Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (370)

Search Parameters:
Keywords = connected and automated vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 88
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

12 pages, 1393 KiB  
Article
A Proactive Collision Avoidance Model for Connected and Autonomous Vehicles in Mixed Traffic Flow
by Guojing Hu, Kun Li, Weike Lu, Ouchan Chen, Chuan Sun and Yuanqi Zhao
World Electr. Veh. J. 2025, 16(7), 394; https://doi.org/10.3390/wevj16070394 - 14 Jul 2025
Viewed by 191
Abstract
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive [...] Read more.
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive collision avoidance model, aiming to avoid collisions by controlling the speed and lane-changing behavior of CAVs. In the model, the subject vehicle first collects information about surrounding lanes and judges the traffic conditions; it then chooses to decelerate or change lanes to avoid collisions. The subject vehicle also searches for the optimal vehicle in the surrounding lanes for cooperation. The effectiveness of the proposed collision avoidance model is verified through the Python-SUMO platform. The experimental results show that the performance of the collision avoidance model is better than that of the cooperative adaptive cruise control (CACC) model in terms of average speed, lost time and the number of vehicle conflicts, proving the advantages of the proposed model in safety and efficiency. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

19 pages, 5643 KiB  
Article
Proactive Approach to Production Control Utilizing Heterogeneous Shop-Level Production Data
by Fedor Burčiar, Monika Herchlová, Bohuslava Juhásová, Martin Juhás and Pavel Važan
Appl. Sci. 2025, 15(13), 7570; https://doi.org/10.3390/app15137570 - 5 Jul 2025
Viewed by 342
Abstract
This paper presents an approach for integrating data between a production system and its digital twin, focusing on achieving proactivity in production control. Recognizing the unique nature of each production system, this research highlights that a universal, plug-and-play solution is only partially feasible, [...] Read more.
This paper presents an approach for integrating data between a production system and its digital twin, focusing on achieving proactivity in production control. Recognizing the unique nature of each production system, this research highlights that a universal, plug-and-play solution is only partially feasible, primarily through general guidelines. The study successfully applied and automated proposed data acquisition methods, resulting in a functional, simulation-based digital twin that adheres to the latest ISO standards. The developed solution incorporates multiple data acquisition strategies, including files containing comma-separated values, a permanent connection to the production control system database, open platform communications unified architecture, and external command files for scenario alteration. The main motivation behind the presented implementation is its application on the shop-floors of small and medium enterprises, where it could provide useful tools for keeping up with the ever-rising competition in the manufacturing sector. This integrated approach allows for affordable and accurate system representation within the proactive simulation concept. The methodology was empirically validated across two distinct production systems: a lab-scale food and beverage line focusing on product tracking, and a sub-assembly line with automated guided vehicle optimization. Despite system variability, the core data acquisition methods demonstrated remarkable adaptability. Full article
(This article belongs to the Special Issue Advanced Digital Design and Intelligent Manufacturing)
Show Figures

Figure 1

27 pages, 110289 KiB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 316
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

