Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (783)

Search Parameters:
Keywords = conformation transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 423 KB  
Article
Geometric Realization of Triality via Octonionic Vector Fields
by Álvaro Antón-Sancho
Symmetry 2025, 17(9), 1414; https://doi.org/10.3390/sym17091414 - 1 Sep 2025
Abstract
In this paper, we investigate the geometric realization of Spin(8) triality through vector fields on the octonionic algebra O. The triality automorphism group of Spin(8), isomorphic to S3, cyclically permutes the three inequivalent [...] Read more.
In this paper, we investigate the geometric realization of Spin(8) triality through vector fields on the octonionic algebra O. The triality automorphism group of Spin(8), isomorphic to S3, cyclically permutes the three inequivalent 8-dimensional representations: the vector representation V and the spinor representations S+ and S. While triality automorphisms are well known through representation theory, their concrete geometric realization as flows on octonionic space has remained unexplored. We construct explicit smooth vector fields Xσ and Xσ2 on OR8 whose flows generate infinitesimal triality transformations. These vector fields have a linear structure arising from skew-symmetric matrices that implement simultaneous rotations in three orthogonal coordinate planes, providing the first elementary geometric description of triality symmetry. The main results establish that these vector fields preserve the octonionic multiplication structure up to automorphisms in G2=Aut(O), demonstrating fundamental compatibility between geometric flows and octonionic algebra. We prove that the standard Euclidean metric on O is triality-invariant and classify all triality-invariant Riemannian metrics as conformal to the Euclidean metric with a conformal factor depending only on the isotonic norm. This classification employs Schur’s lemma applied to the irreducible Spin(8) action, revealing the rigidity imposed by triality symmetry. We provide a complete classification of triality-symmetric minimal surfaces, showing they are locally isometric to totally geodesic planes, surfaces of revolution about triality-fixed axes, or surfaces generated by triality orbits of geodesic curves. This trichotomy reflects the threefold triality symmetry and establishes correspondence between representation-theoretic decomposition and geometric surface types. For complete surfaces with finite total curvature, we establish global classification and develop explicit Weierstrass-type representations adapted to triality symmetry. Full article
(This article belongs to the Special Issue Symmetry and Lie Algebras)
15 pages, 1308 KB  
Article
Exploring the Bottleneck in Cryo-EM Dynamic Disorder Feature and Advanced Hybrid Prediction Model
by Sen Zheng
Biophysica 2025, 5(3), 39; https://doi.org/10.3390/biophysica5030039 - 29 Aug 2025
Viewed by 165
Abstract
Cryo-electron microscopy single-particle analysis (cryo-EM SPA) has advanced three-dimensional protein structure determination, yet resolving intrinsically disordered proteins and regions (IDPs/IDRs) remains challenging due to conformational heterogeneity. This research evaluates cryo-EM’s capacity to map dynamic regions, assesses the adaptability of disorder prediction tools, and [...] Read more.
Cryo-electron microscopy single-particle analysis (cryo-EM SPA) has advanced three-dimensional protein structure determination, yet resolving intrinsically disordered proteins and regions (IDPs/IDRs) remains challenging due to conformational heterogeneity. This research evaluates cryo-EM’s capacity to map dynamic regions, assesses the adaptability of disorder prediction tools, and explores optimization strategies for dynamic structure prediction. Cryo-EM SPA datasets from 2000 to 2024 were categorized into different periods, forming a database integrating sequence data and disorder indices. Established prediction tools—AlphaFold2 (pLDDT), flDPnn, and IUPred—were evaluated for transferability, while a multi-level CLTC hybrid model (combining CNN, LSTM, Transformer, and CRF architectures) was developed to link local conformational fluctuations with global sequence contexts. Analyses revealed consistent advancements in average resolution and model counts over the past decade, although mapping disordered regions remained technically demanding. Both the adapted AlphaFold pLDDT and the CLTC model demonstrated efficacy in predicting structurally variable and poorly resolved regions. A subset of the cryo-EM missing residues exhibited intermediate conformational features, suggesting classification ambiguities potentially influenced by experimental conditions. These findings systematically outline the evolving capabilities of cryo-EM in resolving dynamic regions, benchmark the adaptability of computational tools, and introduce a hybrid model to enhance prediction accuracy. This study provides a framework for addressing conformational heterogeneity, contributing to methodological advancements in structural biology. Full article
Show Figures

