Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = concave hole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 221
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

11 pages, 2203 KiB  
Article
Superlattice Structure for High Performance AlGaN Deep Ultraviolet LEDs
by Mano Bala Sankar Muthu, Ravi Teja Velpula, Barsha Jain and Hieu Pham Trung Nguyen
Photonics 2025, 12(8), 752; https://doi.org/10.3390/photonics12080752 - 26 Jul 2025
Viewed by 259
Abstract
This study presents a novel approach to mitigate electron overflow in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs) by integrating engineered quantum barriers (QBs) with a concave shape and an optimized AlGaN superlattice (SL) electron blocking layer (EBL). The concave QBs reduce electron [...] Read more.
This study presents a novel approach to mitigate electron overflow in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs) by integrating engineered quantum barriers (QBs) with a concave shape and an optimized AlGaN superlattice (SL) electron blocking layer (EBL). The concave QBs reduce electron leakage by lowering the electron thermal velocity and mean free path, enhancing electron capture in the active region. The SL EBL further reduces electron overflow without compromising hole transport. At a wavelength of ~253.7 nm, the proposed LED demonstrates a 2.67× improvement in internal quantum efficiency (IQE) and a 2.64× increase in output power at 150 mA injection, with electron leakage reduced by ~4 orders of magnitude compared to conventional LEDs. The efficiency droop is found to be just 2.32%. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

38 pages, 7430 KiB  
Article
Against Expectations: A Simple Greedy Heuristic Outperforms Advanced Methods in Bitmap Decomposition
by Ville Pitkäkangas
Electronics 2025, 14(13), 2615; https://doi.org/10.3390/electronics14132615 - 28 Jun 2025
Viewed by 350
Abstract
Partitioning rectangular and rectilinear shapes in n-dimensional binary images into the smallest set of axis-aligned n-cuboids is a fundamental problem in image analysis, pattern recognition, and computational geometry, with applications in object detection, shape simplification, and data compression. This paper introduces and evaluates [...] Read more.
Partitioning rectangular and rectilinear shapes in n-dimensional binary images into the smallest set of axis-aligned n-cuboids is a fundamental problem in image analysis, pattern recognition, and computational geometry, with applications in object detection, shape simplification, and data compression. This paper introduces and evaluates four deterministic decomposition methods: pure greedy selection, greedy with backtracking, greedy with a priority queue, and an iterative integer linear programming (IILP) approach. These methods are benchmarked against three established baseline techniques across 13 diverse 1D–4D images (up to 8 × 8 × 8 × 8 elements), featuring holes, concavities, and varying orientations. Surprisingly, the simplest approach—a purely greedy heuristic selecting the largest unvisited region at each step—consistently achieved optimal or near-optimal decompositions, even for complex images, and maintained optimality under rotation without post-processing. By contrast, the more sophisticated methods (backtracking, prioritization, and IILP) exhibited trade-offs between speed and quality, with IILP adding overhead without superior results. Runtime testing showed IILP was on average ~37× slower than the fastest greedy method (ranging from ~3× to 100× slower). These findings highlight that a well-designed greedy strategy can outperform more complex algorithms for practical binary shape decomposition, offering a compelling balance between computational efficiency and solution quality in pattern recognition and image analysis. Full article
Show Figures

Graphical abstract

17 pages, 5909 KiB  
Article
Experimental Assessment of Scour Around Side-by-Side Double Piers in an S-Shaped Channel with Ice-Jammed Flow
by Zhonglin Li, Zhenhua Zhang, Jueyi Sui and Jun Wang
Water 2025, 17(12), 1768; https://doi.org/10.3390/w17121768 - 12 Jun 2025
Viewed by 395
Abstract
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development [...] Read more.
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development of a scour hole around a bridge pier in a straight channel, where the scour depth increases with the flow Froude number under ice-covered conditions, this study reveals that in an S-shaped channel, scour depth increases with the flow Froude number near the convex bank pier and decreases near the concave bank counterpart. Irrespective of ice conditions, a higher ratio of pier spacing-diameter correlates with augmented scour depth at the convex bank and diminished scour at the concave bank. As the ice-to-flow rate ratio increases, the ice jam thickness in the S-shaped channel also increases, leading to a significant decrease in the flow area and resulting in deeper scour holes around the piers. Equations have been developed to calculate the maximum scour depth around side-by-side double piers positioned in an S-shaped channel with ice-jammed flow. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