19 pages, 1145 KiB  
Article
Speed Prediction Models for Tangent Segments Between Horizontal Curves Using Floating Car Data
by Giulia Del Serrone and Giuseppe Cantisani
Vehicles 2025, 7(3), 68; https://doi.org/10.3390/vehicles7030068 - 5 Jul 2025
Viewed by 482
Abstract
The integration of connected autonomous vehicles (CAVs), advanced driver assistance systems (ADAS), and conventional vehicles necessitates the development of robust methodologies to enhance traffic efficiency and ensure safety across heterogeneous traffic streams. A comprehensive understanding of vehicle interactions and operating speed variability is [...] Read more.
The integration of connected autonomous vehicles (CAVs), advanced driver assistance systems (ADAS), and conventional vehicles necessitates the development of robust methodologies to enhance traffic efficiency and ensure safety across heterogeneous traffic streams. A comprehensive understanding of vehicle interactions and operating speed variability is essential to support informed decision-making in traffic management and infrastructure design. This study presents operating speed models aimed at estimating the 85th percentile speed (V85) on straight road segments, utilizing floating car data (FCD) for both calibration and validation purposes. The dataset encompasses approximately 2000 km of the Italian road network, characterized by diverse geometric features. Speed observations were analyzed under three traffic conditions: general traffic, free-flow, and free-flow with dry pavement. Results indicate that free-flow conditions improve the model’s explanatory power, while dry pavement conditions introduce greater speed variability. Initial models based exclusively on geometric parameters exhibited limited predictive accuracy. However, the inclusion of posted speed limits significantly enhanced model performance. The most influential predictors identified were the V85 on the preceding curve and the length of the straight segment. These findings provide empirical evidence to inform road safety evaluations and geometric design practices, offering insights into driver behavior in mixed-traffic environments. The proposed model supports the development of data-driven strategies for the seamless integration of automated and non-automated vehicles. Full article
Show Figures

Figure 1

19 pages, 26419 KiB  
Article
Pulse–Glide Behavior in Emerging Mixed Traffic Flow Under Sensor Accuracy Variations: An Energy-Safety Perspective
by Mengyuan Huang, Jinjun Sun, Honggang Li and Qiqi Miao
Sensors 2025, 25(13), 4189; https://doi.org/10.3390/s25134189 - 5 Jul 2025
Viewed by 318
Abstract
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received [...] Read more.
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received less attention regarding energy conservation, and their prominent perception capabilities clearly exhibit individual variations. In light of this, this study investigates the impacts of PnG combined with CAVs on energy conservation and safety within the emerging mixed traffic flow composed of CAVs with varying sensing accuracies. The results indicate the following: (i) compared to the traditional driving modes, the PnG can achieve a maximum fuel-saving rate of 39.53% at Fuel Consumption with Idle (FCI), reducing conflicts by approximately 30% on average; (ii) CAVs, equipped with sensors boasting a greater detection range, markedly enhance safety during vehicle operation and contribute to a more uniform distribution of individual fuel consumption; (iii) PnG modes with moderate acceleration, such as 1–2 m/s2, can achieve excellent fuel consumption while ensuring safety and may even slightly enhance the operational efficiency of the intersection. The findings could provide a theoretical reference for the transition of transportation systems toward sustainability. Full article
Show Figures

Figure 1

23 pages, 51170 KiB  
Article
Automatic Detection of Landslide Surface Cracks from UAV Images Using Improved U-Network
by Hao Xu, Li Wang, Bao Shu, Qin Zhang and Xinrui Li
Remote Sens. 2025, 17(13), 2150; https://doi.org/10.3390/rs17132150 - 23 Jun 2025
Viewed by 445
Abstract
Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in [...] Read more.
Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in detecting these cracks. Therefore, this study proposes a comprehensive automated pipeline to enhance the efficiency and accuracy of landslide surface crack detection. First, high-resolution images of landslide areas are collected using unmanned aerial vehicles (UAVs) to generate a digital orthophoto map (DOM). Subsequently, building upon the U-Net architecture, an improved encoder–decoder semantic segmentation network (IEDSSNet) was proposed to segment surface cracks from the images with complex backgrounds. The model enhances the extraction of crack features by integrating residual blocks and attention mechanisms within the encoder. Additionally, it incorporates multi-scale skip connections and channel-wise cross attention modules in the decoder to improve feature reconstruction capabilities. Finally, post-processing techniques such as morphological operations and dimension measurements were applied to crack masks to generate crack inventories. The proposed method was validated using data from the Heifangtai loess landslide in Gansu Province. Results demonstrate its superiority over current state-of-the-art semantic segmentation networks and open-source crack detection networks, achieving F1 scores and IOU of 82.11% and 69.65%, respectively—representing improvements of 3.31% and 4.63% over the baseline U-Net model. Furthermore, it maintained optimal performance with demonstrated generalization capability under varying illumination conditions. In this area, a total of 1658 surface cracks were detected and cataloged, achieving an accuracy of 85.22%. The method proposed in this study demonstrates strong performance in detecting surface cracks in landslide areas, providing essential data for landslide monitoring, early warning systems, and mitigation strategies. Full article
Show Figures