Figure 1

28 pages, 884 KB  
Article
Conformal Transformations and Self-Sustaining Processes in Electric Circuits
by Mario J. Pinheiro
Appl. Sci. 2025, 15(17), 9333; https://doi.org/10.3390/app15179333 - 25 Aug 2025
Viewed by 321
Abstract
This work establishes the first derivation of geometry-dependent Kirchhoff’s laws via conformal symmetry, enabling new types of self-sustaining circuits unattainable in classical lumped-element theory. Building on Bessel-Hagen’s extension of Noether’s theorem to Maxwell’s equations, we develop a conformal circuit formalism that fundamentally extends [...] Read more.
This work establishes the first derivation of geometry-dependent Kirchhoff’s laws via conformal symmetry, enabling new types of self-sustaining circuits unattainable in classical lumped-element theory. Building on Bessel-Hagen’s extension of Noether’s theorem to Maxwell’s equations, we develop a conformal circuit formalism that fundamentally extends traditional circuit theory through two key innovations: (1) Geometry-dependent weighting factors (wiai1) in Kirchhoff’s laws derived from scaling symmetry; (2) A dilaton-like field (δ) mediating energy exchange between circuits and conformal backgrounds. Unlike prior symmetry applications in electromagnetism, our approach directly maps the 15-parameter conformal group to component-level circuit transformations, predicting experimentally verifiable phenomena: (i) 10.2% deviations from classical current division in RF splitters; (ii) 4.2% resonant frequency shifts with 2.67× Q-factor enhancement; (iii) Power-law scaling (Jza2) in cylindrical conductors. This theoretical framework proposes how conformal symmetry could enable novel circuit behaviors, including potential self-sustaining oscillations, subject to experimental validation. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

15 pages, 298 KB  
Article
On (m¯, m)-Conformal Mappings
by Branislav M. Randjelović, Dušan J. Simjanović, Nenad O. Vesić, Ivana Djurišić and Branislav D. Vlahović
Axioms 2025, 14(9), 652; https://doi.org/10.3390/axioms14090652 - 22 Aug 2025
Viewed by 205
Abstract
Conformal mappings between Riemannian spaces R¯N and RN are defined by the explicit transformation of the metric tensor of the space R¯N to the metric tensor of the space RN. Geodesic mapping between these two Riemannian [...] Read more.
Conformal mappings between Riemannian spaces R¯N and RN are defined by the explicit transformation of the metric tensor of the space R¯N to the metric tensor of the space RN. Geodesic mapping between these two Riemannian spaces is a transformation that transforms any geodesic line of the space R¯N to a geodesic line of the space RN. In this research, we defined an m-conformal line of a Riemannian space, which is geodesic if m=0. Based on this definition, we involved the concept of (m¯,m)-conformal mapping as a transformation R¯NRN in which any m¯-conformal line of the space R¯N transforms to an m-conformal line of the space RN. The result of this research is the establishment of three invariants for these mappings. At the end of this research, we gave an example of a scalar geometrical object which may be used in physics. Full article
(This article belongs to the Special Issue Advancements in Applied Mathematics and Computational Physics)
7 pages, 403 KB  
Communication
Synthesis of a New Bioconjugate Steroid Pyridinium Salt Derived from Allopregnanolone Acetate
by Hisami Rodríguez-Matsui, J. Luis Sánchez-Juárez, Vladimir Carranza-Téllez, Joel L. Terán, Jesús Sandoval-Ramirez and Alan Carrasco-Carballo
Molbank 2025, 2025(3), M2050; https://doi.org/10.3390/M2050 - 20 Aug 2025
Viewed by 261
Abstract
Because allopregnanolone and derivatives represent biologically active molecules, in this letter, we present the synthesis of a new bioconjugate steroid pyridinium salt derived from allopregnanolone in three steps. The key steps involve the formation of the hydrazone intermediate, followed by condensation with bromoacetyl [...] Read more.
Because allopregnanolone and derivatives represent biologically active molecules, in this letter, we present the synthesis of a new bioconjugate steroid pyridinium salt derived from allopregnanolone in three steps. The key steps involve the formation of the hydrazone intermediate, followed by condensation with bromoacetyl bromide and subsequent coupling with pyridine to generate the pyridinium bromide salt. The new bioconjugate steroid pyridinium salt, 4, was fully characterized by proton and carbon nuclear magnetic resonance (1H and 13C NMR) spectroscopy, mass spectrometry (MS), and Fourier transform infrared spectroscopy (FTIR). 1H-NMR analysis revealed the presence of a dynamic rotameric mixture in a 7:3 ratio of Z/E amide conformers, which were identified by a 2D NOESY experiment. Full article
Show Figures

