammeraat, E.L.H. The stability and fate of soil organic carbon during the transport phase of soil erosion. Earth-Sci. Rev. 2020, 201, 103067. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marín-Spiotta, E. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Hilton, R.G.; West, A.J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 2020, 1, 284–299. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and gaseous emissions. Appl. Sci. 2020, 10, 2784. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q.; Liu, Q.; Li, Z. Is soil an organic carbon sink or source upon erosion, transport and deposition? Eur. J. Soil Sci. 2023, 74, e13344. [Google Scholar] [CrossRef]
- Aguirre-Salado, O.T.; Pérez-Nieto, J.; Aguirre-Salado, C.A.; Monterroso-Rivas, A.I.; Gallardo-Lancho, J.F. Water erosion, soil organic carbon redistribution and soil and water conservation: A review. Rev. Chapingo Ser. Cienc. For. Ambient. 2023, 29, 47–60. [Google Scholar] [CrossRef]
- Abney, R.B.; Berhe, A.A. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil. Front. Earth Sci. 2018, 6, 26. [Google Scholar] [CrossRef]
- Merigo, J.M.; Gil-Lafuente, A.M.; Yager, R.R. An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 2015, 27, 420–433. [Google Scholar] [CrossRef]
- Geng, Y.; Zhu, R.; Maimaituerxun, M. Bibliometric review of carbon neutrality with CiteSpace: Evolution, trends, and framework. Environ. Sci. Pollut. Res. 2022, 29, 76668–76686. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Liu, Z.; Hu, Z.; Wang, X. The methodology function of CiteSpace mapping knowledge domains. Stud. Sci. Sci. 2015, 33, 242–253. [Google Scholar] [CrossRef]
- Chen, C. Visualizing and exploring scientific literature with CiteSpace: An introduction to a half-day tutorial. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval-CHIIR ‘18, New Brunswick, NJ, USA, 11–15 March 2018; ACM Press: New Brunswick, NJ, USA, 2018; pp. 369–370. [Google Scholar] [CrossRef]
- Jeong, D.-h.; Koo, Y. Analysis of Trend and Convergence for Science and Technology using the VOSviewer. Int. J. Contents 2016, 12, 54–58. [Google Scholar] [CrossRef]
- Stallard, R.F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 1998, 12, 231–257. [Google Scholar] [CrossRef]
- Imeson, A.; Lavee, H. Soil erosion and climate change: The transect approach and the influence of scale. Geomorphology 1998, 23, 219–227. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harte, J.; Harden, J.W.; Torn, M.S. The significance of the erosion-induced terrestrial carbon sink. BioScience 2007, 57, 337–346. [Google Scholar] [CrossRef]
- Chadwick, O.A.; Kelly, E.F.; Merritts, D.M.; Amundson, R.G. Carbon dioxide consumption during soil development. Biogeochemistry 1994, 24, 115–127. [Google Scholar] [CrossRef]
- Coelho, C.A.d.S. Knowledge Coproduction in Climate Services: European Experiences and the Brazilian Scenario Evaluation. 2018. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/GRANTS:16387273 (accessed on 9 July 2025).
- Visseren-Hamakers, I.J.; Gupta, A.; Herold, M.; Pena-Claros, M.; Vijge, M.J. Will REDD+ work? The need for interdisciplinary research to address key challenges. Curr. Opin. Environ. Sustain. 2012, 4, 590–596. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Science in the UNFCCC Negotiations; United Nations Framework Convention on Climate Change: Bonn, Germany, 2025. Available online: https://unfccc.int/topics/science/the-big-picture/science-in-the-unfccc-negotiations (accessed on 9 July 2025).