Figure 1

24 pages, 4196 KiB  
Article
Model-Based Deep Reinforcement Learning for Energy Efficient Routing of a Connected and Automated Vehicle
by David R. Leech and Hwan-Sik Yoon
Sustainability 2025, 17(13), 5727; https://doi.org/10.3390/su17135727 - 21 Jun 2025
Viewed by 393
Abstract
The emergence of connected and automated vehicles (CAVs) offers promising opportunities to enhance traffic control and improve overall transportation system performance. However, the complexity and dynamic nature of modern traffic networks pose significant challenges for traditional routing methods. To achieve optimal vehicle routing [...] Read more.
The emergence of connected and automated vehicles (CAVs) offers promising opportunities to enhance traffic control and improve overall transportation system performance. However, the complexity and dynamic nature of modern traffic networks pose significant challenges for traditional routing methods. To achieve optimal vehicle routing and support sustainable mobility, more adaptive and intelligent strategies are needed. Among recent advancements, model-based deep reinforcement learning has shown exceptional potential in solving complex decision-making problems across various domains. Leveraging this capability, the present study applies a model-based deep reinforcement learning approach to address the energy-efficient routing problem in a simulated CAV environment. The routes recommended by the algorithm are compared to the shortest route calculated by traffic simulation software. The simulation results show a significant improvement in energy efficiency when the vehicle follows the routes suggested by the learning algorithm, even when the vehicle is subjected to new traffic scenarios. In addition, a comparison of the model-based agent with a conventional model-free reinforcement learning agent across varied traffic conditions demonstrates the robustness of the model-based algorithm. This work represents the first application of a model-based deep reinforcement learning algorithm to the energy-efficient routing problem for CAVs. This work also showcases a novel application of the foundational algorithm AlphaGo Zero. Full article
Show Figures

Figure 1

25 pages, 13595 KiB  
Article
Simulation of GNSS Dilution of Precision for Automated Mobility Along the MODI Project Road Corridor Using High-Resolution Digital Surface Models
by Kristian Breili and Carl William Lund
Geomatics 2025, 5(2), 26; https://doi.org/10.3390/geomatics5020026 - 19 Jun 2025
Viewed by 448
Abstract
Horizontal dilution of precision (HDOP) is a widely used quality indicator of Global Navigation Satellite System (GNSS) positioning, considering only satellite geometry. In this study, HDOP was simulated using GNSS almanacs and high-resolution digital surface models (DSMs) along three European road sections: Oslo— [...] Read more.
Horizontal dilution of precision (HDOP) is a widely used quality indicator of Global Navigation Satellite System (GNSS) positioning, considering only satellite geometry. In this study, HDOP was simulated using GNSS almanacs and high-resolution digital surface models (DSMs) along three European road sections: Oslo— Svinesund Bridge (Norway); Hamburg city center (Germany); and Rotterdam—Dutch–German border (Netherlands). This study was accomplished as part of the MODI project, which is a cross-border initiative to accelerate Cooperative, Connected, and Automated Mobility (CCAM). Our analysis revealed excellent or good overall GNSS performance in the study areas, particularly on highway sections with 99–100% of study points having a median HDOP that is categorized as excellent (HDOP < 2) or good (HDOP < 5). However, the road section in Hamburg’s city center presents challenges. When GPS is used alone, 8% of the study points experience weak or poor HDOP, and there are study points where the system is available (HDOP < 5) less than 50% of the time. Combining GNSS constellations significantly improved system availability, reaching 95% for 99% of the study points in Hamburg. To validate our simulations, we compared results with GNSS observations from a survey vehicle in Hamburg. Initial low correlation was attributed to the reception of signals from non-line-of-sight satellites. By excluding satellites with low signal-to-noise ratios, the correlation increased significantly, and reasonable agreement was obtained. We also examined the impact of using a 10 m DSM instead of a 1 m DSM in Hamburg. While the coarser spatial resolution offers computational benefits, it may miss critical details for accurate assessment of satellite visibility. Full article
Show Figures