Figure 1

18 pages, 1615 KB  
Article
Spectroscopic Profile of Metabolome Dynamics During Rat Cortical Neuronal Differentiation
by Idália Almeida, Filipa Martins, Brian J. Goodfellow, Alexandra Nunes and Sandra Rebelo
Int. J. Mol. Sci. 2025, 26(16), 8027; https://doi.org/10.3390/ijms26168027 - 20 Aug 2025
Viewed by 288
Abstract
Neuronal differentiation is a highly dynamic process marked by coordinated biochemical, structural, and metabolic changes. Rat primary cortical neurons are the preferred cell model to study this process as they can maintain their functional attributes, including functional synapses, and simulate the behavior of [...] Read more.
Neuronal differentiation is a highly dynamic process marked by coordinated biochemical, structural, and metabolic changes. Rat primary cortical neurons are the preferred cell model to study this process as they can maintain their functional attributes, including functional synapses, and simulate the behavior of neuronal cells in vivo. In this study, we employed Fourier transform infrared (FTIR) spectroscopy to monitor the molecular transformations that occur during the differentiation of rat cortical neurons. Partial least squares regression (PLS-R) analysis from the 1800–1500 cm−1 region further allows the identification of the spectroscopic profile of early and late differentiation stages, highlighting the technique’s ability to detect subtle molecular changes. Further peak intensity analysis revealed significant changes in the cells’ metabolome during differentiation; it was possible to observe remodeling of protein secondary structures and an increase in protein phosphorylation levels, which can imply activation of signaling pathways essential for neuronal differentiation and maturation. Concomitantly, lipid-associated spectral regions demonstrated increased levels of total lipids, lipid esters, and longer acyl chains and decreased unsaturation levels, alterations that can be linked to membrane expansion throughout neuronal differentiation. These findings underscore FTIR spectroscopy as a valuable tool for studying neuronal differentiation, offering insights into the conformational and metabolic shifts underlying the formation of mature neuronal phenotypes. Full article
Show Figures

Figure 1

25 pages, 9720 KB  
Article
ICESat-2 Water Photon Denoising and Water Level Extraction Method Combining Elevation Difference Exponential Attenuation Model with Hough Transform
by Xilai Ju, Yongjian Li, Song Ji, Danchao Gong, Hao Liu, Zhen Yan, Xining Liu and Hao Niu
Remote Sens. 2025, 17(16), 2885; https://doi.org/10.3390/rs17162885 - 19 Aug 2025
Viewed by 424
Abstract
For addressing the technical challenges of photon denoising and water level extraction in ICESat-2 satellite-based water monitoring applications, this paper proposes an innovative solution integrating Gaussian function fitting with Hough transform. The method first employs histogram Gaussian fitting to achieve coarse denoising of [...] Read more.
For addressing the technical challenges of photon denoising and water level extraction in ICESat-2 satellite-based water monitoring applications, this paper proposes an innovative solution integrating Gaussian function fitting with Hough transform. The method first employs histogram Gaussian fitting to achieve coarse denoising of water body regions. Subsequently, a probability attenuation model based on elevation differences between adjacent photons is constructed to accomplish refined denoising through iterative optimization of adaptive thresholds. Building upon this foundation, the Hough transform technique from image processing is introduced into photon cloud processing, enabling robust water level extraction from ICESat-2 data. Through rasterization, discrete photon distributions are converted into image space, where straight lines conforming to the photon distribution are then mapped as intersection points of sinusoidal curves in Hough space. Leveraging the noise-resistant characteristics of the Hough space accumulator, the interference from residual noise photons is effectively eliminated, thereby achieving high-precision water level line extraction. Experiments were conducted across five typical water bodies (Qinghai Lake, Long Land, Ganquan Island, Qilian Yu Islands, and Miyun Reservoir). The results demonstrate that the proposed denoising method outperforms DBSCAN and OPTICS algorithms in terms of accuracy, precision, recall, F1-score, and computational efficiency. In water level estimation, the absolute error of the Hough transform-based line detection method remains below 2 cm, significantly surpassing the performance of mean value, median value, and RANSAC algorithms. This study provides a novel technical framework for effective global water level monitoring. Full article
Show Figures