- Hwang, G.-J.; Tu, Y.-F. Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. Mathematics 2021, 9, 584. [Google Scholar] [CrossRef]
- Pan, W.; Zheng, P.; Huang, J.; Mu, D.; Li, Y. Research hotspot detection of health information based on the “DEAN” process of data clean. Mod. Inf. 2018, 38, 73–77. [Google Scholar] [CrossRef]
- Marzi, G.; Balzano, M.; Caputo, A.; Pellegrini, M.M. Guidelines for Bibliometric-Systematic Literature Reviews: 10 steps to combine analysis, synthesis and theory development. Int. J. Manag. Rev. 2025, 27, 81–103. [Google Scholar] [CrossRef]
- Sood, S.K.; Rawat, K.S.; Kumar, D. Analytical mapping of information and communication technology in emerging infectious diseases using CiteSpace. Telemat. Inform. 2022, 69, 101796. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.K.; Rawat, K.S. Fog-assisted virtual reality-based learning framework to control panic. Expert Syst. 2022, 39, e12700. [Google Scholar] [CrossRef]
- Arruda, H.; Silva, E.R.; Lessa, M.; Proença, D., Jr.; Bartholo, R. VOSviewer and Bibliometrix. J. Med. Libr. Assoc. 2022, 110, 392–395. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land use transitions: Progress, challenges and prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- Bornmann, L.; Haunschild, R.; Mutz, R. Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit. Soc. Sci. Commun. 2021, 8, 224. [Google Scholar] [CrossRef]
- Imperial, J.; Rodríguez-Navarro, A. Usefulness of Hirsch’s h-index to evaluate scientific research in Spain. Scientometrics 2007, 71, 271–282. [Google Scholar] [CrossRef]
- Norris, M.; Oppenheim, C. The h-index: A broad review of a new bibliometric indicator. J. Doc. 2010, 66, 681–705. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, J.; Lu, S.; Wang, T.; Zhang, X. China carbon neutralization research status and research frontier tracking. Front. Environ. Sci. 2022, 10, 896524. [Google Scholar] [CrossRef]
- Price, D.J.D.S. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963. [Google Scholar] [CrossRef]
- Li, X.; Hu, S.; Jiang, L.; Han, B.; Li, J.; Wei, X. Bibliometric analysis of the research (2000–2020) on Land-use carbon emissions based on CiteSpace. Land 2023, 12, 165. [Google Scholar] [CrossRef]
- Chen, S.; Lu, Q.; Bai, J.; Deng, C.; Wang, Y.; Zhao, Y. Global publications on stigma between 1998–2018: A bibliometric analysis. J. Affect. Disord. 2020, 274, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Che, S.; Zhu, W. Visualizing the knowledge domain of academic mobility research from 2010 to 2020: A bibliometric analysis using CiteSpace. SAGE Open 2022, 12, 215824402110685. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Shi, Y.; Jiang, Y.; Xue, R.; Zhang, Q. Soil enzyme activity mediated organic carbon mineralization due to soil erosion in long gentle sloping farmland in the black soil region. Sci. Total Environ. 2024, 929, 172417. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Mayer, L.M.; Amaral, J.H.; Arndt, S.; Galy, V.; Kemp, D.B.; Kuehl, S.A.; Murray, N.J.; Regnier, P. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 2024, 17, 287–297. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, P.; Yang, H.; Li, M.; Ni, M.; Li, H.; Huang, Y.; Xie, W.; Wang, L. Land use and cover change accelerated China’s land carbon sinks limits soil carbon. npj Clim. Atmos. Sci. 2024, 7, 199. [Google Scholar] [CrossRef]