Figure 1

20 pages, 11802 KiB  
Article
Distributed Trajectory Optimization for Connected and Automated Vehicle Platoons Considering Safe Inter-Vehicle Following Gaps
by Meiqi Liu, Ying Gao, Yikai Zeng and Ruochen Hao
Systems 2025, 13(6), 483; https://doi.org/10.3390/systems13060483 - 17 Jun 2025
Viewed by 379
Abstract
Existing studies on platoon trajectory optimization of connected and automated vehicles face challenges in balancing computational efficiency, privacy, and safety. This study proposes a distributed optimization method that decomposes the platoon trajectory planning problem into independent individual vehicle tasks while ensuring safe inter-vehicle [...] Read more.
Existing studies on platoon trajectory optimization of connected and automated vehicles face challenges in balancing computational efficiency, privacy, and safety. This study proposes a distributed optimization method that decomposes the platoon trajectory planning problem into independent individual vehicle tasks while ensuring safe inter-vehicle following gaps and maximizing travel efficiencyand ride comfort. The individual vehicle problems independently optimize their trajectory to improve computational efficiency, and only exchange dual variables related to safe following gaps to preserve privacy. Simulation experiments were conducted under single-platoon scenarios with different simulation horizons, as well as multi-platoon and platoon-merging scenarios, to analyze the control performance of the distributed method in contrast to the centralized method. Simulation results demonstrate that the mean computation time is reduced by 50% and the fuel consumption is decreased by 4% compared to the centralized method while effectively maintaining the safe inter-vehicle following gaps. The distributed method shows its scalability and adaptability for large-scale problems. Full article
(This article belongs to the Special Issue Modeling and Optimization of Transportation and Logistics System)
Show Figures

Figure 1

20 pages, 1369 KiB  
Article
Analysis of the Impact for Mixed Traffic Flow Based on the Time-Varying Model Predictive Control
by Rongjun Cheng, Haoli Lou and Qi Wei
Systems 2025, 13(6), 481; https://doi.org/10.3390/systems13060481 - 17 Jun 2025
Viewed by 374
Abstract
The connected and automated vehicles (CAV) smoothing mixed traffic flow has gained attention, and a thorough assessment of these control algorithms is necessary. Our previous research proposed the time-varying model predictive control (TV-MPC) strategy, which considers the time-varying driving style of human driven [...] Read more.
The connected and automated vehicles (CAV) smoothing mixed traffic flow has gained attention, and a thorough assessment of these control algorithms is necessary. Our previous research proposed the time-varying model predictive control (TV-MPC) strategy, which considers the time-varying driving style of human driven vehicles (HDV), performing better than current baseline models. Due TV-MPC can be applied to any traffic congestion scenario and the dynamic modeling that considers driving style, can be easily transferred to other control algorithms. Thus, TV-MPC enable to represent typical control algorithms in mixed traffic flow. This study investigates the performance of TV-MPC under diverse disturbance characteristics and mixed platoons. Firstly, quantifying mixed traffic flow with different CAV penetration rates and platooning intensities by a Markov chain model. Secondly, by constructing evaluation indicators for micro-level operation of mixed traffic flow, this paper analyzed the impact of TV-MPC on the operation of mixed traffic flow through simulation. The results demonstrate that (1) CAV achieve optimal control at specific positions within mixed traffic flow; (2) higher CAV penetration enhances TV-MPC performance; (3) dispersed CAV distributions improve control effectiveness; and (4) TV-MPC excels in scenarios with significant disturbances. Full article
Show Figures