Figure 1

15 pages, 2515 KB  
Article
Carbon Dot Integrated Cellulose-Based Green-Fluorescent Aerogel for Detection and Removal of Copper Ions in Water
by Guanyan Fu, Chenzhan Peng, Jiangrong Yu, Jiafeng Cao, Shilin Peng, Tian Zhao and Dong Xu
Gels 2025, 11(8), 655; https://doi.org/10.3390/gels11080655 - 18 Aug 2025
Viewed by 259
Abstract
Industrial pollution caused by Cu(II) ions remains one of the most critical environmental challenges worldwide. A novel green-fluorescent aerogel has been successfully developed for simultaneous sensing and adsorption of Cu(II) through the cross-linking of carboxymethyl nanocellulose and carbon dots (C dots) using epichlorohydrin [...] Read more.
Industrial pollution caused by Cu(II) ions remains one of the most critical environmental challenges worldwide. A novel green-fluorescent aerogel has been successfully developed for simultaneous sensing and adsorption of Cu(II) through the cross-linking of carboxymethyl nanocellulose and carbon dots (C dots) using epichlorohydrin as a linker. The C dots were synthesized by heating glucose and aspartate mixed solutions at 150 °C. Under UV illumination, the aerogel exhibited intense homogeneous green fluorescence originating from the uniformly dispersed C dots, whose emission can be efficiently quenched by Cu(II) ions. By leveraging smartphone-based imaging, the concentration of Cu(II) was quantified within the range of 5–200 µg/L, with a detection limit of 3.7 µg/L. The adsorption isotherm of Cu(II) onto the aerogel strictly conformed to the Freundlich isotherm model (fitting coefficient R2 = 0.9992), indicating a hybrid adsorption mechanism involving both physical adsorption and chemical complexation. The maximum adsorption capacity reached 149.62 mg/g, a value surpassing many reported adsorbents. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses confirmed that the interactions between the aerogel and Cu(II) involved chelation and redox reactions, mediated by functional groups such as hydroxyl, amino, and carboxyl moieties. The straightforward fabrication process of the aerogel, coupled with its low cost, abundant raw materials, facile synthesis, and superior Cu(II) removal efficiency, positions this bifunctional fluorescent material as a promising candidate for large-scale environmental remediation applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

36 pages, 9430 KB  
Article
Numerical Method for Internal Structure and Surface Evaluation in Coatings
by Tomas Kačinskas and Saulius Baskutis
Inventions 2025, 10(4), 71; https://doi.org/10.3390/inventions10040071 - 13 Aug 2025
Viewed by 290
Abstract
This study introduces a MATrix LABoratory (MATLAB, version R2024b, update 1 (24.2.0.2740171))-based automated system for the detection and measurement of indication areas in coated surfaces, enhancing the accuracy and efficiency of quality control processes in metal, polymeric and thermoplastic coatings. The developed code [...] Read more.
This study introduces a MATrix LABoratory (MATLAB, version R2024b, update 1 (24.2.0.2740171))-based automated system for the detection and measurement of indication areas in coated surfaces, enhancing the accuracy and efficiency of quality control processes in metal, polymeric and thermoplastic coatings. The developed code identifies various indication characteristics in the image and provides numerical results, assesses the size and quantity of indications and evaluates conformity to ISO standards. A comprehensive testing method, involving non-destructive penetrant testing (PT) and radiographic testing (RT), allowed for an in-depth analysis of surface and internal porosity across different coating methods, including aluminum-, copper-, polytetrafluoroethylene (PTFE)- and polyether ether ketone (PEEK)-based materials. Initial findings had a major impact on indicating a non-homogeneous surface of obtained coatings, manufactured using different technologies and materials. Whereas researchers using non-destructive testing (NDT) methods typically rely on visual inspection and manual counting, the system under study automates this process. Each sample image is loaded into MATLAB and analyzed using the Image Processing Tool, Computer Vision Toolbox, Statistics and Machine Learning Toolbox. The custom code performs essential tasks such as image conversion, filtering, boundary detection, layering operations and calculations. These processes are integral to rendering images with developed indications according to NDT method requirements, providing a detailed visual and numerical representation of the analysis. RT also validated the observations made through surface indication detection, revealing either the absence of hidden defects or, conversely, internal porosity correlating with surface conditions. Matrix and graphical representations were used to facilitate the comparison of test results, highlighting more advanced methods and materials as the superior choice for achieving optimal mechanical and structural integrity. This research contributes to addressing challenges in surface quality assurance, advancing digital transformation in inspection processes and exploring more advanced alternatives to traditional coating technologies and materials. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

