NLFEA Behavior of Heat-Damaged Key Joints in Precast Concrete Segmental Bridge
Abstract
1. Introduction
2. Nonlinear Finite Element Analysis (NLFEA)
2.1. General Overview
2.2. Material Modeling and Element Types
2.3. Constraints, Boundary, and Loading Conditions
2.4. Parametric Study and the Investigated Parameters
2.5. Validation
3. NLFEA Results and Discussion
3.1. Shear Strength Capacity
3.2. Load-Displacement Relationship
3.3. NLFEA Cracking and Concrete Damage Behavior
3.4. Crack Pattern
4. New Theoretical Punching Shear Model
4.1. Model Verification Against ABAQUS Results and Existing Formulas
4.2. Model Verification Against Experimental Data
5. Conclusions
- The shear strength capacity of the shear key joints is reduced by (5, 21, and 34)% for temperature values of (200, 400, and 600) °C, compared to the specimen’s behavior at ambient temperature.
- Two main load transfer mechanisms contributed to the shear strength of the key joints: friction and bearing. In addition, the connected regions within the segmental concrete bridges are the concrete cracking and crushing, forming the final failure of the specimens.
- The cracking load is very high in single-shear key joints, where the final failure occurs after a short time from initiating the first crack. However, the cracking load value is approximately (60–80)% of the specimen’s ultimate capacity.
- Increasing the lateral confinement pressure reduces the simulated specimens’ stiffness and deflection and increases their ultimate loading capacity at ambient temperature. In contrast, the improvement is limited by the concrete compressive strength, which is significantly degraded at elevated temperatures.
- The lateral confinement level directly affects the cracking propagation process, where cracks are decreased in length, width, and number until they become invisible at high confinement values.
- The shear strength capacity predictions of the single shear keys were predicted using different theoretical formulations in the literature based on a wide set of experimental and numerical data along with a new proposed formula, and high accuracy was reached.
- The proposed shear formula can efficiently predict shear keys’ shear capacity at ambient and elevated temperatures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rombach, G. Precast segmental box girder bridges with external prestressing-design and construction. Segmental Bridges INSA Rennes 2002, 19, 1–15. [Google Scholar]
- Al-Rousan, R.Z.; Alnemrawi, B.R. Interaction diagram of rectangular RC columns confined with CFRP composite under biaxial bending. Structures 2025, 75, 108833. [Google Scholar] [CrossRef]
- Issa, M.A.; Abdalla, H.A. Structural Behavior of Single Key Joints in Precast Concrete Segmental Bridges. J. Bridge Eng. 2007, 12, 315–324. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, D. Mechanical Characteristics of Steel Shear Keyed Joints in the Construction and Finished States. Adv. Civ. Eng. 2021, 2021, 7252122. [Google Scholar] [CrossRef]