21 pages, 885 KiB  
Article
An Optimization Method for Multi-Functional Radar Network Deployment in Complex Regions
by Yi Han, Xueting Li, Xiangliang Xu, Zhenxing Zhang, Tianxian Zhang and Xiaobo Yang
Remote Sens. 2025, 17(4), 730; https://doi.org/10.3390/rs17040730 - 19 Feb 2025
Cited by 1 | Viewed by 694
Abstract
This paper addresses the deployment of a multi-functional radar network (MFRN) in complex regions that may exhibit non-connectivity, holes, or concave shapes, utilizing multi-objective particle swarm optimization (MOPSO). Unlike traditional approaches that rely on constraint-handling techniques, the proposed methodology leverages the unique characteristics [...] Read more.
This paper addresses the deployment of a multi-functional radar network (MFRN) in complex regions that may exhibit non-connectivity, holes, or concave shapes, utilizing multi-objective particle swarm optimization (MOPSO). Unlike traditional approaches that rely on constraint-handling techniques, the proposed methodology leverages the unique characteristics of polygonal deployment regions to enhance deployment efficiency. Specifically, for the aforementioned complex deployment regions, a region decomposition approach based on convex partitioning is proposed. This approach allows for the decomposition of complex regions into multiple non-overlapping convex subregions. Moreover, for convex deployment regions or subregions, we propose a coordinate transformation approach to eliminate the constraints introduced by the shape of the convex region. By combining the above approaches, we introduce a novel MOPSO based on decomposition and transformation, named MOPSO-DT. This algorithm aims to optimize MFRN deployment in these challenging environments. Experimental results demonstrate the superiority of the MOPSO-DT algorithm over two existing algorithms across a variety of deployment cases, highlighting its enhanced efficiency, effectiveness, and stability. These findings indicate that the proposed algorithm is well suited for optimizing MFRN deployment in complex, irregular regions, offering significant improvements in performance compared to conventional methods. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

13 pages, 10799 KiB  
Article
Development of a Bicycle-like Magnetic-Wheeled Climbing Robot with Adaptive Plane-Transition Capabilities
by Yongjian Bu, Lide Dun, Yongtao Deng, Bingdong Jiang, Aihua Jiang and Haifei Zhu
Machines 2025, 13(2), 167; https://doi.org/10.3390/machines13020167 - 19 Feb 2025
Cited by 1 | Viewed by 621
Abstract
Although robots are increasingly expected to perform inspection tasks in three-dimensional ferromagnetic structural environments, magnetic-wheeled climbing robots face significant challenges in overcoming obstacles and transiting between planes. In this paper, we propose a novel bicycle-like magnetic-wheeled climbing robot, named BiMagBot, featuring two magnetic [...] Read more.
Although robots are increasingly expected to perform inspection tasks in three-dimensional ferromagnetic structural environments, magnetic-wheeled climbing robots face significant challenges in overcoming obstacles and transiting between planes. In this paper, we propose a novel bicycle-like magnetic-wheeled climbing robot, named BiMagBot, featuring two magnetic wheels that allow the adaptive adjustment of magnetic adhesion without the need for active control. The front wheel incorporates an arc tentacle mechanism that rotates a ring magnet to adjust the magnetic adhesion, while the rear wheel uses an eccentric shaft-hole design to facilitate a smooth transition of magnetic adhesion between surfaces. The magnetic forces acting on both wheels during transitions through concave corners were analyzed and discussed via simulations to elucidate the underlying principles. A prototype of the robot was developed and tested experimentally. The results show that the front and rear wheels can adjust the magnetic adhesion during the transition of corners with angles ranging from 90° to 315°. The robot only weighs 1.6 kg, but it can carry a weight of 2 kg with a speed of 0.9 m/s to transit across concave corners, demonstrating comprehensive capabilities in plane transition, ease of control, and load capacity. Full article
(This article belongs to the Special Issue Climbing Robots: Scaling Walls with Precision and Efficiency)
Show Figures

Figure 1

18 pages, 6632 KiB  
Article
Study on the Superhydrophobic Properties of Micro/Nano Hole Structure on the Surface of Glass Fiber Reinforced Plastics Based on Femtosecond Laser Etching
by Ji Wang, Guolong Wang, Zhenkai Zhu and Wenwu Zhang
Nanomaterials 2025, 15(4), 287; https://doi.org/10.3390/nano15040287 - 13 Feb 2025
Cited by 3 | Viewed by 964
Abstract
A method of femtosecond laser multi-pulse grid-like point etching (MP-GPE) was used to prepare glass fiber reinforced plastics with superhydrophobic properties. This article investigates the influence trend of single-pulse energy (5–35 μJ) and etching pulse number (20–100) on the morphology of surface concave [...] Read more.
A method of femtosecond laser multi-pulse grid-like point etching (MP-GPE) was used to prepare glass fiber reinforced plastics with superhydrophobic properties. This article investigates the influence trend of single-pulse energy (5–35 μJ) and etching pulse number (20–100) on the morphology of surface concave holes, including depth and width. Different combinations of process parameters have a modulating effect on the size of the concave hole structure and the ablation of the reinforced plastics. At a single-pulse energy of 25 μJ and 60 pulse numbers, the depth of the concave holes increases to the maximum of approximately 63 μm, and the width of the upper surface of the concave holes is approximately 33 μm. Under these conditions, the maximum water contact angle of 160.6° is obtained, which is consistent with the theoretical calculation results of 161.6°. This is very promising for the power industry to use this material in low-temperature, drag-reducing environments. Full article
Show Figures

