Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = concrete-damaged plasticity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3657 KiB  
Article
Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete
by Feng Guo, Weijie He, Longlong Tu and Huiming Hou
Buildings 2025, 15(15), 2725; https://doi.org/10.3390/buildings15152725 - 1 Aug 2025
Viewed by 189
Abstract
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the [...] Read more.
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the evolution of oriented microcrack networks. The model incorporates nonlinear anisotropic plastic strain from coupled chemical–mechanical damage. Unlike conventional concrete rheology, this model characterizes chemical creep through stress-chemical coupled damage mechanics. The numerical model is incorporated within COMSOL Multiphysics to perform coupled multiphysics simulations. A close match is observed between the numerical predictions and experimental findings. Under high stress loads, calcium leaching and mechanical stress exhibit significant coupling effects. Regarding concrete durability, chemical degradation has a more pronounced effect on concrete’s stiffness and strength reduction compared with stress-generated microcracking. Full article
Show Figures

Figure 1

16 pages, 2641 KiB  
Article
Seismic Assessment of Informally Designed 2-Floor RC Houses: Lessons from the 2020 Southern Puerto Rico Earthquake Sequence
by Lautaro Peralta and Luis A. Montejo
Eng 2025, 6(8), 176; https://doi.org/10.3390/eng6080176 - 1 Aug 2025
Viewed by 644
Abstract
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history [...] Read more.
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history analyses were performed using fiber-based distributed plasticity models for RC frames and nonlinear macro-elements for second-floor masonry infills, which introduced a significant inter-story stiffness imbalance. A bi-directional seismic input was applied using spectrally matched, near-fault pulse-like ground motions. The findings for the as-built structures showed that stiffness mismatches between stories, along with substantial strength and stiffness differences between orthogonal axes, resulted in concentrated plastic deformations and displacement-driven failures in the first story—consistent with damage observed during the 2020 earthquakes. Retrofitting the first floor with RC shear walls notably improved the performance, doubling the lateral load capacity and enhancing the overall stiffness. However, the retrofitted structures still exhibited a concentration of inelastic action—albeit with lower demands—shifted to the second floor, indicating potential for further optimization. Full article
Show Figures

Figure 1

17 pages, 8074 KiB  
Article
Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness
by Songtao Gu and Rui Zhang
Buildings 2025, 15(15), 2609; https://doi.org/10.3390/buildings15152609 - 23 Jul 2025
Viewed by 196
Abstract
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen [...] Read more.
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen retrofitted with a 30-mm UHPC jacket over the plastic hinge region demonstrated significant performance improvements: delayed damage initiation, controlled cracking, a 24.6% increase in lateral load capacity, 139.5% higher energy dissipation at 3% drift, and mitigated post-peak strength degradation. A validated OpenSees numerical model accurately replicated this behavior and enabled parametric studies of 15-mm, 30-mm, and 45-mm jackets. Results identified the 30-mm thickness as optimal, balancing substantial gains in lateral strength (~12% higher than other thicknesses), ductility, and energy dissipation while avoiding premature failure modes—insufficient confinement in the 15-mm jacket and strain incompatibility-induced brittle failure in the 45-mm jacket. These findings provide quantitative design guidance, establishing 30 mm as the recommended thickness for efficient seismic retrofitting of existing RC bridge columns. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 7805 KiB  
Article
Visualization of Distributed Plasticity in Concrete Piles Using OpenSeesPy
by Juan-Carlos Pantoja, Joaquim Tinoco, Jhon Paul Smith-Pardo, Gustavo Boada-Parra and José Matos
Appl. Sci. 2025, 15(14), 8004; https://doi.org/10.3390/app15148004 - 18 Jul 2025
Viewed by 400
Abstract
Lumped plasticity models available in commercial software offer a limited resolution of damage distribution along structural members. This study presents an open-source workflow that combines force-based fiber elements in OpenSeesPy with automated 3D post-processing for visualizing distributed plasticity in reinforced concrete piles. A [...] Read more.
Lumped plasticity models available in commercial software offer a limited resolution of damage distribution along structural members. This study presents an open-source workflow that combines force-based fiber elements in OpenSeesPy with automated 3D post-processing for visualizing distributed plasticity in reinforced concrete piles. A 60 cm diameter pile subjected to monotonic lateral loading is analyzed using both SAP2000’s default plastic hinges and OpenSeesPy fiber sections (Concrete02/Steel02). Although the fiber model incurs a runtime approximately 2.5 times greater, it captures the gradual spread of yielding and deterioration with improved fidelity. The presented workflow includes Python routines for interactive stress–strain visualization, facilitating the identification of critical sections and verification of strain limits. This approach offers a computationally feasible alternative for performance-based analysis with enhanced insight into member-level behavior. Because the entire workflow—from model definition through post-processing—is fully scripted in Python, any change to geometry, materials, or loading can be re-run in seconds, dramatically reducing the time taken to execute sensitivity analyses. Full article
Show Figures