- Yang, R.; Yang, S.; Chen, L.-l.; Yang, Z.; Xu, L.; Zhang, X.; Liu, G.; Jiao, C.; Bai, R.; Zhang, X. Effect of vegetation restoration on soil erosion control and soil carbon and nitrogen dynamics: A meta-analysis. Soil Tillage Res. 2023, 230, 105705. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, C.; Huntingford, C.; Tarolli, P.; Li, D.; Panagos, P.; Yue, Y.; Borrelli, P.; Van Oost, K. The impacts of erosion on the carbon cycle. Rev. Geophys. 2025, 63, e2023RG000829. [Google Scholar] [CrossRef]
- Boardman, J.; Favis-Mortlock, D. Climate change and soil erosion in Britain. Geogr. J. 1993, 159, 179–183. [Google Scholar] [CrossRef]
- McGuire, A.D.; Melillo, J.M.; Kicklighter, D.W.; Joyce, L.A. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeogr. 1995, 22, 785–796. [Google Scholar] [CrossRef]
- Wang, K.-B.; Deng, L.; Di, D.-R.; He, X.-H.; Shi, W.-Y. Tracking soil carbon processes in two temperate forests at different successional stages using stable and radioactive carbon isotopes. Agric. Ecosyst. Environ. 2020, 304, 107143. [Google Scholar] [CrossRef]
- Gregory, A.; Ritz, K.; McGrath, S.; Quinton, J.; Goulding, K.; Jones, R.; Harris, J.; Bol, R.; Wallace, P.; Pilgrim, E. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dungait, J.A.; Ghee, C.; Rowan, J.S.; McKenzie, B.M.; Hawes, C.; Dixon, E.R.; Paterson, E.; Hopkins, D.W. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biol. Biochem. 2013, 60, 195–201. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, H.; Tang, Z.; Huang, J.; Nie, X.; Huang, B.; Ma, W.; Lu, Y.; Zeng, G. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. Eur. J. Soil Biol. 2015, 71, 37–44. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Nie, X.; Huang, M.; Wang, D.; Xiao, H.; Liu, C.; Peng, H.; Jiang, J.; Zeng, G. The role of dissolved organic matter in soil organic carbon stability under water erosion. Ecol. Indic. 2019, 102, 724–733. [Google Scholar] [CrossRef]
- Pang, D.; Xu, H. Carbon Sequestration and Stability and Soil Erosion in Forest Ecosystems. Ecol. Indic. 2024, 15, 1961. [Google Scholar] [CrossRef]
- Tianjiao, F.; Tianxing, W.; Keesstra, S.D.; Jianjun, Z.; Huaxing, B.; Ruoshui, W.; Ping, W. Long-term effects of vegetation restoration on hydrological regulation functions and the implications to afforestation on the Loess Plateau. Agric. For. Meteorol. 2023, 330, 109313. [Google Scholar] [CrossRef]
- de Araujo Pereira, A.P.; Mendes, L.W.; Oliveira, F.A.S.; Antunes, J.E.L.; Melo, V.M.M.; Araujo, A.S.F. Land degradation affects the microbial communities in the Brazilian Caatinga biome. Catena 2022, 211, 105961. [Google Scholar] [CrossRef]
- Zong, R.; Fang, N.; Zeng, Y.; Lu, X.; Wang, Z.; Dai, W.; Shi, Z. Soil conservation benefits of ecological programs promote sustainable restoration. Earth’s Future 2025, 13, e2024EF005287. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Kontostathis, A.; Galitsky, L.M.; Pottenger, W.M.; Roy, S.; Phelps, D.J. A Survey of Emerging Trend Detection in Textual Data Mining. In Survey of Text Mining: Clustering, Classification, and Retrieval; Berry, M.W., Ed.; Springer: New York, NY, USA, 2004; pp. 185–224. [Google Scholar] [CrossRef]
- Gregorich, E.; Greer, K.; Anderson, D.; Liang, B. Carbon distribution and losses: Erosion and deposition effects. Soil Tillage Res. 1998, 47, 291–302. [Google Scholar] [CrossRef]