33 pages, 2003 KB  
Review
Polyacrylamide-Based Solutions: A Comprehensive Review on Nanomaterial Integration, Supramolecular Design, and Sustainable Approaches for Integrated Reservoir Management
by Moamen Hassan Mohamed and Mysara Eissa Mohyaldinn
Polymers 2025, 17(16), 2202; https://doi.org/10.3390/polym17162202 - 12 Aug 2025
Viewed by 898
Abstract
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically [...] Read more.
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically analyzes advancements in PAM-based materials for enhanced oil recovery (EOR), conformance control, and sand management. We show that nanomaterial integration (e.g., magnetic NPs, nanoclays) significantly augments PAM’s rheological control, thermal and salinity stability, interfacial properties, and wettability alteration. Furthermore, the emergence of supramolecular chemistry has endowed PAM systems with unprecedented resilience, enabling self-healing and adaptive performance under extreme subsurface conditions. The review highlights a crucial paradigm shift towards integrated reservoir management, synergizing these advanced chemical designs with mechanical strategies and leveraging sophisticated monitoring and predictive analytics. Critically, innovations in sustainable and bio-inspired PAM materials offer environmentally responsible solutions with enhanced biodegradability. This synthesis provides a holistic understanding of the state of the art. Despite persistent challenges in scalability and predictability, continually re-engineered PAM systems are positioned as an indispensable and increasingly sustainable cornerstone for future hydrocarbon recovery in the complex energy landscape. Full article
Show Figures

Figure 1

18 pages, 3514 KB  
Article
Role of Cellulose Acetate Butyrate on Phase Inversion: Molecular Dynamics and DFT Studies of Moxifloxacin and Benzydamine HCl Within an In Situ Forming Gel
by Kritamorn Jitrangsri, Napaphol Puyathorn, Warakon Thammasut, Poomipat Tamdee, Nuttapon Yodsin, Jitnapa Sirirak, Sai Myo Thu Rein and Thawatchai Phaechamud
Polysaccharides 2025, 6(3), 73; https://doi.org/10.3390/polysaccharides6030073 - 10 Aug 2025
Viewed by 400
Abstract
Solvent-exchange-induced in situ forming gel (ISG) refers to a drug delivery system that transforms from a solution state into a gel or solid matrix upon administration into the body and exposure to physiological aqueous fluid. This study investigates the molecular behavior and phase [...] Read more.
Solvent-exchange-induced in situ forming gel (ISG) refers to a drug delivery system that transforms from a solution state into a gel or solid matrix upon administration into the body and exposure to physiological aqueous fluid. This study investigates the molecular behavior and phase inversion process of cellulose acetate butyrate (CAB)-based in situ forming gel (ISG) formulations containing moxifloxacin (Mx) or benzydamine HCl (Bz) as model drugs dissolved in N-methyl pyrrolidone (NMP) using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The simulations reveal a solvent exchange mechanism, where the diffusion of water molecules replaces NMP, driving the formation of the CAB matrix. Bz exhibited faster diffusion and a more uniform distribution compared to Mx, which aggregated into clusters due to its larger molecular size. The analysis of the root mean square deviation (RMSD) and radius of gyration confirmed the faster diffusion of Bz, which adopted a more extended conformation, while Mx remained compact. The phase transformation was driven by the disruption of CAB-NMP hydrogen bonds, while CAB–water interactions remained limited, suggesting that CAB does not dissolve in water, facilitating matrix formation. The molecular configuration revealed that drug–CAB interactions were primarily governed by hydrophobic forces and van der Waals interactions rather than hydrogen bonding, controlling the release mechanism of both compounds. DFT calculations and electrostatic potential (ESP) maps illustrated that the acetyl group of CAB played a key role in drug–polymer interactions and that differences in CAB substitution degrees influenced the stability of drug-CAB complexes. Formation energy calculations indicated that Mx-CAB complexes were more stable than Bz-CAB complexes, resulting in a more prolonged release of Mx compared to Bz. Overall, this study provides valuable insights into the molecular behavior of CAB-based Mx-, Bz-ISG formulations. Full article
Show Figures