- Al-Rousan, R.; Alnemrawi, B.R. NLFEA of the Behavior of Polypropylene-Fiber-Reinforced Concrete Slabs with Square Opening. Buildings 2024, 14, 480. [Google Scholar] [CrossRef]
- Zhou, X.; Mickleborough, N.; Li, Z. Shear Strength of Joints in Precast Concrete Segmental Bridges. ACI Struct. J. 2005, 102, 3–11. [Google Scholar] [CrossRef]
- Alnemrawi, B.R.; Al-Rousan, R. The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete. Buildings 2024, 14, 2844. [Google Scholar] [CrossRef]
- AASHTO. Guide Specifications for Design and Construction of Segmental Concrete Bridges 1999; Transportation Officials: Washington, DC, USA, 1999. [Google Scholar]
- Yang, I.-H.; Kim, K.-C.; Kim, Y.-J. Shear strength of dry joints in precast concrete modules. In Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), Sapporo, Japan, 11–13 September 2013; pp. 1–5. [Google Scholar]
- Li, G.; Yang, D.; Lei, Y. Combined Shear and Bending Behavior of Joints in Precast Concrete Segmental Beams with External Tendons. J. Bridge Eng. 2013, 18, 1042–1052. [Google Scholar] [CrossRef]
- Ahmed, G.H.; Aziz, O.Q. Shear strength of joints in precast posttensioned segmental bridges during 1959–2019, review and analysis. Structures 2019, 20, 527–542. [Google Scholar] [CrossRef]
- Ahmed, G.H.; Aziz, O.Q. Stresses, deformations and damages of various joints in precast concrete segmental box girder bridges subjected to direct shear loading. Eng. Struct. 2020, 206, 110151. [Google Scholar] [CrossRef]
- Pulkit, U.; Adhikary, S.D. Effect of micro-structural changes on concrete properties at elevated temperature: Current knowledge and outlook. Struct. Concr. 2022, 23, 1995–2014. [Google Scholar] [CrossRef]
- Chen, J.; Young, B.; Uy, B. Behavior of High Strength Structural Steel at Elevated Temperatures. J. Struct. Eng. 2006, 132, 1948–1954. [Google Scholar] [CrossRef]
- Elghazouli, A.Y.; Cashell, K.A.; Izzuddin, B.A. Experimental evaluation of the mechanical properties of steel reinforcement at elevated temperature. Fire Saf. J. 2009, 44, 909–919. [Google Scholar] [CrossRef]
- Babalola, O.E.; Awoyera, P.O.; Le, D.H.; Bendezú Romero, L.M. A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: Impact of materials modification on behaviour of concrete composite. Constr. Build. Mater. 2021, 296, 123448. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Y.; Li, X. Flexural behavior of concrete beams reinforced with high-strength steel bars after exposure to elevated temperatures. Constr. Build. Mater. 2023, 382, 131317. [Google Scholar] [CrossRef]
- Algorafi, M.A.; Ali, A.A.A.; Othman, I.; Jaafar, M.S.; Anwar, M.P. Experimental study of externally prestressed segmental beam under torsion. Eng. Struct. 2010, 32, 3528–3538. [Google Scholar] [CrossRef]
