Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (769)

Search Parameters:
Keywords = conformal transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Viewed by 52
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 219
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

20 pages, 2460 KiB  
Article
Kinetics of Proton Transfer and String of Conformational Transformation for 4-Pyridone-3-carboxylic Acid Under External Electric Field
by Ya-Wen Li, Rui-Zhi Feng, Xiao-Jiang Li, Ai-Chuan Liu and En-Lin Wang
Molecules 2025, 30(15), 3115; https://doi.org/10.3390/molecules30153115 - 25 Jul 2025
Viewed by 152
Abstract
In order to explore the essence of the anticoccidiosis of anticoccidial drugs under bioelectric currents, the intermolecular double-proton transfer and conformational transformation of 4-pyridone-3-carboxylic acid were investigated by quantum chemistry calculations (at the M06-2X/6-311++G**, M06-2X/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels) and finite temperature string (FTS) [...] Read more.
In order to explore the essence of the anticoccidiosis of anticoccidial drugs under bioelectric currents, the intermolecular double-proton transfer and conformational transformation of 4-pyridone-3-carboxylic acid were investigated by quantum chemistry calculations (at the M06-2X/6-311++G**, M06-2X/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels) and finite temperature string (FTS) under external electric fields. The solvent effect of H2O on the double-proton transfer was evaluated by the integral equation formalism polarized continuum model. The results indicate that the influences of the external electric fields along the direction of the dipole moment on double-proton transfer are significant. The corresponding products are controlled by the direction of the external electric field. Due to the first-order Stark effect, some good linear relationships form between the changes of the structures, atoms in molecules (AIMs) results, surface electrostatic potentials, barriers of the transition state, and the external electric field strengths. From the gas to solvent phase, the barrier heights increased. The spatial order parameters (ϕ, ψ) of the conformational transformation could be quickly converged through the umbrella sampling and parameter averaging, and thus the free-energy landscape for the conformational transformation was obtained. Under the external electric field, there is competition between the double-proton transfer and conformational transformation. The external electric field greatly affects the cooperativity transfer, while it has little effect on the conformational transformation. This study is helpful in the selection and updating of anticoccidial drugs. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