Figure 1

27 pages, 6356 KiB  
Article
A Fast Fragility Analysis Method for Seismically Isolated RC Structures
by Cholap Chong, Mufeng Chen, Mingming Wang and Lushun Wei
Buildings 2025, 15(14), 2449; https://doi.org/10.3390/buildings15142449 - 12 Jul 2025
Viewed by 302
Abstract
This paper presents an advanced seismic performance evaluation of reinforced concrete (RC) seismically isolated frame structures under the conditions of rare earthquakes. By employing an elastic–plastic analysis in conjunction with a nonlinear multi-degree-of-freedom model, this study innovatively assesses the incremental dynamic vulnerability of [...] Read more.
This paper presents an advanced seismic performance evaluation of reinforced concrete (RC) seismically isolated frame structures under the conditions of rare earthquakes. By employing an elastic–plastic analysis in conjunction with a nonlinear multi-degree-of-freedom model, this study innovatively assesses the incremental dynamic vulnerability of isolated structures. A novel equivalent linearization method is introduced for both single- and two-degree-of-freedom isolation structures, providing a simplified yet accurate means of predicting seismic responses. The reliability of the modified Takeda hysteretic model is verified through comparative analysis with experimental data, providing a solid foundation for the research. Furthermore, a multi-degree-of-freedom shear model is employed for rapid elastic–plastic analysis, validated against finite element software, resulting in an impressive 85% reduction in computation time while maintaining high accuracy. The fragility analysis reveals the staggered upward trend in the vulnerability of the upper structure and isolation layer, highlighting the importance of comprehensive damage control to enhance overall seismic performance. Full article
Show Figures

Figure 1

20 pages, 4049 KiB  
Article
Calculation of Shear-Bearing Capacity of Aluminum Alloy-Concrete Composite Beam
by Chenghua Li and Ziliang Lu
Buildings 2025, 15(14), 2393; https://doi.org/10.3390/buildings15142393 - 8 Jul 2025
Viewed by 271
Abstract
This study investigates the shear bearing capacity of aluminum alloy–concrete composite beams to address the limitations caused by the low elastic modulus of aluminum alloys. A finite element model was developed using the Concrete Damaged Plasticity (CDP) model for concrete and validated through [...] Read more.
This study investigates the shear bearing capacity of aluminum alloy–concrete composite beams to address the limitations caused by the low elastic modulus of aluminum alloys. A finite element model was developed using the Concrete Damaged Plasticity (CDP) model for concrete and validated through parametric analysis. Key factors such as concrete strength, stirrup spacing, and cross-sectional dimensions were examined. An improved shear capacity formula was derived based on the tension–compression bar model and the superposition method. The proposed formula achieved an average ratio of 1.018 to finite element results, with a standard deviation of 0.151, and the proposed formula was validated against 22 FEA models, demonstrating excellent agreement with numerical results and confirming its reliability for practical engineering applications. This work provides a practical analytical approach for the shear design of aluminum–concrete composite structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 279
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 6676 KiB  
Article
Development and Numerical Implementation of Plastic Damage Constitutive Model for Concrete Under Freeze–Thaw Cycling
by Zhixuan Wang, Xiao Liu, Xiaoquan Shao, Jianyong Han and Yu Liu
Buildings 2025, 15(13), 2155; https://doi.org/10.3390/buildings15132155 - 20 Jun 2025
Viewed by 347
Abstract
The predictive modeling of concrete degradation under freeze–thaw cycling remains a challenge due to complex damage mechanisms and limited simulation accuracy. A plastic damage constitutive model for fly ash concrete under freeze–thaw conditions was established based on experimental data and implemented via the [...] Read more.
The predictive modeling of concrete degradation under freeze–thaw cycling remains a challenge due to complex damage mechanisms and limited simulation accuracy. A plastic damage constitutive model for fly ash concrete under freeze–thaw conditions was established based on experimental data and implemented via the concrete damage plasticity (CDP) model in ABAQUS. A modified stress–strain relationship and damage factor were introduced to describe mechanical deterioration across various freeze–thaw stages. Macro- and mesoscale finite element simulations were applied to simulate the stress–strain evolution, plastic deformation, and damage development. A validation against experimental data indicated a relatively high accuracy, with prediction errors of 1.61% at the macroscale and 5.81% at the mesoscale. The macroscale model effectively captures global stiffness degradation and strength loss, while the mesoscale model reveals the internal freeze–thaw damage mechanisms, including crack initiation and propagation. The results demonstrate the applicability of the proposed model for assessing freeze–thaw-induced damage in concrete structures exposed to cold environments. Full article
Show Figures