- Turmo, J.; Ramos, G.; Aparicio, A.C. Shear strength of dry joints of concrete panels with and without steel fibres: Application to precast segmental bridges. Eng. Struct. 2006, 28, 23–33. [Google Scholar] [CrossRef]
- Alcalde, M.; Cifuentes, H.; Medina, F. Influence of the number of keys on the shear strength of post-tensioned dry joints. Mater. Construcción 2013, 63, 297–307. [Google Scholar] [CrossRef]
- Hou, W.; Peng, M.; Jin, B.; Tao, Y.; Guo, W.; Zhou, L. Influencing Factors and Shear Capacity Formula of Single-Keyed Dry Joints in Segmental Precast Bridges under Direct Shear Loading. Appl. Sci. 2020, 10, 6304. [Google Scholar] [CrossRef]
- del Pozo Vindel, F.J. Información sobre ATEP (Asociación Técnica Española del Pretensado), GEHO (Grupo Español del Hormigón), FIP (Federación Internacional del Pretensado) y CEB (Comité Eurointernacional del Hormigón). Hormigón Y Acero 1996, 202, 9–12. [Google Scholar]
- EC2. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; British Standard Institution: London, UK, 2004. [Google Scholar]
- Liu, T.; Wang, Z.; Guo, J.; Wang, J. Shear Strength of Dry Joints in Precast UHPC Segmental Bridges: Experimental and Theoretical Research. J. Bridge Eng. 2019, 24, 04018100. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Alnemrawi, B.R. Empirical and precise finite element modelling of bond-slip contact behavior between heat-damaged concrete and anchored CFRP composites with groove. Eng. Struct. 2025, 332, 120042. [Google Scholar] [CrossRef]
- Alnemrawi, B.R.; Al-Rousan, R.Z. Finite-element based-prediction of the cracking-torsional behavior of prestressed concrete beams with hollow cross-sections. Results Eng. 2025, 25, 103712. [Google Scholar] [CrossRef]
- Alnemrawi, B.R.; Al-Rousan, R.Z. Flexural performance of NSM and PNSM beams maintaining the ACI440 bar diameter to groove size limitation. Results Eng. 2025, 25, 104570. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Alnemrawi, B.R. Impact of the size effect and CFRP ratio on NLFEA shear behavior of CFRP-strengthened RC deep beams without stirrups. Constr. Build. Mater. 2025, 458, 139777. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, Y.-J.; Jin, B.-M.; Shin, H.-M. Numerical study on the joints between precast post-tensioned segments. Int. J. Concr. Struct. Mater. 2007, 19, 3–9. [Google Scholar] [CrossRef]
- Turmo, J.; Ramos, G.; Aparicio, A. Towards a model of dry shear keyed joints: Modelling of panel tests. Comput. Concr. 2012, 10, 469–487. [Google Scholar] [CrossRef]
- Chang, Y.F.; Chen, Y.H.; Sheu, M.S.; Yao, G.C. Residual stress–strain relationship for concrete after exposure to high temperatures. Cem. Concr. Res. 2006, 36, 1999–2005. [Google Scholar] [CrossRef]
- Manica, G.C.; Bolina, F.L.; Tutikian, B.F.; Oliveira, M.; Moreira, M.A. Influence of curing time on the fire performance of solid reinforced concrete plates. J. Mater. Res. Technol. 2020, 9, 2506–2512. [Google Scholar] [CrossRef]