Figure 1

13 pages, 904 KiB  
Article
An Integrated Traffic and Powertrain Simulation Framework to Evaluate Fuel Efficiency Impacts of Fully and Partial Vehicle Automation
by Yicheng Fu and Yuche Chen
Sustainability 2025, 17(12), 5527; https://doi.org/10.3390/su17125527 - 16 Jun 2025
Viewed by 274
Abstract
The assessment of energy impacts associated with autonomous vehicles must extend beyond individual vehicle analysis to encompass mixed fleets with varying degrees of automation. This study presents an integrated simulation framework designed to evaluate fuel efficiency improvements resulting from both full and partial [...] Read more.
The assessment of energy impacts associated with autonomous vehicles must extend beyond individual vehicle analysis to encompass mixed fleets with varying degrees of automation. This study presents an integrated simulation framework designed to evaluate fuel efficiency improvements resulting from both full and partial vehicle automation across diverse road types and vehicle categories. By coupling traffic microsimulation with detailed powertrain modeling, the framework captures the intricate interdependencies between automation levels and energy consumption. A comprehensive analysis reveals the complex interactions among powertrain architectures, automation levels, and driving environments in both urban and highway contexts. Results indicate that the increased penetration of Connected and Autonomous Vehicles (CAVs) is generally associated with improved energy efficiency across a range of vehicle technologies. These findings offer critical insights into the broader implications of CAV adoption on energy consumption, emphasizing the nuanced dynamics between vehicle heterogeneity and traffic conditions. Full article
Show Figures

Figure 1

34 pages, 807 KiB  
Review
Non-Conventional Lane Design and Control Coordination Optimization at Urban Road Intersections: Review and Prospects
by Yizhe Wang and Xiaoguang Yang
Appl. Sci. 2025, 15(12), 6720; https://doi.org/10.3390/app15126720 - 16 Jun 2025
Viewed by 324
Abstract
Optimally configuring the number and turning functions of intersection approach and exit lanes to adapt to changing traffic demands, along with optimal traffic signal timing, is key to ensuring smooth, safe, and efficient urban road intersections. Compared to conventional “left-straight-right” lane configurations, non-conventional [...] Read more.
Optimally configuring the number and turning functions of intersection approach and exit lanes to adapt to changing traffic demands, along with optimal traffic signal timing, is key to ensuring smooth, safe, and efficient urban road intersections. Compared to conventional “left-straight-right” lane configurations, non-conventional lanes have been widely adopted by various countries in recent years. This paper systematically reviews research progress on non-conventional lane design and control coordination optimization at urban road intersections, including operational mechanisms, applicable conditions, and optimization methods for various forms. By examining relevant research findings, the paper analyzes the effectiveness of non-conventional lanes in improving capacity, reducing delays, and enhancing safety. The research finds that although the application of non-conventional lanes has achieved positive results in practice, issues still exist, such as “practice outpacing theory,” “insufficient utilization of time-space resources,” and “incomplete safety evaluation.” Future research should focus on constructing a systematic evaluation framework, establishing demand-responsive dynamic lane function conversion mechanisms, developing refined and precise control methods with spatiotemporal coordination, and further exploring innovative applications of non-conventional lanes in connected and automated vehicle environments. The findings will provide theoretical and technical support for the scientific design and efficient operation of non-conventional lanes at urban road intersections. Full article
(This article belongs to the Special Issue Advances in Intelligent Road Design and Application)
Show Figures