Figure 1

31 pages, 9076 KiB  
Article
Blast Performance of Multi-Layer Composite Door Panel with Energy Absorption Connectors
by Shahab Ahmad, Shayan Zeb, Yonghui Wang and Muhammad Umair
Buildings 2025, 15(12), 2073; https://doi.org/10.3390/buildings15122073 - 16 Jun 2025
Viewed by 410
Abstract
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy [...] Read more.
Doors are considered vulnerable to failure in structures when subjected to extreme loads, such as blasts. Consequently, blast-resistant doors are designed to withstand blast pressure in important structures. This study developed a multi-layer Steel, Aluminum Foam, and Steel–Concrete–Steel composite door panel with Energy Absorption Connectors (SAFSCS-EACs) under near and far field blast loading using finite element analysis in LS-DYNA. Three dynamic response modes were observed based on the crushing strength of energy absorption connectors (EACs) for the SAFSCS-EAC composite door under both near and far field blasts. In addition, the membrane stretching phenomena was observed in the face steel plate. The AF shows a local densification in near field blasts and a global densification in far field blasts. For the SCS panel, a punching-like failure and a global flexural failure were observed in near and far field blasts, respectively. AF has a high energy absorption capacity as a first energy absorption layer, while the EAC also effectively dissipates blast energy through the rotation of the plastic hinges of curved steel plates, thereby reducing the damage to the SCS panel and increasing the door’s structural integrity. Moreover, to check the influence of the curved steel plate thickness of EACs and the core concrete thickness, a parametric study was carried out. The results showed that the blast resistance performance of the SAFSCS-EAC composite door could increase by appropriately designing the EAC curved steel plates’ thickness and ensuring that the compression displacement of the EAC under blast is close to its densification displacement. Additionally, increasing concrete thickness can reduce the degree of damage to the steel–concrete–steel composite panel during the blast, but it leads to a reduction in the energy dissipation of the EAC. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 2038 KiB  
Proceeding Paper
Structural Integrity Assessment of Pompeii’s City Wall Under Roman Artillery Fire: A Finite Element Approach
by Monil Mihirbhai Thakkar, Amir Ardeshiri Lordejani and Mario Guagliano
Eng. Proc. 2025, 96(1), 7; https://doi.org/10.3390/engproc2025096007 - 6 Jun 2025
Viewed by 213
Abstract
During Sulla’s siege of Pompeii in 89 BC projectiles were launched using Roman artillery, leaving visible craters on the fortified walls. The city was later buried by the eruption in 79 AD, preserving both its architectural layout and the damaged wall surfaces, and [...] Read more.
During Sulla’s siege of Pompeii in 89 BC projectiles were launched using Roman artillery, leaving visible craters on the fortified walls. The city was later buried by the eruption in 79 AD, preserving both its architectural layout and the damaged wall surfaces, and was excavated in the early 20th century. This study focuses on simulating projectile impacts on Grey Tuff to estimate impact velocities and penetration depths, offering insights into the destructive capability of Roman weapons. Material models are developed, followed by finite element analysis. Mesh convergence, velocity calibration, and angular impact studies are performed for both ballista and dart to better understand impact mechanics and crater formation. Full article
Show Figures

