Role of Cellulose Acetate Butyrate on Phase Inversion: Molecular Dynamics and DFT Studies of Moxifloxacin and Benzydamine HCl Within an In Situ Forming Gel
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Mx- and Bz-Loaded CAB-Based ISG Formulations
2.3. Molecular Dynamics Simulation for Phase Inversion Study
2.4. Formation Energy Evaluation
3. Results and Discussion
3.1. Molecular Dynamic Simulation
3.2. Root Mean Square Deviation (RMSD) Analysis
3.3. Diffusion Constant Analysis
3.4. Radius of Gyration Analysis
3.5. Hydrogen Bonding Analysis
3.6. Final Configuration of CAB-Mx and CAB-Bz Interactions
3.7. DFT Calculations
3.8. Formation Energy Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Mx | Moxifloxacin |
Bz | Benzydamine HCl |
CAB | Cellulose acetate butyrate |
MD | Molecular dynamics |
DFT | Density functional theory |
ISG | In situ forming gel |
NMP | N-methyl pyrrolidone |
WAT | Water |
References
- Mohamed, E.M.; Khuroo, T.; Afrooz, H.; Dharani, S.; Sediri, K.; Cook, P.; Arunagiri, R.; Khan, M.A.; Rahman, Z. Development of a Multivariate Predictive Dissolution Model for Tablets Coated with Cellulose Ester Blends. Pharmaceuticals 2020, 13, 311. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Jin, S.; Wang, Y.; Lan, G.; Chen, Y. Study on Cellulose Acetate Butyrate/Plasticizer Systems by Molecular Dynamics Simulation and Experimental Characterization. Polymers 2020, 12, 1272. [Google Scholar] [CrossRef]
- Khaing, E.M.; Lertsuphotvanit, N.; Thammasut, W.; Rojviriya, C.; Chansatidkosol, S.; Phattarateera, S.; Pichayakorn, W.; Phaechamud, T. Cellulose Acetate Butyrate-Based in Situ Gel Comprising Doxycycline Hyclate and Metronidazole. Polymers 2024, 16, 3477. [Google Scholar] [CrossRef]
- Ali, R.; Walther, M.; Bodmeier, R. Cellulose Acetate Butyrate: Ammonio Methacrylate Copolymer Blends as a Novel Coating in Osmotic Tablets. AAPS PharmSciTech 2018, 19, 148–154. [Google Scholar] [CrossRef]
- Asgarkhani, M.A.H.; Mousavi, S.M.; Saljoughi, E. Cellulose Acetate Butyrate Membrane Containing TiO2 Nanoparticle: Preparation, Characterization and Permeation Study. Korean J. Chem. Eng. 2013, 30, 1819–1824. [Google Scholar] [CrossRef]
- Podshivalov, A.; Besson, F.; Budtova, T.; Bronnikov, S. Morphology and Improved Impact Strength of Cellulose Acetate Butyrate Blended with Polyethylene Copolymer. Express Polym. Lett. 2018, 12, 856–866. [Google Scholar] [CrossRef]
- Shanbhag, A.; Barclay, B.; Koziara, J.; Shivanand, P. Application of Cellulose Acetate Butyrate-Based Membrane for Osmotic Drug Delivery. Cellulose 2007, 14, 65–71. [Google Scholar] [CrossRef]
- Karimi, Z.; Taymouri, S.; Minaiyan, M.; Mirian, M. Evaluation of Thermosensitive Chitosan Hydrogel Containing Gefitinib Loaded Cellulose Acetate Butyrate Nanoparticles in a Subcutaneous Breast Cancer Model. Int. J. Pharm. 2022, 624, 122036. [Google Scholar] [CrossRef]
- Chantadee, T.; Santimaleeworagun, W.; Phorom, Y.; Chuenbarn, T.; Phaechamud, T. Vancomycin HCl-Loaded Lauric Acid in Situ-Forming Gel with Phase Inversion for Periodontitis Treatment. J. Drug Deliv. Sci. Technol. 2020, 57, 101615. [Google Scholar] [CrossRef]