- Nielsen, M.P.; Hoang, L.C. Limit Analysis and Concrete Plasticity; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hsu, J.-H.; Lin, C.-S. Effect of Fire on the Residual Mechanical Properties and Structural Performance of Reinforced Concrete Beams. J. Fire Prot. Eng. 2008, 18, 245–274. [Google Scholar] [CrossRef]
- ABAQUS. ABAQUS Analysis User’s Guide, Version 6.14; Dassault Systemes Simulia Corp.: Cleveland, OH, USA, 2014. [Google Scholar]
- Kmiecik, P.; KamiŃSki, M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Arch. Civ. Mech. Eng. 2011, 11, 623–636. [Google Scholar] [CrossRef]
- Wai, C.; Rivai, A.; Bapokutty, O. Modelling optimization involving different types of elements in finite element analysis. IOP Conf. Ser. Mater. Sci. Eng. 2013, 50, 012036. [Google Scholar] [CrossRef]
- Shamass, R.; Zhou, X.; Alfano, G. Finite-Element Analysis of Shear-Off Failure of Keyed Dry Joints in Precast Concrete Segmental Bridges. J. Bridge Eng. 2015, 20, 04014084. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, L.; Ma, Z.J.; Feng, W. Shear Behavior of Dry Joints with Castellated Keys in Precast Concrete Segmental Bridges. J. Bridge Eng. 2015, 20, 04014062. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, X.-Q.; Uy, B. Stress-Strain Curves of Structural and Reinforcing Steels after Exposure to Elevated Temperatures. J. Mater. Civ. Eng. 2013, 25, 1306–1316. [Google Scholar] [CrossRef]
- Garg, A.K.; Abolmaali, A. Finite-Element Modeling and Analysis of Reinforced Concrete Box Culverts. J. Transp. Eng. 2009, 135, 121–128. [Google Scholar] [CrossRef]
- Kaneko, Y.; Connor, J.J.; Triantafillou, T.C.; Leung, C.K. Fracture Mechanics Approach for Failure of Concrete Shear Key. I: Theory. J. Eng. Mech. 1993, 119, 681–700. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Qudaisat, M.S. Single keyed joints behaviour and capacity formulation under direct shear using non-linear finite-element analysis. Structures 2023, 47, 911–924. [Google Scholar] [CrossRef]
- Committee, A. Building Code Requirements for Reinforced Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Buyukozturk, O.; Bakhoum, M.M.; Beattie, S.M. Shear Behavior of Joints in Precast Concrete Segmental Bridges. J. Struct. Eng. 1990, 116, 3380–3401. [Google Scholar] [CrossRef]
- Jiang, H.; Wei, R.; Ma, Z.J.; Li, Y.; Jing, Y. Shear Strength of Steel Fiber-Reinforced Concrete Dry Joints in Precast Segmental Bridges. J. Bridge Eng. 2016, 21, 04016085. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Liu, A.; Ma, Z.J.; Chen, L.; Chen, Y. Shear Behavior of Precast Concrete Segmental Beams with External Tendons. J. Bridge Eng. 2018, 23, 04018049. [Google Scholar] [CrossRef]
Number of Elements | Load, kN | Stiffness, kN/mm | ||
---|---|---|---|---|