Figure 1

14 pages, 16240 KiB  
Article
Electrochemical Mill Grinding of (TiB+TiC)/Ti6Al4V Composites Using Abrasive Tool with Bottom Outlet Holes
by Shen Niu, Kaiqiang Huang, Pingmei Ming, Ge Qin and Yansen Peng
Micromachines 2024, 15(12), 1410; https://doi.org/10.3390/mi15121410 - 23 Nov 2024
Cited by 1 | Viewed by 886
Abstract
Difficult-to-cut titanium matrix composites (TMCs) are widely used in the aerospace, automotive, and defense sectors due to their excellent physical properties. Electrochemical mill grinding (ECMG) can achieve the processing effects of electrochemical milling and electrochemical grinding using the same tool, which has the [...] Read more.
Difficult-to-cut titanium matrix composites (TMCs) are widely used in the aerospace, automotive, and defense sectors due to their excellent physical properties. Electrochemical mill grinding (ECMG) can achieve the processing effects of electrochemical milling and electrochemical grinding using the same tool, which has the potential to complete the rough and finish machining of TMCs in succession. However, in the rough machining stage, the bottom of the slot becomes concave due to the inevitable stray corrosion, leading to poor flatness, which increases the machining allowance for subsequent finish machining. In this paper, a bottom outlet hole layout of an abrasive tool with a diameter of 6 mm is proposed. Dynamic simulations demonstrate that the electrolyte flow rate in both side regions of the slot is significantly increased by the bottom outlet holes. The experimental results confirm that, compared with the tool without bottom outlet holes, a 61.2% reduction in the bottom flatness can be achieved when using the newly proposed tool during rough machining. After the finish machining, a slot with a width of 8 mm and a depth of 4.8 mm was obtained on the TMCs, which had a flat bottom and sidewall surface with good surface quality. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

13 pages, 721 KiB  
Article
Comparison of On-Sky Wavelength Calibration Methods for Integral Field Spectrograph
by Jie Song, Baichuan Ren, Yuyu Tang, Jun Wei and Xiaoxian Huang
Electronics 2024, 13(20), 4131; https://doi.org/10.3390/electronics13204131 - 21 Oct 2024
Cited by 1 | Viewed by 962
Abstract
With advancements in technology, scientists are delving deeper in their explorations of the universe. Integral field spectrograph (IFS) play a significant role in investigating the physical properties of supermassive black holes at the centers of galaxies, the nuclei of galaxies, and the star [...] Read more.
With advancements in technology, scientists are delving deeper in their explorations of the universe. Integral field spectrograph (IFS) play a significant role in investigating the physical properties of supermassive black holes at the centers of galaxies, the nuclei of galaxies, and the star formation processes within galaxies, including under extreme conditions such as those present in galaxy mergers, ultra-low-metallicity galaxies, and star-forming galaxies with strong feedback. IFS transform the spatial field into a linear field using an image slicer and obtain the spectra of targets in each spatial resolution element through a grating. Through scientific processing, two-dimensional images for each target band can be obtained. IFS use concave gratings as dispersion systems to decompose the polychromatic light emitted by celestial bodies into monochromatic light, arranged linearly according to wavelength. In this experiment, the working environment of a star was simulated in the laboratory to facilitate the wavelength calibration of the space integral field spectrometer. Tools necessary for the calibration process were also explored. A mercury–argon lamp was employed as the light source to extract characteristic information from each pixel in the detector, facilitating the wavelength calibration of the spatial IFS. The optimal peak-finding method was selected by contrasting the center of weight, polynomial fitting, and Gaussian fitting methods. Ultimately, employing the 4FFT-LMG algorithm to fit Gaussian curves enabled the determination of the spectral peak positions, yielding wavelength calibration coefficients for a spatial IFS within the range of 360 nm to 600 nm. The correlation of the fitting results between the detector pixel positions and corresponding wavelengths was >99.99%. The calibration accuracy during wavelength calibration was 0.0067 nm, reaching a very high level. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