Figure 1

25 pages, 9930 KiB  
Article
Study of Structural Deterioration Behavior of Mining Method Tunnels Under Steel Reinforcement Corrosion
by Gang Liu, Xingyu Zhu, Jiayong Yang, Zhiqiang Zhang, Jilin Song and Yuda Yang
Buildings 2025, 15(11), 1902; https://doi.org/10.3390/buildings15111902 - 31 May 2025
Viewed by 426
Abstract
Tunnel lining structures, which are subjected to the combined effects of water and soil pressure as well as a water-rich erosion environment, undergo a corrosion-induced damage and degradation process in the reinforced concrete, gradually leading to structural failure and a significant decline in [...] Read more.
Tunnel lining structures, which are subjected to the combined effects of water and soil pressure as well as a water-rich erosion environment, undergo a corrosion-induced damage and degradation process in the reinforced concrete, gradually leading to structural failure and a significant decline in service performance. By introducing the Cohesive Zone Model (CZM) and the concrete damage plastic model (CDP), a three-dimensional numerical model of the tunnel lining structure in mining method tunnels was established. This model takes into account the multiple effects caused by steel reinforcement corrosion, including the degradation of the reinforcement’s performance, the loss of an effective concrete cross section, and the deterioration of the bond between the steel reinforcement and the concrete. Through this model, the deformation, internal forces, damage evolution, and degradation characteristics of the structure under the effects of the surrounding rock water–soil pressure and steel reinforcement corrosion are identified. The simulation results reveal the following: (1) Corrosion leads to a reduction in the stiffness of the lining structure, exacerbating its deformation. For example, under high water pressure conditions, the displacement at the vault of the lining before and after corrosion is 4.31 mm and 7.14 mm, respectively, with an additional displacement increase of 65.7% due to corrosion. (2) The reinforced concrete lining structure, which is affected by the surrounding rock loads and expansion due to steel reinforcement corrosion, experiences progressive degradation, resulting in a redistribution of internal forces within the structure. The overall axial force in the lining slightly increases, while the bending moment at the vault, spandrel, and invert decreases and the bending moment at the hance and arch foot increases. (3) The damage range of the tunnel lining structure continuously increases as corrosion progresses, with significant differences between the surrounding rock side and the free face side. Among the various parts of the lining, the vault exhibits the greatest damage depth and the widest cracks. (4) Water pressure significantly impacts the internal forces and crack width of the lining structure. As the water level drops, both the bending moment and the axial force diminish, while the damage range and crack width increase, with crack width increasing by 15.1% under low water pressure conditions. Full article
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
NLFEA Behavior of Heat-Damaged Key Joints in Precast Concrete Segmental Bridge
by Bara’a R. Alnemrawi and Rajai Al-Rousan
Buildings 2025, 15(11), 1890; https://doi.org/10.3390/buildings15111890 - 30 May 2025
Cited by 1 | Viewed by 324
Abstract
The provided shear key joints are practically unreinforced due to their small size, and their performance directly affects the structural behavior of the segmental concrete bridge. In addition, these joints are usually dry and distributed over the contact region between the two connected [...] Read more.
The provided shear key joints are practically unreinforced due to their small size, and their performance directly affects the structural behavior of the segmental concrete bridge. In addition, these joints are usually dry and distributed over the contact region between the two connected bridge parts. The current research examines the effect of the lateral confinement pressure (1, 2, 3, 4, 5, and 6) MPa and the elevated temperature values (23, 200, 400, and 600) °C on the behavior of single dried shear key joints structural behavior tested under concentrated static loading using the Nonlinear Finite Element Analysis (NLFEA) procedure. The simulation models were first validated using experimental data from the literature and compared using the ultimate deflection, ultimate load, cracking propagation, and failure modes using ABAQUS software, where the available Concrete Damage Plasticity model was utilized. Twenty-four models were simulated using different combinations of the parameters included in the parametric study. Results were reported in terms of their load-deflection behavior, structural characteristics, cracking propagation within the shear key zone, and the final failure modes. It has been found that the initial stiffness, ultimate deflection, and ultimate strength values were all increased under increasing confinement pressure. Moreover, the situation is totally different when the exposure temperature exceeds 400 °C. Finally, a new formula was introduced for predicting the shear key capacity after being validated against numerical and experimental data sets, along with different design codes and standards. A very good agreement was reached for the new proposed mathematical equations. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2833 KiB  
Article
Solid and Hollow Pre-Tensioned, Pre-Stressed Concrete Orchard Posts—Computational and Experimental Comparative Analysis
by Jarosław Michałek and Jacek Dudkiewicz
Materials 2025, 18(11), 2525; https://doi.org/10.3390/ma18112525 - 27 May 2025
Viewed by 1871
Abstract
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete [...] Read more.
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete posts most often have a trapezoidal cross-section, which is ideally suitable for mass production in a self-supporting non-dismantlable steel mould on a pre-stressing bed. Posts with 70 mm × 75 mm, 80 mm × 85 mm and 90 mm × 95 mm cross-sections are typically produced, whereas 100 mm × 120 mm and 130 mm × 140 mm posts are manufactured to order. Furthermore, it is proposed to produce hollow posts. Such posts are lighter than solid posts, but they require a more complicated production technology. This paper presents selected parts of a comparative computational–experimental analysis of solid and hollow posts. In the Building Structures Laboratory in the Building Structures Department at the Civil Engineering Faculty of the Wrocław University of Science and Technology, experimental tests of pre-stressed concrete orchard posts of 70 mm × 75 mm and 90 mm × 95 mm with solid and hollow cross-sections were carried out on a full scale. The theoretical analysis and research has shown that the resistance to bending, cracking resistance and rigidity of hollow posts (with their cross-sectional outline unchanged) will not significantly differ from those of the currently produced solid posts. At same time, material savings will be achieved. Therefore, the main task is to master the continuous moulding of hollow posts from dense plastic concrete with the simultaneous pulling out of the cores, producing longitudinal hollows in the posts. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Concrete Structures and RC Beams)
Show Figures