- Harden, J.; Sharpe, J.; Parton, W.; Ojima, D.; Fries, T.; Huntington, T.G.; Dabney, S. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 1999, 13, 885–901. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Van Oost, K.; Govers, G.; Quine, T.A.; Heckrath, G.; Olesen, J.E.; De Gryze, S.; Merckx, R. Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion. Glob. Biogeochem. Cycles 2005, 19, GB4014. [Google Scholar] [CrossRef]
- Van Oost, K.; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harden, J.W.; Torn, M.S.; Kleber, M.; Burton, S.D.; Harte, J. Persistence of soil organic matter in eroding versus depositional landform positions. J. Geophys. Res. Biogeosci. 2012, 117, G02019. [Google Scholar] [CrossRef]
- Wang, X.; Cammeraat, E.L.; Romeijn, P.; Kalbitz, K. Soil organic carbon redistribution by water erosion–the role of CO2 emissions for the carbon budget. PLoS ONE 2014, 9, e96299. [Google Scholar] [CrossRef]
- Naipal, V.; Ciais, P.; Wang, Y.; Lauerwald, R.; Guenet, B.; Van Oost, K. Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences 2018, 15, 4459–4480. [Google Scholar] [CrossRef]
- Nearing, M.; Pruski, F.; O’neal, M. Expected climate change impacts on soil erosion rates: A review: Conservation Implications of Climate Change. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Steinhoff-Knopp, B.; Kuhn, T.K.; Burkhard, B. The impact of soil erosion on soil-related ecosystem services: Development and testing a scenario-based assessment approach. Environ. Monit. Assess. 2021, 193, 274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, J.; Zheng, Y.; Li, S.; Zhou, Y. Increased carbon uptake and water use efficiency in global semi-arid ecosystems. Environ. Res. Lett. 2020, 15, 034022. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Ma, W.; Wang, W.; Li, H. Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes. Atmosphere 2023, 14, 1724. [Google Scholar] [CrossRef]
- Law, J.; Bauin, S.; Courtial, J.P.; Whittaker, J. Policy and the mapping of scientific change—A co-word analysis of research into environmental acidification. Scientometrics 1988, 14, 251–264. [Google Scholar] [CrossRef]
- Karlen, D.; Cambardella, C. Conservation Strategies for Improving Soil Quality and Organic Matter Storage. In Structure and Organic Matter Storage in Agricultural Soils; Carter, M.R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 395–420. [Google Scholar] [CrossRef]
- Githongo, M.; Ngatia, L.; Kiboi, M.; Muriuki, A.; Fliessbach, A.; Musafiri, C.; Fu, R.; Ngetich, F. The structural quality of soil organic matter under selected soil fertility management practices in the central highlands of Kenya. Sustainability 2023, 15, 6500. [Google Scholar] [CrossRef]
- Gabbarini, L.A.; Figuerola, E.; Frene, J.P.; Robledo, N.B.; Ibarbalz, F.M.; Babin, D.; Smalla, K.; Erijman, L.; Wall, L.G. Impacts of switching tillage to no-tillage and vice versa on soil structure, enzyme activities and prokaryotic community profiles in Argentinean semi-arid soils. FEMS Microbiol. Ecol. 2021, 97, fiab025. [Google Scholar] [CrossRef]
- Kirkels, F.; Cammeraat, L.; Kuhn, N. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—A review of different concepts. Geomorphology 2014, 226, 94–105. [Google Scholar] [CrossRef]
- Öttl, L.K.; Wilken, F.; Juřicová, A.; Batista, P.V.; Fiener, P. A millennium of arable land use–the long-term impact of tillage and water erosion on landscape-scale carbon dynamics. Soil 2024, 10, 281–305. [Google Scholar] [CrossRef]
