On ( , m)-Conformal Mappings
Abstract
1. Introduction
1.1. Tensors as Indexed Geometrical Objects
1.2. Riemannian Spaces
1.3. Geodesic Lines of Riemannian Spaces
1.4. Motivation
- In the next section, we will generalize the concept of conformal mapping by defining a special curve of a Riemannian space. A mapping from which any geodesic line from an initial space transforms to a curve of this special class of the deformed space will be the subject of our research.
- We will obtain the basic equations for mappings mentioned in previous studies. After that, we will obtain the invariants for this mapping.
- At the end of this paper, we will present the cosmology which corresponds to one of the invariants obtained herein and present the corresponding Einstein equations.
2. Review of Invariants for Geometric Mappings
2.1. Review of Geodesic and Conformal Mappings
2.2. What Is Given byVesić’s Method
3. Generalized Concept of Conformal Mappings
3.1. Invariants for -Conformal Mappings
3.2. Invariants for -Conformal Mappings
3.3. Lagrangian Caused by -Conformal Mappings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- Mikeš, J. Differential Geometry of Special Mappings, 1st ed.; Olomouc University Press: Olomouc, Czech Republic, 2015; pp. 257–280. [Google Scholar]
- Shandra, I.G.; Mikeš, J. Geodesic Mappings of Vn(K)-Spaces and Concircular Vector Fields. Mathematics 2019, 7, 692. [Google Scholar] [CrossRef]
- Berezovsky, V.; Mikeš, J. On special almost geodesic mappings of type π1 of spaces with affine connection. Acta Univ. Palacki. Olomuc. Fac. Rerum Natur. Math. 2004, 43, 21–26. [Google Scholar]
- Chuda, H.; Mikeš, J. Conformally geodesic mappings satisfying a certain initial condition. Arch. Math. 2011, 47, 389–394. [Google Scholar]
- Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 1996, 78, 311–333. [Google Scholar] [CrossRef]
- Sinyukov, N.S.; Sinyukova, E.N.; Movchan, Y.A. Some actual aspects of development of the theory of geodesic mappings of Riemannian spaces and its generalization. Rus. Math. 1994, 38, 74–78. [Google Scholar]
- Sinyukov, N.S.; Sinyukova, E.N. Holomorphically projective mappings of special Kähler spaces. Math. Notes 1984, 36, 417–423. [Google Scholar] [CrossRef]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces, 1st ed.; Nauka: Moscow, Russia, 1979. [Google Scholar]
- De, U.C.; Ghosh, G.; De, K. Characterization of a paraSasakian manifold admitting Bach tensor. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023, 72, 826–838. [Google Scholar] [CrossRef]
- De, U.C.; Chaubey, S.K.; Shenawy, S. Perfect fluid spacetimes and Yamabe solitons. J. Math. Phys. 2021, 62, 032501. [Google Scholar] [CrossRef]
- Milenković, V.M.; Stanković, M.S.; Vesić, N.O. Invariant Geometric Objects of the Equitorsion Canonical Biholomorphically Projective Mappings of Generalized Riemannian Space in the Eisenhart Sense. Mathematics 2025, 13, 1334. [Google Scholar] [CrossRef]
- Stanković, M.S.; Minčić, S.M.; Velimirović, L.S. On holomorphically projective mappings of generalized Kahlerian spaces. Mat. Vesn. 2002, 54, 195–202. [Google Scholar] [CrossRef][Green Version]
- Stanković, M.S.; Minčić, S.M.; Velimirović, L.S.; Zlatanović, M.L. On equitorsion geodesic mappings of general affine connection spaces. Rend. Sem. Mat. Univ. Padova 2010, 124, 77–90. [Google Scholar] [CrossRef]
- Vesić, N.O.; Milenković, V.M.; Stanković, M.S. Two Invariants for Geometric Mappings. Axioms 2022, 11, 239. [Google Scholar] [CrossRef]
- Vesić, N.; Velimirović, L.; Stanković, M. Some Invariants of Equitorsion Third Type Almost Geodesic Mappings. Mediterr. J. Math. 2016, 13, 4581–4590. [Google Scholar] [CrossRef]
- Zlatanović, M.; Hinterleitner, I.; Najdanović, M. On equitorsion concircular tensors of generalized Riemannian spaces. Filomat 2014, 28, 463–471. [Google Scholar] [CrossRef]
- Maksimović, M.D.; Zlatanović, M.L. Einstein Type Curvature Tensors and Einstein Type Tensors of Generalized Riemannian Space in the Eisenhart Sense. Mediterr. J. Math. 2022, 19, 217. [Google Scholar] [CrossRef]
- Zlatanović, M.L.; Maksimović, M.D. Quarter-symmetric generalized metric connections on a generalized Riemannian manifold. Filomat 2023, 37, 3927–3937. [Google Scholar] [CrossRef]
- Najdanović, M.; Velimirović, L.; Vesić, N. Geodesic infinitesimal deformations of generalized Riemannian spaces. Mediterr. J. Math. 2022, 19, 149. [Google Scholar] [CrossRef]
- Vesić, N.O. Basic invariants of geometric mappings. Miskolc Math. Notes 2020, 21, 473–487. [Google Scholar] [CrossRef]
- Danehkar, A. On the significance of the Weyl curvature in a relativistic cosmological model. Mod. Phys. Let. A 2009, 24, 3113–3127. [Google Scholar] [CrossRef]
- McKeon, D.G.C. The Canonical Structure of the First-Order Einstein-Hilbert Action. Phys. Rev. A. 2010, 25, 3453–3480. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology, 1st ed.; Elsevier: Oxford, UK, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Randjelović, B.M.; Simjanović, D.J.; Vesić, N.O.; Djurišić, I.; Vlahović, B.D.
On (
Randjelović BM, Simjanović DJ, Vesić NO, Djurišić I, Vlahović BD.
On (
Randjelović, Branislav M., Dušan J. Simjanović, Nenad O. Vesić, Ivana Djurišić, and Branislav D. Vlahović.
2025. "On (
Randjelović, B. M., Simjanović, D. J., Vesić, N. O., Djurišić, I., & Vlahović, B. D.
(2025). On (