- ElShagea, H.N.; Makar, R.R.; Salama, A.H.; Elkasabgy, N.A.; Basalious, E.B. Investigating the Targeting Power to Brain Tissues of Intranasal Rasagiline Mesylate-Loaded Transferosomal In Situ Gel for Efficient Treatment of Parkinson’s Disease. Pharmaceutics 2023, 15, 533. [Google Scholar] [CrossRef]
- Khan, S.; Warade, S.; Singhavi, D.J. Improvement in Ocular Bioavailability and Prolonged Delivery of Tobramycin Sulfate Following Topical Ophthalmic Administration of Drug-Loaded Mucoadhesive Microparticles Incorporated in Thermosensitive In Situ Gel. J. Ocul. Pharmacol. Ther. 2017, 34, 287–297. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Avachat, A.M. Pharmacodynamic and Pharmacokinetic Investigation of Cyclodextrin-Mediated Asenapine Maleate In Situ Nasal Gel for Improved Bioavailability. Drug Dev. Ind. Pharm. 2017, 43, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Jain, N.; Gulati, N.; Nagaich, U. Nanoparticles Laden In Situ Gelling System for Ocular Drug Targeting. J. Adv. Pharm. Technol. Res. 2013, 4, 9–17. [Google Scholar] [CrossRef]
- Couffin-Hoarau, A.C.; Motulsky, A.; Delmas, P.; Leroux, J.C. In Situ-Forming Pharmaceutical Organogels Based on the Self-Assembly of L-Alanine Derivatives. Pharm. Res. 2004, 21, 454–457. [Google Scholar] [CrossRef]
- Rein, S.M.T.; Lwin, W.W.; Tuntarawongsa, S.; Phaechamud, T. Meloxicam-Loaded Solvent Exchange-Induced In Situ Forming Beta-Cyclodextrin Gel and Microparticle for Periodontal Pocket Delivery. Mater. Sci. Eng. C 2020, 117, 111275. [Google Scholar] [CrossRef]
- Kurniawansyah, I.S.; Rusdiana, T.; Sopyan, I.; Subarnas, A. A Review on Poloxamer and Hydroxy Propyl Methyl Cellulose Combination as Thermoresponsive Polymers in Novel Ophthalmic In Situ Gel Formulation and Their Characterization. Int. J. Appl. Pharm. 2021, 13, 27–31. [Google Scholar] [CrossRef]
- Thapa, R.; Pandey, P.; Parat, M.O.; Gurung, S.; Parekh, H.S. Phase Transforming In Situ Gels for Sustained and Controlled Transmucosal Drug Delivery via the Intravaginal Route. Int. J. Pharm. 2024, 655, 124054. [Google Scholar] [CrossRef]
- Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and Characterization of In-Situ Gel for Ophthalmic Formulation Containing Ciprofloxacin Hydrochloride. Results Pharma Sci. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Yu, Z.-G.; Geng, Z.-X.; Liu, T.-F.; Jiang, F. In Vitro and In Vivo Evaluation of an In Situ Forming Gel System for Sustained Delivery of Florfenicol. J. Vet. Pharmacol. Ther. 2015, 38, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, S.H.; Billington, O. Activity of Moxifloxacin against Mycobacteria. J. Antimicrob. Chemother. 1999, 44, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Kesarla, R.; Tank, T.; Vora, P.A.; Shah, T.; Parmar, S.; Omri, A. Preparation and Evaluation of Nanoparticles Loaded Ophthalmic In Situ Gel. Drug Deliv. 2016, 23, 2363–2370. [Google Scholar] [CrossRef]
- Alaiye, A.; Kaya, E.; Pınarbaşlı, M.Ö.; Harmancı, N.; Yıldırım, C.; Dönmez, D.B.; Cingi, C. An Experimental Comparison of the Analgesic and Anti-Inflammatory Effects of Safflower Oil, Benzydamine HCl, and Naproxen Sodium. J. Med. Food 2020, 23, 862–869. [Google Scholar] [CrossRef]
- Blachechen, L.S.; de Mesquita, J.P.; de Paula, E.L.; Pereira, F.V.; Petri, D.F.S. Interplay of Colloidal Stability of Cellulose Nanocrystals and Their Dispersibility in Cellulose Acetate Butyrate Matrix. Cellulose 2013, 20, 1329–1342. [Google Scholar] [CrossRef]