- Olson, K.R.; Gennadiyev, A.N.; Zhidkin, A.P.; Markelov, M.V. Impacts of Land-Use Change, Slope, and Erosion on Soil Organic Carbon Retention and Storage. Soil Sci. 2012, 177, 269–278. [Google Scholar] [CrossRef]
- Tan, Z.; Leung, L.R.; Li, H.Y.; Tesfa, T.; Zhu, Q.; Huang, M. A substantial role of soil erosion in the land carbon sink and its future changes. Glob. Change Biol. 2020, 26, 2642–2655. [Google Scholar] [CrossRef]
- Li, L.; Krenz, J.; Pregler, A.; Greenwood, P.; Kuhn, N.J. The Potential to Reconstruct 20th Century Soil Organic Carbon Erosion in Rangelands from Small Reservoir Sediments. Land Degrad. Dev. 2024, 35, 5671–5686. [Google Scholar] [CrossRef]
- Wynants, M.; Patrick, A.; Munishi, L.; Mtei, K.; Bodé, S.; Taylor, A.; Millward, G.; Roberts, N.; Gilvear, D.; Ndakidemi, P. Soil erosion and sediment transport in Tanzania: Part II–sedimentological evidence of phased land degradation. Earth Surf. Process. Landf. 2021, 46, 3112–3126. [Google Scholar] [CrossRef]
- Holz, M.; Augustin, J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis. Geoderma 2021, 397, 115045. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Olson, K.R.; Al-Kaisi, M.; Lal, R.; Cihacek, L. Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv. 2016, 71, 61A–67A. [Google Scholar] [CrossRef]
- Raza, S.; Irshad, A.; Margenot, A.; Zamanian, K.; Li, N.; Ullah, S.; Mehmood, K.; Khan, M.A.; Siddique, N.; Zhou, J. Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis. Geoderma 2024, 443, 116831. [Google Scholar] [CrossRef]
- Feng, Z.; Miao, Q.; Shi, H.; Li, X.; Yan, J.; Gonçalves, J.M.; Yu, D.; Yan, Y.; Feng, W. Global trends and networks in soil fertility enhancement techniques: A bibliometric analysis. J. Soil Sci. Plant Nutr. 2024, 24, 4099–4117. [Google Scholar] [CrossRef]
- Lindman, A.; Söderholm, P. Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data. Appl. Energy 2016, 179, 1351–1359. [Google Scholar] [CrossRef]
- Popp, D. Innovation and Climate Policy. In Annual Review of Resource Economics; Rausser, G.C., Smith, V.K., Zilberman, D., Eds.; Annual Reviews: Palo Alto, CA, USA, 2010; Volume 2, pp. 275–298. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, H.; Zhang, P.; Wu, F.; Qiao, J.; Li, T.; Wang, Y.; An, S. Review of Managing Soil Organic C Sequestration from Vegetation Restoration on the Loess Plateau. Forests 2023, 14, 1964. [Google Scholar] [CrossRef]
- Wen, X.; Zhen, L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Deng, L.; Yang, Y.; Zhao, Z.; Zhao, P.; Peng, C.; Fu, B. Quantifying the Effects of Vegetation Restorations on the Soil Erosion Export and Nutrient Loss on the Loess Plateau. Front. Plant Sci. 2020, 11, 573126. [Google Scholar] [CrossRef]
- Lal, R. Accelerated Soil erosion as a source of atmospheric CO2. Soil Tillage Res. 2019, 188, 35–40. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility: A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Dong, Y.; Chang, X.; Nie, X.; Liu, L.; Xiao, H.; Lu, Y.; Zeng, G. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China. Soil Tillage Res. 2017, 166, 1–9. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Chang, X.; He, J.; Nie, X.; Liu, L.; Xiao, H.; Wang, D.; Peng, H.; Zeng, G. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China. Agric. Ecosyst. Environ. 2018, 253, 11–22. [Google Scholar] [CrossRef]