24 pages, 5586 KiB  
Article
Integration of Leveling and GNSS Data to Develop Relative Vertical Movements of the Earth’s Crust Using Hybrid Models
by Bartosz Naumowicz and Kamil Kowalczyk
Appl. Sci. 2025, 15(15), 8224; https://doi.org/10.3390/app15158224 - 24 Jul 2025
Viewed by 165
Abstract
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and [...] Read more.
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and GNSS measurements developed using the PPP technique were used as Supplementary Data. The least squares method was used for the adjustment, and the isometric, conformal and affine methods were used for the transformation, with and without Hausbrandt correction. So-called pseudo-nodal points, i.e., points identified as common in both networks, whose weight was determined according to the assumptions of scale-free network theory, were used as integration points. Both integration methods have similar results and are suitable for integrating leveling and GNSS data to determine the relative vertical movements of the Earth’s crust. The average unit error m0 of the transformation was 0.1 mm/yr and the average error after adjustment of the hybrid network was 0.1 mm/yr. The use of the Hausbrandt correction does not significantly improve the transformation results. A 12-parameter affine transformation is recommended as the transformation method. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 277 KiB  
Article
Whose Decision Is It Anyway? Men’s Perceptions of Women’s Decision-Making Autonomy in Maternal and Child Health in Western Kenya
by Robsan Tura and Nema C. M. Aluku
Soc. Sci. 2025, 14(8), 452; https://doi.org/10.3390/socsci14080452 - 23 Jul 2025
Viewed by 348
Abstract
Women’s decision-making autonomy is widely recognized as a critical determinant of maternal, newborn, and child health (MNCH). However, prevailing measures often conflate genuine autonomy with decisions made within traditional gender roles, risking an overstatement of women’s empowerment. This study examines the extent to [...] Read more.
Women’s decision-making autonomy is widely recognized as a critical determinant of maternal, newborn, and child health (MNCH). However, prevailing measures often conflate genuine autonomy with decisions made within traditional gender roles, risking an overstatement of women’s empowerment. This study examines the extent to which reported female decision-making autonomy reflects authentic agency versus role-based compliance in a patriarchal context. A cross-sectional study was conducted among 280 male household heads in Kakamega County, Kenya, whose partners were pregnant or recently postpartum. Using multi-stage cluster sampling and structured interviews, men reported on household and MNCH decision-making and their rationales, categorized as gender-role conformity, belief in gender equality, or other reasons. Although 40.4% reported that their partners made decisions independently, only 11.4% attributed it to a belief in women’s equality; 28% framed it within traditional gender roles. Men were over four times more likely to perceive women’s decisions as role-based than autonomous (AOR = 4.40; 95% CI: 2.48–5.78). Younger men (18–34) were more likely to report female decision-making (AOR = 5.54; 95% CI: 5.08–7.27), without necessarily endorsing egalitarian norms. Findings highlight the urgent need for gender-transformative MNCH interventions that move beyond surface-level autonomy to address deeper structural inequities. Full article
(This article belongs to the Section Gender Studies)
27 pages, 4623 KiB  
Article
Preparation and Application of Wetland-Plant-Derived Biochar for Tetracycline Antibiotic Adsorption in Water
by Qingyun Chen, Hao Tong, Xing Gao, Peng Li, Jiaqi Li, Haifeng Zhuang and Suqing Wu
Sustainability 2025, 17(14), 6625; https://doi.org/10.3390/su17146625 - 20 Jul 2025
Viewed by 323
Abstract
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for [...] Read more.
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for rapid removal of antibiotics in water. In this study, abundant and renewable wetland plants (lotus leaves, Arundo donax, and canna lilies) were utilized as raw materials to prepare biochar through slow pyrolysis combined with KOH chemical activation. The prepared biochar was employed to adsorb typical tetracycline (TC) antibiotics (TC-HCl, CTC-HCl, OTC-HCl) from water. The results showed that the optimum biochar (LBC-600 (1:3)) was prepared at a pyrolysis temperature of 600 °C with the mass ratio of KOH to lotus leaf of 1:3. The optimum pH for the adsorption of the three antibiotics were 5, 4, and 3, respectively. The highest adsorption rates reached 93.32%, 81.44%, and 83.76% for TC-HCl, CTC-HCl, and OTC-HCl with 0.6 g/L of biochar, respectively. At an initial antibiotic concentration of 80 mg·L−1, the maximum adsorption capacities achieved 40.17, 27.76, and 24.6 mg·g−1 for TC-HCl, CTC-HCl, and OTC-HCl, respectively. The adsorption process conformed to the pseudo-second-order kinetic and Langmuir isotherm models, indicating that it was a spontaneous endothermic process and primarily involved monolayer chemical adsorption. This study transformed wetland plant waste into adsorbent and applied it for antibiotic removal, providing a valuable resource utilization strategy and technical support for recycling wetland plant residues and antibiotic removal from water environments. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