Figure 1

16 pages, 5732 KiB  
Article
Research on the Deformation and Failure Mechanism of Flexible Formwork Walls in Gob-Side-Entry Retaining of Ultra-Long Isolated Mining Faces and Pressure Relief-Control Technology via Roof Cutting
by Heng Wang and Junqing Guo
Appl. Sci. 2025, 15(11), 5833; https://doi.org/10.3390/app15115833 - 22 May 2025
Viewed by 424
Abstract
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology [...] Read more.
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology incorporating pressure relief through roof cutting. Taking the 3203 ultra-long isolated mining face at Nanyang Coal Industry as the engineering case, an integrated methodology combining laboratory experiments, theoretical analysis, numerical simulations, and industrial-scale field trials was implemented. The deformation and failure mechanism of flexible formwork walls in gob-side-entry retaining and the fundamental principles of pressure relief via roof cutting were systematically examined. The vertical stress variations in the advanced reuse zone of the retained roadway before and after roof cutting were investigated, with specific focus on the strata pressure behavior of roadways and face-end hydraulic supports on both the wide coal-pillar side and the pillarless side following roof cutting. The key findings are as follows: ① Blast-induced roof cutting reduces the cantilever beam length adjacent to the flexible formwork wall, thereby decreasing the load per unit area on the flexible concrete wall. This reduction consequently alleviates lateral abutment stress and loading in the floor heave-affected zone, achieving effective control of roadway surrounding rock stability. ② Compared with non-roof cutting, the plastic zone damage area of surrounding rock in the gob-side entry retained by flexible formwork concrete wall is significantly reduced after roof cutting, and the vertical stress on the flexible formwork wall is also significantly decreased. ③ Distinct differences exist in the distribution patterns and magnitudes of working resistance for face-end hydraulic supports between the wide coal-pillar side and the pillarless gob-side-entry retaining side after roof cutting. As the interval resistance increases, the average working resistance of hydraulic supports on the wide pillar side demonstrates uniform distribution, whereas the pillarless side exhibits a declining frequency trend in average working resistance, with an average reduction of 30% compared to non-cutting conditions. ④ After roof cutting, the surrounding rock deformation control effectiveness of the track gateway on the gob-side-entry retaining side is comparable to that of the haulage gateway on the 50 m wide coal-pillar side, ensuring safe mining of the working face. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

22 pages, 6256 KiB  
Article
Structural Design of Segmented Linings for High-Pressure CAES in Underground Workings: Method and Case Study
by Sheng Wang, Mengfan Gao and Caichu Xia
Appl. Sci. 2025, 15(10), 5782; https://doi.org/10.3390/app15105782 - 21 May 2025
Viewed by 524
Abstract
This study aims to ensure that the maximum crack width of underground working linings for compressed air energy storage (CAES) meets the allowable limit under high internal pressure conditions. Drawing on crack width calculation methods from hydraulic tunnels, this study proposes a design [...] Read more.
This study aims to ensure that the maximum crack width of underground working linings for compressed air energy storage (CAES) meets the allowable limit under high internal pressure conditions. Drawing on crack width calculation methods from hydraulic tunnels, this study proposes a design method for segmented linings with preset seams. The method accounts for the shear mechanical behavior of the sliding layer, with parameters determined through laboratory testing. A typical case study validates the reliability of the crack width calculation method that accounts for lining damage and plasticity. The study determined, from an engineering case, that six seams are optimal when the lateral pressure coefficient λ is below 1, while four seams are more suitable when λ > 1. Additionally, reinforcement ratios and retractable joints of the segmented lining were designed for the case. When the surrounding rock quality is lower than that of hard rock mass and gas pressure exceeds 12 MPa, monolithic cast-reinforced concrete linings often fail to meet the allowable crack width limits. However, segmented linings offer greater flexibility, as they can still meet the requirements even with fair-quality rock mass. These findings provide critical theoretical foundations for the design of CAES workings under high internal pressure. Full article
Show Figures

Figure 1

Back to TopTop