- Skelton, M.; Porter, J.J.; Dessai, S.; Bresch, D.N.; Knutti, R. Customising global climate science for national adaptation: A case study of climate projections in UNFCCC’s National Communications. Environ. Sci. Policy 2019, 101, 16–23. [Google Scholar] [CrossRef]
- Mahony, M.; Hulme, M. Model migrations: Mobility and boundary crossings in regional climate prediction. Trans. Inst. Br. Geogr. 2012, 37, 197–211. [Google Scholar] [CrossRef]
- Dike, V.N.; Addi, M.; Andang’o, H.A.; Attig, B.F.; Barimalala, R.; Diasso, U.J.; Du Plessis, M.; Lamine, S.; Mongwe, P.N.; Zaroug, M. Obstacles facing Africa’s young climate scientists. Nat. Clim. Change 2018, 8, 447–449. [Google Scholar] [CrossRef]
- Verhulst, S.G. The need for climate data stewardship: 10 tensions and reflections regarding climate data governance. Data Policy 2024, 6, e52. [Google Scholar] [CrossRef]
- Blicharska, M.; Smithers, R.J.; Kuchler, M.; Agrawal, G.K.; Gutiérrez, J.M.; Hassanali, A.; Huq, S.; Koller, S.H.; Marjit, S.; Mshinda, H.M.; et al. Steps to overcome the North–South divide in research relevant to climate change policy and practice. Nat. Clim. Change 2017, 7, 21–27. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Pruski, F.; Nearing, M. Climate-induced changes in erosion during the 21st century for eight US locations. Water Resour. Res. 2002, 38, 34-1–34-11. [Google Scholar] [CrossRef]
- Wang, K.; Sheng, M.; Wang, L.; He, Y.; Guo, C. Response of soil phytolith occluded organic carbon accumulation to long-term vegetation restoration in Southwest China karst. Land Degrad. Dev. 2022, 33, 3088–3102. [Google Scholar] [CrossRef]
- Wang, X.; Huang, X.; Xiong, K.; Hu, J.; Zhang, Z.; Zhang, J. Mechanism and evolution of soil organic carbon coupling with rocky desertification in south China karst. Forests 2021, 13, 28. [Google Scholar] [CrossRef]
- Abeysingha, N.; Muthunayaka, C.; Nirmanee, K.; Amarasekara, M.; Ray, L. Application of InVEST SDR model to assess soil erosion and sediment export: A case study from Deduru Oya River Basin, Sri Lanka. J. Agric. Eng. 2023, 60, 419–431. [Google Scholar] [CrossRef]
- Li, G.; Wu, Z.; He, Y.; Chen, C.; Long, Y. The promotion of sustainable land use planning for the enhancement of ecosystem service capacity: Based on the FLUS-INVEST-RUSLE-CASA model. PLoS ONE 2024, 19, e0305400. [Google Scholar] [CrossRef]
- Ma, W.; Li, Z.; Ding, K.; Huang, J.; Nie, X.; Zeng, G.; Wang, S.; Liu, G. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology 2014, 226, 217–225. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Leys, J.F.; Waters, C.M.; Orgill, S.; Eyres, M.J. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environ. Sci. Policy 2019, 93, 43–52. [Google Scholar] [CrossRef]
- Natali, S.M.; Holdren, J.P.; Rogers, B.M.; Treharne, R.; Duffy, P.B.; Pomerance, R.; MacDonald, E. Permafrost carbon feedbacks threaten global climate goals. Proc. Natl. Acad. Sci. USA 2021, 118, e2100163118. [Google Scholar] [CrossRef]
- Veldkamp, E.; Schmidt, M.; Powers, J.S.; Corre, M.D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 2020, 1, 590–605. [Google Scholar] [CrossRef]
Ranking | Author | Country | Documents | Total Citations | TLS |
---|---|---|---|---|---|
1 | Lal, Rattan | USA | 74 | 8752 | 23 |
2 | Li, Zhongwu | China | 56 | 2006 | 238 |
3 | Van Oost, Kristof | Belgium | 50 | 4398 | 108 |
4 | Nie, Xiaodong | China | 39 | 1144 | 190 |
5 | Fu, Bojie | China | 27 | 2572 | 44 |