17 pages, 2173 KiB  
Article
Unveiling the Solvent Effect: DMSO Interaction with Human Nerve Growth Factor and Its Implications for Drug Discovery
by Francesca Paoletti, Tjaša Goričan, Alberto Cassetta, Jože Grdadolnik, Mykola Toporash, Doriano Lamba, Simona Golič Grdadolnik and Sonia Covaceuszach
Molecules 2025, 30(14), 3030; https://doi.org/10.3390/molecules30143030 - 19 Jul 2025
Viewed by 318
Abstract
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral [...] Read more.
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral availability and reduced immunogenicity. However, their development is often hindered by solubility challenges, necessitating the use of solvents like dimethyl sulfoxide (DMSO). This study investigates whether DMSO directly interacts with hNGF and affects its receptor-binding properties. Methods: Integrative/hybrid computational and experimental biophysical approaches were used to assess DMSO-NGF interaction by combining machine-learning tools and Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR) spectroscopy, Differential Scanning Fluorimetry (DSF) and Grating-Coupled Interferometry (GCI). These techniques evaluated binding affinity, conformational stability, and receptor-binding dynamics. Results: Our findings demonstrate that DMSO binds hNGF with low affinity in a specific yet non-disruptive manner. Importantly, DMSO does not induce significant conformational changes in hNGF nor affect its interactions with its receptors. Conclusions: These results highlight the importance of considering solvent–protein interactions in drug discovery, as these low-affinity yet specific interactions can affect experimental outcomes and potentially alter the small molecules binding to the target proteins. By characterizing DMSO-NGF interactions, this study provides valuable insights for the development of NGF-targeting small molecules, supporting their potential as effective alternatives to monoclonal antibodies for treating pain, inflammation, and neurodegenerative diseases. Full article
Show Figures