20,872 | 200.59 | 4.93 | 923.54 | 3.78 |
12,433 | 235.78 | 11.74 | 1006.52 | 13.09 |
74,225 | 274.11 | 29.90 | 1254.26 | 40.93 |
Keyed Joint Designation | Temperature, °C | Confinement Level, MPa | Concrete Compressive Strength, MPa | Ultimate Load, kN | Ultimate Stress (σu), MPa | |
---|---|---|---|---|---|---|
KJ-T23-C1 | 23 | 1 | 50.0 | 226.96 | 4.54 | 0.64 |
KJ-T23-C2 | 2 | 50.0 | 287.05 | 5.74 | 0.81 | |
KJ-T23-C3 | 3 | 50.0 | 329.79 | 6.60 | 0.93 | |
KJ-T23-C4 | 4 | 50.0 | 372.45 | 7.45 | 1.05 | |
KJ-T23-C5 | 5 | 50.0 | 405.02 | 8.10 | 1.15 | |
KJ-T23-C6 | 6 | 50.0 | 443.60 | 8.87 | 1.25 | |
KJ-T200-C1 | 200 | 1 | 45.0 | 216.18 | 4.32 | 0.64 |
KJ-T200-C2 | 2 | 45.0 | 270.00 | 5.40 | 0.80 | |
KJ-T200-C3 | 3 | 45.0 | 312.54 | 6.25 | 0.93 | |
KJ-T200-C4 | 4 | 45.0 | 353.69 | 7.07 | 1.05 | |
KJ-T200-C5 | 5 | 45.0 | 388.09 | 7.76 | 1.16 | |
KJ-T200-C6 | 6 | 45.0 | 426.29 | 8.53 | 1.27 | |
KJ-T400-C1 | 400 | 1 | 32.5 | 172.59 | 3.45 | 0.61 |
KJ-T400-C2 | 2 | 32.5 | 220.92 | 4.42 | 0.78 | |
KJ-T400-C3 | 3 | 32.5 | 260.99 | 5.22 | 0.92 | |
KJ-T400-C4 | 4 | 32.5 | 298.26 | 5.97 | 1.05 | |
KJ-T400-C5 | 5 | 32.5 | 326.58 | 6.53 | 1.15 | |
KJ-T400-C6 | 6 | 32.5 | 360.48 | 7.21 | 1.26 | |
KJ-T600-C1 | 600 | 1 | 20.0 | 141.00 | 2.82 | 0.63 |
KJ-T600-C2 | 2 | 20.0 | 184.72 | 3.69 | 0.83 | |
KJ-T600-C3 | 3 | 20.0 | 220.43 | 4.41 | 0.99 | |
KJ-T600-C4 | 4 | 20.0 | 252.14 | 5.04 | 1.13 | |
KJ-T600-C5 | 5 | 20.0 | 283.14 | 5.66 | 1.27 | |
KJ-T600-C6 | 6 | 20.0 | 285.24 | 5.70 | 1.28 |
Keyed Joint Designation | Temperature, °C | Confinement Level, MPa | Concrete Compressive Strength (fcT), Mpa | NLFEA Ultimate Load, Vu, kN | Equation (15) Ultimate Load, Vu, kN | |
---|---|---|---|---|---|---|
KJ-T23-C1 | 23 | 1 | 50.0 | 226.96 | 223.00 | 1.8 |
KJ-T23-C2 | 2 | 50.0 | 287.05 | 287.25 | 0.1 | |
KJ-T23-C3 | 3 | 50.0 | 329.79 | 333.10 | 1.0 | |
KJ-T23-C4 | 4 | 50.0 | 372.45 | 370.01 | 0.7 | |
KJ-T23-C5 | 5 | 50.0 | 405.02 | 401.43 | 0.9 | |
KJ-T23-C6 | 6 | 50.0 | 443.60 | 429.08 | 3.4 | |
KJ-T200-C1 | 200 | 1 | 45.0 | 216.18 | 211.51 | 2.2 |
KJ-T200-C2 | 2 | 45.0 | 270.00 | 273.81 | 1.4 | |
KJ-T200-C3 | 3 | 45.0 | 312.54 | 318.44 | 1.9 | |
KJ-T200-C4 | 4 | 45.0 | 353.69 | 354.46 | 0.2 | |
KJ-T200-C5 | 5 | 45.0 | 388.09 | 385.18 | 0.8 | |
KJ-T200-C6 | 6 | 45.0 | 426.29 | 412.24 | 3.4 | |
KJ-T400-C1 | 400 | 1 | 32.5 | 172.59 | 179.04 | 3.6 |
KJ-T400-C2 | 2 | 32.5 | 220.92 | 234.86 | 5.9 | |
KJ-T400-C3 | 3 | 32.5 | 260.99 | 275.27 | 5.2 | |
KJ-T400-C4 | 4 | 32.5 | 298.26 | 308.09 | 3.2 | |
KJ-T400-C5 | 5 | 32.5 | 326.58 | 336.22 | 2.9 | |
KJ-T400-C6 | 6 | 32.5 | 360.48 | 361.09 | 0.2 | |
KJ-T600-C1 | 600 | 1 | 20.0 | 141.00 | 139.89 | 0.8 |
KJ-T600-C2 | 2 | 20.0 | 184.72 | 186.08 | 0.7 | |
KJ-T600-C3 | 3 | 20.0 | 220.43 | 219.87 | 0.3 | |
KJ-T600-C4 | 4 | 20.0 | 252.14 | 247.51 | 1.9 | |
KJ-T600-C5 | 5 | 20.0 | 283.14 | 271.33 | 4.4 | |
KJ-T600-C6 | 6 | 20.0 | 285.24 | 292.47 | 2.5 |