6 | Liu, Chun | China | 26 | 792 | 142 |
7 | Panagos, Panos | Italy | 23 | 3241 | 66 |
8 | Wei, Xiaorong | China | 22 | 628 | 56 |
9 | Alewell, Christine | Switzerland | 22 | 2936 | 51 |
10 | Xiao, Haibing | China | 21 | 824 | 130 |
Ranking | Organization | Country | Documents | Citations | TLS | H |
---|---|---|---|---|---|---|
1 | Chinese Acad Sci | China | 519 | 17,380 | 511 | 78 |
2 | Northwest A&F University | China | 185 | 4099 | 255 | 41 |
3 | Univ Chinese Acad Sci | China | 172 | 4545 | 267 | 49 |
4 | USDA-ARS | USA | 162 | 9478 | 99 | 64 |
5 | Beijing Normal Univ | China | 98 | 2565 | 77 | 33 |
6 | Ohio State Univ | USA | 81 | 8849 | 28 | 47 |
7 | Univ Basel | Switzerland | 54 | 3784 | 35 | 28 |
8 | CSIC | Spain | 53 | 2848 | 17 | 39 |
9 | Chinese Academy of Sciences (Institute of Soil and Water Conservation) | China | 51 | 1149 | 98 | 33 |
10 | Hunan Univ | China | 51 | 2010 | 47 | 26 |
Ranking | Country | Documents | Citations | TLS | H |
---|---|---|---|---|---|
1 | China | 1439 | 36,612 | 501 | 97 |
2 | USA | 946 | 52,297 | 490 | 117 |
3 | UK | 281 | 21,011 | 300 | 64 |
4 | Germany | 274 | 12,975 | 265 | 65 |
5 | Spain | 242 | 10,767 | 194 | 66 |
6 | France | 201 | 12,641 | 194 | 62 |
7 | Australia | 182 | 6930 | 184 | 52 |
8 | India | 178 | 3661 | 60 | 38 |
9 | Italy | 177 | 10,873 | 189 | 58 |
10 | Canada | 172 | 9038 | 157 | 51 |
Rank | Journal Title | Countries | Counts IF | H-Index | Total Citations |
---|---|---|---|---|---|
1 | Science of the Total Environment | The Netherlands | 50.53 | 50 | 1718 |
2 | CATENA | The Netherlands | 22.55 | 47 | 1466 |
3 | Agriculture, Ecosystems & Environment | The Netherlands | 64.18 | 40 | 706 |
4 | Soil Tillage Research | The Netherlands | 43.69 | 37 | 699 |
5 | Geoderma | The Netherlands | 73.78 | 41 | 664 |
6 | Journal of Environmental Management | United Kingdom | 39.29 | 26 | 550 |
7 | Ecological Indicators | The Netherlands | 24.50 | 29 | 539 |
8 | Sustainability | Switzerland | 18.35 | 18 | 477 |
9 | Land Degradation Development | United Kingdom | 15.80 | 33 | 474 |
10 | Journal of Soils and Sediments | Germany | 11.88 | 19 | 190 |
Ranking | Keyword | Occurrences | TLS |
---|---|---|---|
1 | soil erosion | 2012 | 11,080 |
2 | soil organic carbon | 1352 | 7848 |
3 | land-use change | 1031 | 6313 |
4 | carbon | 814 | 4450 |
5 | nitrogen | 499 | 3155 |
6 | runoff | 489 | 3251 |
7 | carbon sequestration | 471 | 2884 |
8 | management | 404 | 2545 |
9 | Loess Plateau | 402 | 2590 |
10 | climate change | 401 | 2134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, X.; Zhao, Y.; Yin, X.; Wu, X.; Su, L. Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024). Atmosphere 2025, 16, 934. https://doi.org/10.3390/atmos16080934
Li Y, Zhang X, Zhao Y, Yin X, Wu X, Su L. Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024). Atmosphere. 2025; 16(8):934. https://doi.org/10.3390/atmos16080934
Chicago/Turabian StyleLi, Yongfu, Xiao Zhang, Yang Zhao, Xiaolin Yin, Xiong Wu, and Liping Su. 2025. "Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024)" Atmosphere 16, no. 8: 934. https://doi.org/10.3390/atmos16080934
APA StyleLi, Y., Zhang, X., Zhao, Y., Yin, X., Wu, X., & Su, L. (2025). Global Research Trends on the Role of Soil Erosion in Carbon Cycling Under Climate Change: A Bibliometric Analysis (1994–2024). Atmosphere, 16(8), 934. https://doi.org/10.3390/atmos16080934