Graphical abstract

17 pages, 284 KiB  
Article
Becoming God in Life and Nature: Watchman Nee and Witness Lee on Sanctification, Union with Christ, and Deification
by Michael M. C. Reardon and Brian Siu Kit Chiu
Religions 2025, 16(7), 933; https://doi.org/10.3390/rel16070933 - 18 Jul 2025
Viewed by 695
Abstract
This article examines the theological trajectories of Watchman Nee (1903–1972) and Witness Lee (1905–1997) on sanctification, union with Christ, and deification, situating their contributions within recent reappraisals of the doctrine of theosis in the academy. Though deification was universally affirmed by the early [...] Read more.
This article examines the theological trajectories of Watchman Nee (1903–1972) and Witness Lee (1905–1997) on sanctification, union with Christ, and deification, situating their contributions within recent reappraisals of the doctrine of theosis in the academy. Though deification was universally affirmed by the early church and retained in various forms in medieval and early Protestant theology, post-Reformation Western Christianity marginalized this theme in favor of juridical and forensic soteriological categories. Against this backdrop, Nee and Lee offer a theologically rich, biblically grounded, and experientially oriented articulation of deification that warrants greater scholarly attention. Drawing from the Keswick Holiness tradition, patristic sources, and Christian mysticism, Nee developed a soteriology that integrates justification, sanctification, and glorification within an organic model of progressive union with God. Though he does not explicitly use the term “deification”, the language he employs regarding union and participation closely mirrors classical expressions of Christian theosis. For Nee, sanctification is not merely moral improvement but the transformative increase of the divine life, culminating in conformity to Christ’s image. Lee builds upon and expands Nee’s participatory soteriology into a comprehensive theology of deification, explicitly referring to it as “the high peak of the divine revelation” in the Holy Scriptures. For Lee, humans become God “in life and nature but not in the Godhead”. By employing the phrase “not in the Godhead”, Lee upholds the Creator–creature distinction—i.e., humans never participate in the ontological Trinity or God’s incommunicable attributes. Yet, in the first portion of his description, he affirms that human beings undergo an organic, transformative process by which they become God in deeply significant ways. His framework structures sanctification as a seven-stage process, culminating in the believer’s transformation and incorporation into the Body of Christ to become a constituent of a corporate God-man. This corporate dimension—often overlooked in Western accounts—lies at the heart of Lee’s ecclesiology, which he sees as being consummated in the eschatological New Jerusalem. Ultimately, this study argues that Nee and Lee provide a coherent, non-speculative model of deification that integrates biblical exegesis, theological tradition, and practical spirituality, and thus, present a compelling alternative to individualistic and forensic soteriologies while also highlighting the need for deeper engagement across global theological discourse on sanctification, union with Christ, and the Triune God. Full article
(This article belongs to the Special Issue Christian Theologies of Deification)
29 pages, 4982 KiB  
Article
Comprehensive Investigation of Polymorphic Stability and Phase Transformation Kinetics in Tegoprazan
by Joo Ho Lee, Ki Hyun Kim, Se Ah Ryu, Jason Kim, Kiwon Jung, Ki Sung Kang and Tokutaro Yamaguchi
Pharmaceutics 2025, 17(7), 928; https://doi.org/10.3390/pharmaceutics17070928 - 18 Jul 2025
Viewed by 430
Abstract
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of [...] Read more.
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of polymorph selection, focusing on conformational bias and solvent-mediated phase transformations (SMPTs). Methods: The conformational energy landscapes of two TPZ tautomers were constructed using relaxed torsion scans with the OPLS4 force field and validated by nuclear Overhauser effect (NOE)-based nuclear magnetic resonance (NMR). Hydrogen-bonded dimers were analyzed using DFT-D. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility, and slurry tests were conducted using methanol, acetone, and water. Kinetic profiles were modeled with the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation. Results: Polymorph A was thermodynamically stable across all analyses. Both amorphous TPZ and Polymorph B converted to A in a solvent-dependent manner. Methanol induced direct A formation, while acetone showed a B → A transition. Crystallization was guided by solution conformers and hydrogen bonding. Conclusions: TPZ polymorph selection is governed by solution-phase conformational preferences, tautomerism, and solvent-mediated hydrogen bonding. DFT-D and NMR analyses showed that protic solvents favor the direct crystallization of stable Polymorph A, while aprotic solvents promote the transient formation of metastable Polymorph B. Elevated temperatures and humidity accelerate polymorphic transitions. This crystal structure prediction (CSP)-independent strategy offers a practical framework for rational polymorph control and the mitigation of disappearing polymorph risks in tautomeric drugs. Full article
(This article belongs to the Special Issue Drug Polymorphism and Dosage Form Design, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2417 KiB  
Article
Multifaceted Applications of Zerumbone-Loaded Metal–Organic Framework-5: Anticancer, Antibacterial, Antifungal, DNA-Binding, and Free Radical Scavenging Potentials
by Sumeyya Deniz Aybek, Mucahit Secme, Hasan Ilhan, Leyla Acik, Suheyla Pinar Celik and Gonca Gulbay
Molecules 2025, 30(14), 2936; https://doi.org/10.3390/molecules30142936 - 11 Jul 2025
Viewed by 291
Abstract
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive [...] Read more.