- Subashini, M.; Devarajan, P.V.; Sonavane, G.S.; Doble, M. Molecular Dynamics Simulation of Drug Uptake by Polymer. J. Mol. Model. 2011, 17, 1141–1147. [Google Scholar] [CrossRef]
- Kairys, V.; Baranauskiene, L.; Kazlauskiene, M.; Matulis, D.; Kazlauskas, E. Binding Affinity in Drug Design: Experimental and Computational Techniques. Expert Opin. Drug Discov. 2019, 14, 755–768. [Google Scholar] [CrossRef] [PubMed]
- López-Ramírez, E.; Chapa-González, C.; Martínez-Peréz, C.A.; Escobedo-González, R.; Nicolás Vázquez, M.I.; Medellín-Rodríguez, F.; García-Casillas, P.E. Citrulline Malate Transdermal Delivery through Integrating into Polyvinyl Alcohol (PVA) Nanofibers. J. Drug Deliv. Sci. Technol. 2021, 64, 102630. [Google Scholar] [CrossRef]
- Thammasut, W.; Senarat, S.; Tuntarawongsa, S.; Narakornwit, W.; Rojviriya, C.; Pichayakorn, W.; Phaechamud, T. Development of Benzydamine HCl Loaded-Cellulose Acetate Butyrate In Situ Forming Gels for Periodontal Treatment. J. Drug Deliv. Sci. Technol. 2024, 101, 106147. [Google Scholar] [CrossRef]
- Thammasut, W.; Rojviriya, C.; Chaiya, P.; Phaechamud, T.; Limsitthichaikoon, S. Moxifloxacin HCl -Loaded Cellulose Acetate Butylate In Situ Forming Gel for Periodontitis Treatment. AAPS PharmSciTech 2024, 25, 242. [Google Scholar] [CrossRef]
- O’Malley, A.J.; Catlow, C.R.A. Molecular Dynamics Simulations of Longer N-Alkanes in Silicalite: State-of-the-Art Models Achieving Close Agreement with Experiment. Phys. Chem. Chem. Phys. 2015, 17, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, P.; Donnini, S.; Groenhof, G.; Grubmüller, H. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant PH Simulations and PKa Calculations. J. Chem. Theory Comput. 2017, 13, 147–160. [Google Scholar] [CrossRef]
- Bowler, D.R.; Miyazaki, T. Methods in Electronic Structure Calculations. Rep. Prog. Phys. 2012, 75, 36503. [Google Scholar] [CrossRef]
- Shaikhullina, R.M.; Hrapkovsky, G.M.; Shaikhullina, M.M. N-Propyl Nitrate Vibrational Spectrum Analysis Using DFT B3LYP Quantum-Chemical Method. J. Phys. Conf. Ser. 2018, 1015, 32125. [Google Scholar] [CrossRef]
- Andermatt, S.; Cha, J.; Schiffmann, F.; VandeVondele, J. Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution. J. Chem. Theory Comput. 2016, 12, 3214–3227. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, A.; Garg, R. Design, Development and In Vitro/Ex Vivo Evaluation of Mucoadhesive Buccal Film of Benzydamine Hydrochloride for the Effective Treatment of Aphthous Stomatitis. Recent Pat. Drug Deliv. Formul. 2018, 12, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sindhu, S.K.; Kumar, P.; Sharma, A.; Sagadevan, S. Determination of Moxifloxacin Hydrochloride in AVELOX Pharmacological Formulations Using Modified Potentiometer Sensors. Polimery 2021, 66, 589–601. [Google Scholar] [CrossRef]
- Puyathorn, N.; Tamdee, P.; Sirirak, J.; Okonogi, S.; Phaechamud, T.; Chantadee, T. Computational Insight of Phase Transformation and Drug Release Behaviour of Doxycycline-Loaded Ibuprofen-Based In-Situ Forming Gel. Pharmaceutics 2023, 15, 2315. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Igarashi, R.; Ushiku, Y.; Mitsutake, A. Analysis of Protein Folding Simulation with Moving Root Mean Square Deviation. J. Chem. Inf. Model. 2023, 63, 1529–1541. [Google Scholar] [CrossRef]