Designation [6] | ||||||
---|---|---|---|---|---|---|
(Equation (15)) | Buyukozturk | AASHTO | Rombach | Turmo | ATEP | |
M1-D -K1-1 | 196 | 1.53 | 39.38 | 12.95 | 49.61 | 6.74 |
M1-D -K1-2 | 223 | 5.38 | 40.76 | 1.42 | 39.74 | 0.47 |
M3-D -K1-2 | 330 | 9.09 | 19.44 | 25.56 | 60.00 | 3.06 |
M4-D -K1-1 | 326 | 8.59 | 32.49 | 26.55 | 53.91 | 9.32 |
M4.5-D-K1 | 344 | 9.01 | 34.67 | 25.87 | 50.60 | 13.07 |
Average value | 6.72 | 33.35 | 18.47 | 50.77 | 6.53 |
Reference | Specimen | Concrete Strength (MPa) | Confinement (MPa) | Shear Plane Area (AJ) (mm2) | Experimental | Equation (15) | AASHTO | ||
---|---|---|---|---|---|---|---|---|---|
(kN) | (kN) | (kN) | |||||||
[45] | Keyed Dry-0.69 MPa | 48.4 | 0.69 | 19,355 | 65.5 | 80.6 | 1.23 | 65.3 | 0.99 |
Keyed Dry-2.07 MPa | 47.6 | 2.07 | 19,355 | 84.2 | 105.6 | 1.25 | 84.2 | 0.99 | |
Keyed Dry-3.45 MPa | 49.4 | 3.45 | 19,355 | 111.0 | 133.9 | 1.21 | 116.4 | 1.05 | |
[10] | S60-H10-P1 | 64.0 | 1.00 | 17,000 | 75.5 | 87.3 | 1.16 | 70.6 | 0.94 |
S60-H10-P2 | 64.0 | 2.00 | 17,000 | 105.0 | 106.2 | 1.01 | 87.7 | 0.84 | |
S60-H10-P3 | 64.0 | 3.00 | 17,000 | 130.9 | 125.2 | 0.96 | 104.7 | 0.80 | |
S70-H10-P1 | 64.0 | 1.00 | 17,000 | 86.3 | 87.3 | 1.01 | 70.6 | 0.82 | |
S70-H10-P2 | 64.0 | 2.00 | 17,000 | 107.9 | 106.2 | 0.98 | 87.7 | 0.81 | |
S70-H10-P3 | 64.0 | 3.00 | 17,000 | 135.0 | 125.2 | 0.93 | 104.7 | 0.78 | |
S70-H20-P1 | 64.0 | 1.00 | 17,000 | 86.5 | 87.3 | 1.01 | 70.6 | 0.82 | |
S70-H20-P3 | 64.0 | 3.00 | 17,000 | 111.8 | 125.2 | 1.12 | 104.7 | 0.94 | |
[46] | K1-N7-F-0.5 | 58.3 | 0.50 | 20,000 | 117.6 | 87.4 | 0.74 | 86.3 | 0.73 |
K1-N7-F-1.0 | 58.3 | 1.00 | 20,000 | 138.7 | 98.1 | 0.71 | 97.1 | 0.70 | |
K1-N7-F-2.0 | 58.3 | 2.00 | 20,000 | 167.3 | 119.4 | 0.71 | 118.6 | 0.71 | |
[47] | K1-01 | 41.5 | 1.00 | 20,000 | 89.7 | 82.7 | 0.92 | 96.9 | 1.08 |
K1-02 | 41.5 | 2.00 | 20,000 | 113.9 | 100.7 | 0.88 | 126.4 | 1.11 | |
K1-03 | 40.8 | 1.00 | 20,000 | 90.8 | 82.0 | 0.90 | 89.0 | 0.98 | |
K1-04 | 40.8 | 1.00 | 20,000 | 94.5 | 82.0 | 0.87 | 107.7 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnemrawi, B.R.; Al-Rousan, R. NLFEA Behavior of Heat-Damaged Key Joints in Precast Concrete Segmental Bridge. Buildings 2025, 15, 1890. https://doi.org/10.3390/buildings15111890
Alnemrawi BR, Al-Rousan R. NLFEA Behavior of Heat-Damaged Key Joints in Precast Concrete Segmental Bridge. Buildings. 2025; 15(11):1890. https://doi.org/10.3390/buildings15111890
Chicago/Turabian StyleAlnemrawi, Bara’a R., and Rajai Al-Rousan. 2025. "NLFEA Behavior of Heat-Damaged Key Joints in Precast Concrete Segmental Bridge" Buildings 15, no. 11: 1890. https://doi.org/10.3390/buildings15111890
APA StyleAlnemrawi, B. R., & Al-Rousan, R. (2025). NLFEA Behavior of Heat-Damaged Key Joints in Precast Concrete Segmental Bridge. Buildings, 15(11), 1890. https://doi.org/10.3390/buildings15111890