Figure 1

21 pages, 3373 KiB  
Article
Research on Intelligent Hierarchical Energy Management for Connected Automated Range-Extended Electric Vehicles Based on Speed Prediction
by Xixu Lai, Hanwu Liu, Yulong Lei, Wencai Sun, Song Wang, Jinmiao Xiang and Ziyu Wang
Energies 2025, 18(12), 3053; https://doi.org/10.3390/en18123053 - 9 Jun 2025
Viewed by 346
Abstract
To address energy management challenges for intelligent connected automated range-extended electric vehicles under vehicle-road cooperative environments, a hierarchical energy management strategy (EMS) based on speed prediction is proposed from the perspective of multi-objective optimization (MOO), with comprehensive system performance being significantly enhanced. Focusing [...] Read more.
To address energy management challenges for intelligent connected automated range-extended electric vehicles under vehicle-road cooperative environments, a hierarchical energy management strategy (EMS) based on speed prediction is proposed from the perspective of multi-objective optimization (MOO), with comprehensive system performance being significantly enhanced. Focusing on connected car-following scenarios, acceleration sequence prediction is performed based on Kalman filtering and preceding vehicle acceleration. A dual-layer optimization strategy is subsequently developed: in the upper layer, optimal speed curves are planned based on road network topology and preceding vehicle trajectories, while in the lower layer, coordinated multi-power source allocation is achieved through EMSMPC-P, a Bayesian-optimized model predictive EMS based on Pontryagin’ s minimum principle (PMP). A MOO model is ultimately formulated to enhance comprehensive system performance. Simulation and bench test results demonstrate that with SoC0 = 0.4, 7.69% and 5.13% improvement in fuel economy is achieved by EMSMPC-P compared to the charge depleting-charge sustaining (CD-CS) method and the charge depleting-blend (CD-Blend) method. Travel time reductions of 62.2% and 58.7% are observed versus CD-CS and CD-Blend. Battery lifespan degradation is mitigated by 16.18% and 5.89% relative to CD-CS and CD-Blend, demonstrating the method’s marked advantages in improving traffic efficiency, safety, battery life maintenance, and fuel economy. This study not only establishes a technical paradigm with theoretical depth and engineering applicability for EMS, but also quantitatively reveals intrinsic mechanisms underlying long-term prediction accuracy enhancement through data analysis, providing critical guidance for future vehicle–road–cloud collaborative system development. Full article
Show Figures

Figure 1

26 pages, 5813 KiB  
Article
Assaying Traffic Settings with Connected and Automated Mobility Channeled into Road Intersection Design
by Maria Luisa Tumminello, Nazanin Zare, Elżbieta Macioszek and Anna Granà
Smart Cities 2025, 8(3), 86; https://doi.org/10.3390/smartcities8030086 - 25 May 2025
Viewed by 952
Abstract
This paper presents a microsimulation-driven framework to analyze the performance of connected and automated vehicles (CAVs) alongside vehicles with human drivers (VHDs), channeled towards assessing project alternatives in road intersection design. The transition to fully automated mobility is driving the development of new [...] Read more.
This paper presents a microsimulation-driven framework to analyze the performance of connected and automated vehicles (CAVs) alongside vehicles with human drivers (VHDs), channeled towards assessing project alternatives in road intersection design. The transition to fully automated mobility is driving the development of new intersection geometries and traffic configurations, influenced by increasing market entry rates (MERs) for CAVs (CAV-MERs), which were analyzed in a microsimulation environment. A suburban signalized intersection from the Polish road network was selected as a representative case study. Two alternative design hypotheses regarding the intersection’s geometric configurations were proposed. The Aimsun micro-simulator was used to hone the driving model parameters by calibrating the simulated data with reference capacity functions (RCFs) based on CAV factors derived from the Highway Capacity Manual 2022. Cross-referencing the conceptualized geometric design solutions, including a two-lane roundabout and an innovative knee-turbo roundabout, allowed the experimental results to demonstrate that CAV operation is influenced by the intersection layout and CAV-MERs. The research provides an overview of potential future traffic settings featuring CAVs and VHDs operating within various intersection designs. Additionally, the findings can support project proposals for the geometric and functional design of intersections by highlighting the potential benefits expected from smart driving. Full article
Show Figures

Figure 1

Back to TopTop