- Nagai, T.; Tsurumaki, S.; Urano, R.; Fujimoto, K.; Shinoda, W.; Okazaki, S. Position-Dependent Diffusion Constant of Molecules in Heterogeneous Systems as Evaluated by the Local Mean Squared Displacement. J. Chem. Theory Comput. 2020, 16, 7239–7254. [Google Scholar] [CrossRef]
- Chan, T.C.; Lee, I.; Chan, K.S. Effect of Solvent on Diffusion: Probing with Nonpolar Solutes. J. Phys. Chem. B 2014, 118, 10945–10955. [Google Scholar] [CrossRef]
- Wei, X.; Mares, J.W.; Gao, Y.; Li, D.; Weiss, S.M. Biomolecule Kinetics Measurements in Flow Cell Integrated Porous Silicon Waveguides. Biomed. Opt. Express 2012, 3, 1993–2003. [Google Scholar] [CrossRef]
- Ando, T.; Skolnick, J. Crowding and Hydrodynamic Interactions Likely Dominate In Vivo Macromolecular Motion. Proc. Natl. Acad. Sci. USA 2010, 107, 18457–18462. [Google Scholar] [CrossRef]
- Echeverria, C.; Kapral, R. Enzyme Kinetics and Transport in a System Crowded by Mobile Macromolecules. Phys. Chem. Chem. Phys. 2015, 17, 29243–29250. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, M. Counterion Adsorption Theory of Dilute Polyelectrolyte Solutions: Apparent Molecular Weight, Second Virial Coefficient, and Intermolecular Structure Factor. J. Chem. Phys. 2012, 137, 34902. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Negash, B.M.; Siddiqui, N.A.; Ridha, S.; Khosravi, V.; Haq, I.U. CO2/Water Interfacial Tension under Induced Acidic Conditions Employing Dissipative Particle Dynamics Simulations. Energy Fuels 2024, 38, 15515–15532. [Google Scholar] [CrossRef]
- Hossain, M.D.; Reid, J.C.; Lu, D.; Jia, Z.; Searles, D.J.; Monteiro, M.J. Influence of Constraints within a Cyclic Polymer on Solution Properties. Biomacromolecules 2018, 19, 616–625. [Google Scholar] [CrossRef]
- Leelaprachakul, T.; Kubo, A.; Umeno, Y. Coarse-Grained Molecular Dynamics Simulation of Polycarbonate Deformation: Dependence of Mechanical Performance by the Effect of Spatial Distribution and Topological Constraints. Polymers 2023, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Medellín-Luna, M.F.; Hernández-López, H.; Castañeda-Delgado, J.E.; Martinez-Gutierrez, F.; Lara-Ramírez, E.; Espinoza-Rodríguez, J.J.; García-Cruz, S.; Portales-Pérez, D.P.; Cervantes-Villagrana, A.R. Fluoroquinolone Analogs, SAR Analysis, and the Antimicrobial Evaluation of 7-Benzimidazol-1-Yl-Fluoroquinolone in In Vitro, In Silico, and In Vivo Models. Molecules 2023, 28, 6018. [Google Scholar] [CrossRef]
- Ősz, B.-E.; Jîtcă, G.; Sălcudean, A.; Rusz, C.M.; Vari, C.-E. Benzydamine—An Affordable Over-the-Counter Drug with Psychoactive Properties—From Chemical Structure to Possible Pharmacological Properties. Pharmaceuticals 2023, 16, 566. [Google Scholar] [CrossRef]
- Hasanzade, Z.; Raissi, H. Molecular Mechanism for the Encapsulation of the Doxorubicin in the Cucurbit[n]Urils Cavity and the Effects of Diameter, Protonation on Loading and Releasing of the Anticancer Drug:Mixed Quantum Mechanical/Molecular Dynamics Simulations. Comput. Methods Programs Biomed. 2020, 196, 105563. [Google Scholar] [CrossRef]