In the present research, metal–organic framework-5 (MOF-5) was synthesized and loaded with zerumbone (ZER@MOF-5), followed by the evaluation of its anticancer, antibacterial, antifungal, DNA-binding, and free radical scavenging potentials. The synthesized nanoparticles were characterized using X-ray diffraction, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The in vitro anticancer activity of ZER@MOF-5 was studied in a human breast cancer cell line (MCF-7) using the CCK-8 assay. The interaction of ZER@MOF-5 with pBR322 plasmid DNA was assessed by gel electrophoresis. The antimicrobial effect of ZER@MOF-5 was examined in gram-positive and gram-negative bacterial strains and yeast strains using the microdilution method. The free radical scavenging activity was assessed using the DPPH assay. Cytotoxicity assay revealed a notable enhancement in the anticancer activity of zerumbone upon its encapsulation into MOF-5. The IC50 value for ZER@MOF-5 was found to be 57.33 µg/mL, which was lower than that of free zerumbone (IC50: 89.58 µg/mL). The results of the DNA-binding experiment indicate that ZER@MOF-5 can bind to target DNA and cause a conformational change in DNA. The results of the antibacterial activity experiment showed that the antibacterial ability of ZER@MOF-5 was limited compared to free zerumbone. The results of the DPPH assay demonstrated that the antioxidant activity of free zerumbone was higher than that of ZER@MOF-5. MOFs encapsulate compounds within their porous crystalline structure, which leads to prolonged circulation time compared to single ligands. Although the unique structure of MOFs may limit their antibacterial and antioxidant activity in the short term, it may increase therapeutic efficacy in the long term. However, to fully understand the long-term antibacterial and antioxidant effects of the ZER@MOF-5, further comprehensive in vitro and in vivo experiments are necessary. This finding indicates that the MOF-5 could potentially be an impressive carrier for the oral administration of zerumbone. Full article
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Pair of Associated η-Ricci–Bourguignon Almost Solitons with Generalized Conformal Killing Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2025, 13(13), 2165; https://doi.org/10.3390/math13132165 - 2 Jul 2025
Viewed by 171
Abstract
The subject of this study is almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds. The considerations are restricted to a special class of these manifolds, namely those of the Sasaki-like type, because of their geometric construction and the explicit [...] Read more.
The subject of this study is almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds. The considerations are restricted to a special class of these manifolds, namely those of the Sasaki-like type, because of their geometric construction and the explicit expression of their classification tensor by the pair of B-metrics. Here, each of the two B-metrics is considered as an η-Ricci–Bourguignon almost soliton, where η is the contact form. The soliton potential is chosen to be a conformal Killing vector field (in particular, concircular or concurrent) and then a generalization of the notion of conformality using contact conformal transformations of B-metrics. The resulting manifolds, equipped with the introduced almost solitons, are geometrically characterized. In the five-dimensional case, an explicit example on a Lie group depending on two real parameters is constructed, and the properties obtained in the theoretical part are confirmed. Full article
(This article belongs to the Special Issue Recent Studies in Differential Geometry and Its Applications)
12 pages, 241 KiB  
Article
Rebeldes con Pausa: Teresa de Jesús, Cervantes, Fray Luis, and the Curious Path to Holiness
by Ana Laguna
Humanities 2025, 14(7), 137; https://doi.org/10.3390/h14070137 - 1 Jul 2025
Viewed by 417
Abstract
Early modern theologians often cast female curiosity as both a moral flaw and an epistemic transgression. Aware of this suspicion, Teresa of Ávila professed to have renounced such dangerous impulses in her youth. Yet the persistent presence of curiosity in her writings suggests [...] Read more.
Early modern theologians often cast female curiosity as both a moral flaw and an epistemic transgression. Aware of this suspicion, Teresa of Ávila professed to have renounced such dangerous impulses in her youth. Yet the persistent presence of curiosity in her writings suggests a strategic redeployment—one that fosters attentiveness and subtly renegotiates ecclesiastical authority as she actively advances reform within the Carmelite order. Through life-writing and scriptural exegesis, Teresa cultivates a disciplined appetite for knowledge: an appetite that outwardly conforms to, yet quietly subverts, doctrinal anxieties surrounding women’s intellectual desires. Her use of curiosidad moves fluidly between sacred and secular registers—sometimes connoting superficial fascination, at other times signaling a deeper, interior restlessness. Resisting reductive interpretation, Teresa reveals a sophisticated and self-aware engagement with a disposition both morally ambiguous and intellectually generative. The same culture that once feared her intellect would ultimately aestheticize it. After her death, Teresa’s relics were fragmented and displayed in Philip II’s Wunderkammer, transforming her once-condemned curiosidad into curiositas, an imperial collectible. Reading Teresa alongside her posthumous interpreters—Fray Luis de León and Miguel de Cervantes—this essay explores how her radical epistemological ambition reverberated through Spanish intellectual culture. Spanning this cultural arc—from sin to spectacle, from forbidden desire to sanctified display—Teresa emerges as a masterful theorist and activist reformer of spiritual authority. In these expansive roles, she reveals the immense and often contradictory power that curiosity wielded in the early modern world. Full article
(This article belongs to the Special Issue Curiosity and Modernity in Early Modern Spain)
20 pages, 1115 KiB  
Article
A Novel Computational Framework for Time-Fractional Higher-Order KdV Models: CLADM-Based Solutions and Comparative Analysis
by Priti V. Tandel, Anant Patel and Trushitkumar Patel
Axioms 2025, 14(7), 511; https://doi.org/10.3390/axioms14070511 - 1 Jul 2025
Viewed by 233
Abstract
This study applies the Conformable Laplace Adomian Decomposition Method (CLADM) to solve generalized time-fractional Korteweg–de Vries (KdV) models, including seventh- and fifth-order models. CLADM combines the conformable fractional derivative and Laplace transform with the Adomian decomposition technique, offering analytic approximate solutions. Numerical and [...] Read more.
This study applies the Conformable Laplace Adomian Decomposition Method (CLADM) to solve generalized time-fractional Korteweg–de Vries (KdV) models, including seventh- and fifth-order models. CLADM combines the conformable fractional derivative and Laplace transform with the Adomian decomposition technique, offering analytic approximate solutions. Numerical and graphical results, generated using MATLAB R2020a 9.8.0.1323502, validate the method’s efficiency and precision in capturing fractional-order dynamics. Fractional parameters ϱ significantly influence wave behavior, with higher orders yielding smoother profiles and reduced oscillations. Comparative analysis confirms CLADM’s superiority over existing methods in minimizing errors. The versatility of CLADM highlights its potential for studying nonlinear wave phenomena in diverse applications. Full article
(This article belongs to the Special Issue Fractional Calculus and Applied Analysis, 2nd Edition)
Show Figures