Figure 1

14 pages, 4543 KB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 - 7 Aug 2025
Viewed by 377
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 637 KB  
Article
Relationship Between Hyperkeratosis, Teat Conformation Traits, Microbiological Isolation, and Somatic Cell Count in Milk from Dairy Cows
by Leonardo Leite Cardozo, Deise Aline Knob, Pauline Thais dos Santos, Angela Pelizza, Ana Paula Mori, Mauricio Camera, Sandra Maria Ferraz, Marcella Zampoli de Assis and André Thaler Neto
Dairy 2025, 6(4), 45; https://doi.org/10.3390/dairy6040045 - 7 Aug 2025
Viewed by 423
Abstract
Maintaining teat-end integrity in dairy cows is essential to preventing intramammary infections (IMIs) in dairy cows, yet the relationship between hyperkeratosis, teat conformation, and mammary health remais underexplored. This study evaluated the relationship between teat-end hyperkeratosis, teat conformation traits, microbial colonization, and somatic [...] Read more.
Maintaining teat-end integrity in dairy cows is essential to preventing intramammary infections (IMIs) in dairy cows, yet the relationship between hyperkeratosis, teat conformation, and mammary health remais underexplored. This study evaluated the relationship between teat-end hyperkeratosis, teat conformation traits, microbial colonization, and somatic cell count (SCC) in milk from 170 cows on ten commercial dairy farms in Santa Catarina, Brazil. During two farm visits, milk and teat-end swab samples from paired teats (one with hyperkeratosis, one without) were analyzed for microbial growth and SCC. SCC data were transformed into somatic cell scores (SCS). Results showed no significant association between hyperkeratosis and mastitis microorganisms, although environmental microorganisms tended to be more frequent in hyperkeratotic teats (p = 0.0778). Major microorganisms in milk were significantly associated with higher SCC (p = 0.0132). No relationship was observed between teat conformation traits and hyperkeratosis. These findings suggest that hyperkeratosis may subtly influence the teat canal to environmental bacterial colonization, underscoring the need for improved milking management practices to minimize hyperkeratosis and associated mastitis risks. Full article
(This article belongs to the Special Issue Farm Management Practices to Improve Milk Quality and Yield)
Show Figures

Figure 1

26 pages, 1062 KB  
Article
Sustainability Audit of University Websites in Poland: Analysing Carbon Footprint and Sustainable Design Conformity
by Karol Król
Appl. Sci. 2025, 15(15), 8666; https://doi.org/10.3390/app15158666 - 5 Aug 2025
Viewed by 355
Abstract
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design [...] Read more.
With the advance of digital transformation, the assessment of the environmental impact of digital tools and technologies grows more relevant. Considering the inflated expectations of environmental responsibility in higher education, this study analyses how websites of Polish universities conform to sustainable web design criteria. The sustainability audit employed a methodology encompassing carbon emissions measurement, technical website analysis, and SEO evaluation. The author analysed 63 websites of public universities in Poland using seven independent audit tools, including an original AI Custom GPT agent preconfigured in the ChatGPT ecosystem. The results revealed a substantial differentiation in CO2 emissions and website optimisation, with an average EcoImpact Score of 66.41/100. Nearly every fourth website exhibited a significant carbon footprint and excessive component sizes, which indicates poor asset optimisation and energy-intensive design techniques. The measurements exposed considerable variability in emission intensities and resource intensity among the university websites, suggesting the need for standardised digital sustainability practices. Regulations on the carbon footprint of public institutions’ websites and mobile applications could become vital strategic components for digital climate neutrality. Promoting green hosting, “Green SEO” practices, and sustainability audits could help mitigate the environmental impact of digital technologies and advance sustainable design standards for the public sector. The proposed auditing methodology can effectively support the institutional transition towards sustainable management of digital infrastructure by integrating technical, sustainability, and organisational aspects. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

25 pages, 2451 KB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(acrylic acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Viewed by 611
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

Back to TopTop