- Quintero-Álvarez, F.G.; Rojas-Mayorga, C.K.; Mendoza-Castillo, D.I.; Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A. Physicochemical Modeling of the Adsorption of Pharmaceuticals on MIL-100-Fe and MIL-101-Fe MOFs. Adsorpt. Sci. Technol. 2022, 2022, 4482263. [Google Scholar] [CrossRef]
- Mottishaw, J.D.; Erck, A.R.; Kramer, J.H.; Sun, H.; Koppang, M. Electrostatic Potential Maps and Natural Bond Orbital Analysis: Visualization and Conceptualization of Reactivity in Sangers Reagent. J. Chem. Educ. 2015, 92, 1846–1852. [Google Scholar] [CrossRef]
- Habata, Y.; Akabori, S. Teaching 1H NMR Spectrometry Using Computer Modeling. J. Chem. Educ. 2001, 78, 121. [Google Scholar] [CrossRef]
- Essassaoui, H.; Bouhdadi, R.; Echajia, M.; Zeroual, A.; Tounsi, A.; Mbarki, M.; Jadida, E. Quantum Mechanical Descriptors of Indazole-Containing Derivatives Using the DFT Method. Eur. Rev. Chem. Res. 2019, 6, 12–22. [Google Scholar] [CrossRef]
- Qu, J.; Feng, X.; Wang, T.; Li, Z.; Lin, C.; Liu, X.; Legut, D.; Zhang, Q. Design of Non-Transition-Metal-Doped Nanoribbon Catalysis to Achieve Efficient Nitrogen Fixation. Mater. Adv. 2021, 2, 7423–7430. [Google Scholar] [CrossRef]
Molecular Dynamic Box Details | MxCN | BzCN |
---|---|---|
Amount of Mx molecules | 5 | - |
Amount of Bz molecules | - | 20 |
Amount of CAB molecules | 20 | 20 |
Amount of NMP molecules | 5500 | 5500 |
Amount of WAT molecules | 5500 | 5500 |
Mole ratio (Drug/CAB/NMP/WAT) | 1:4:1100:1100 | 1:1:275:275 |
Total amount of molecules in system | 11,025 | 11,040 |
Total amount of atom in system | 119,505 | 120,160 |
Formulation | Composition | ||||
---|---|---|---|---|---|
CAB | Mx | Bz | NMP | WAT | |
MxCN | 0.1179 | 0.3813 | - | 3.3435 | 6.9462 |
BzCN | 0.0769 | - | 1.0565 | 3.3561 | 7.1571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jitrangsri, K.; Puyathorn, N.; Thammasut, W.; Tamdee, P.; Yodsin, N.; Sirirak, J.; Rein, S.M.T.; Phaechamud, T. Role of Cellulose Acetate Butyrate on Phase Inversion: Molecular Dynamics and DFT Studies of Moxifloxacin and Benzydamine HCl Within an In Situ Forming Gel. Polysaccharides 2025, 6, 73. https://doi.org/10.3390/polysaccharides6030073
Jitrangsri K, Puyathorn N, Thammasut W, Tamdee P, Yodsin N, Sirirak J, Rein SMT, Phaechamud T. Role of Cellulose Acetate Butyrate on Phase Inversion: Molecular Dynamics and DFT Studies of Moxifloxacin and Benzydamine HCl Within an In Situ Forming Gel. Polysaccharides. 2025; 6(3):73. https://doi.org/10.3390/polysaccharides6030073
Chicago/Turabian StyleJitrangsri, Kritamorn, Napaphol Puyathorn, Warakon Thammasut, Poomipat Tamdee, Nuttapon Yodsin, Jitnapa Sirirak, Sai Myo Thu Rein, and Thawatchai Phaechamud. 2025. "Role of Cellulose Acetate Butyrate on Phase Inversion: Molecular Dynamics and DFT Studies of Moxifloxacin and Benzydamine HCl Within an In Situ Forming Gel" Polysaccharides 6, no. 3: 73. https://doi.org/10.3390/polysaccharides6030073
APA StyleJitrangsri, K., Puyathorn, N., Thammasut, W., Tamdee, P., Yodsin, N., Sirirak, J., Rein, S. M. T., & Phaechamud, T. (2025). Role of Cellulose Acetate Butyrate on Phase Inversion: Molecular Dynamics and DFT Studies of Moxifloxacin and Benzydamine HCl Within an In Situ Forming Gel. Polysaccharides, 6(3), 73. https://doi.org/10.3390/polysaccharides6030073