Figure 1

19 pages, 7059 KiB  
Article
Potential Flow of Unburned Mixture and Combustion Products After Ignition in a Two-Dimensional Approximation
by Sergey Golovastov
Fire 2025, 8(7), 261; https://doi.org/10.3390/fire8070261 - 30 Jun 2025
Viewed by 349
Abstract
The evolution of a flame front in a channel was considered in a two-dimensional approximation. In the approximation of the potential flow of combustion products and unburned mixture, the formation of a finger-shaped flame was considered after ignition at the closed end of [...] Read more.
The evolution of a flame front in a channel was considered in a two-dimensional approximation. In the approximation of the potential flow of combustion products and unburned mixture, the formation of a finger-shaped flame was considered after ignition at the closed end of the channel, on the channel axis, and on the side wall of the channel. The prerequisites for the formation of a tulip-shaped flame were considered in a potential approximation. The method of conformal mapping was used. Simple analytical functions were used that allowed equipotential lines and streamlines to be transformed. The shape of the flame front was obtained. The analytical results were compared with the experimentally obtained results of the flame front evolution and with numerical results obtained by other authors. The conditions for the applicability of the conformal mapping to a reacting gas mixture were given. Full article
(This article belongs to the Special Issue State of the Art in Combustion and Flames)
Show Figures

Figure 1

14 pages, 27914 KiB  
Article
Inversion Motion of Xanthene and Detection of Its Oxidation Product Xanthone from Gas-Phase Rotational Spectroscopy
by Celina Bermúdez, Manuel Goubet and Elias M. Neeman
Molecules 2025, 30(13), 2801; https://doi.org/10.3390/molecules30132801 - 29 Jun 2025
Viewed by 325
Abstract
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading [...] Read more.
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading to the total disappearance of xanthene after few hours. Structurally, xanthone shows a near planar disposition, whereas xanthene exhibits a non-planar geometry with both benzene rings twisted out of the molecular plane. This geometry enables an inversion motion between two equivalent conformers, giving rise to a splitting in the ground vibrational state. A two-state analysis of the vibration–rotation interaction for the v=0 and v=1 states gives an energy separation between these states (inversion splitting) of ΔE01=4689.7095(10)MHz. This large-amplitude motion leads to vibration–rotation coupling of energy levels. A symmetric double-minimum inversion potential function was determined, resulting in a barrier of about 45 cm−1 in good agreement with that obtained by DFT quantum chemical calculations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

Back to TopTop