12 pages, 4144 KiB  
Article
Systematic Analysis of Spacer and Gate Length Scaling on Memory Characteristics in 3D NAND Flash Memory
by Hee Young Bae, Seul Ki Hong and Jong Kyung Park
Appl. Sci. 2024, 14(15), 6689; https://doi.org/10.3390/app14156689 - 31 Jul 2024
Cited by 1 | Viewed by 2112
Abstract
This study investigates the impact of oxide/nitride (ON) pitch scaling on the memory performance of 3D NAND flash memory. We aim to enhance 3D NAND flash memory by systematically reducing the spacer length (Ls) and gate length (Lg) to achieve improved memory characteristics. [...] Read more.
This study investigates the impact of oxide/nitride (ON) pitch scaling on the memory performance of 3D NAND flash memory. We aim to enhance 3D NAND flash memory by systematically reducing the spacer length (Ls) and gate length (Lg) to achieve improved memory characteristics. Using TCAD simulations, we evaluate the effects of Ls and Lg scaling on the program speed, erase speed, and Z-interference. Furthermore, we examine the influence of concave and convex channel structures in the context of Ls and Lg scaling. By analyzing the distributions of electron and hole-trapped charges, we provide insights into optimizing the trade-offs between the memory window and retention characteristics. This research offers valuable guidelines for improving the reliability and performance of 3D NAND flash memory through a systematic analysis of spacer and gate length scaling. Full article
Show Figures

Figure 1

18 pages, 12045 KiB  
Article
Mathematical Modeling of Transient Submerged Entry Nozzle Clogging and Its Effect on Flow Field, Bubble Distribution and Interface Fluctuation in Slab Continuous Casting Mold
by Yuntong Li, Wenyuan He, Changliang Zhao, Jianqiu Liu, Zeyu Yang, Yuhang Zhao and Jian Yang
Metals 2024, 14(7), 742; https://doi.org/10.3390/met14070742 - 22 Jun 2024
Cited by 1 | Viewed by 1323
Abstract
Submerged entry nozzle (SEN) clogging will affect the production efficiency and product quality in the continuous casting process. In this work, the transient SEN clogging model is developed by coupling the porous media model defined by the user-defined function (UDF) and the discrete [...] Read more.
Submerged entry nozzle (SEN) clogging will affect the production efficiency and product quality in the continuous casting process. In this work, the transient SEN clogging model is developed by coupling the porous media model defined by the user-defined function (UDF) and the discrete phase model (DPM). The effects of the transient SEN clogging process on the flow field, the distribution of argon gas bubbles and the fluctuation of the interface between steel and slag in the concave bottom SEN in the continuous casting slab mold with a cross-section of 1500 mm × 230 mm are studied by coupling transient SEN clogging model, DPM and volume of fluid (VOF) model. The results show that the actual morphology and thicknesses of SEN clogging are in good agreement with the numerical simulation results. The measurement result of the surface velocity is consistent with the numerical simulation result. With increasing the simulation time, the degree of SEN clogging increases. The flow velocities of molten steel flowing from the outlet of the side hole increase, because the flow space is occupied with the clogging inclusions, which leads to the increased number of argon gas bubbles near the narrow wall. The steel–slag interface fluctuation near the narrow walls also increases, resulting in the increased risk of slag entrapment. Full article
Show Figures

Figure 1

14 pages, 4276 KiB  
Article
Modeling of the Flow Field and Clad Geometry of a Molten Pool during Laser Cladding of CoCrCuFeNi High-Entropy Alloys
by Dachuan Tian, Chonggui Li, Zhiguo Hu, Xintong Li, Yajun Guo, Xiaosong Feng, Zhenhai Xu, Xiaoguang Sun and Wenge Li
Materials 2024, 17(3), 564; https://doi.org/10.3390/ma17030564 - 25 Jan 2024
Cited by 2 | Viewed by 1595
Abstract
A flow field analysis was performed in this research using the ANSYS Fluent module, and a dynamic heat source employing UDF was constructed using the DEFINE_PROFILE macro. A VOF model was developed to track the volume fraction of each fluid throughout the computational [...] Read more.
A flow field analysis was performed in this research using the ANSYS Fluent module, and a dynamic heat source employing UDF was constructed using the DEFINE_PROFILE macro. A VOF model was developed to track the volume fraction of each fluid throughout the computational domain as well as the steady-state or transient condition of the liquid–gas interface in the free liquid surface area. To determine the distribution state and regularity of the molten pool flow field, the flow field velocity was calculated iteratively by linking the Simple algorithm with the horizontal set method. The molten pool was concave, indicating that the key hole was distributed narrowly. Inserting cross-sections at different depths yielded the vector distribution of the molten pool flow velocity along the depth direction. We set up monitoring sites along the molten pool’s depth direction and watched the flow change over time. We investigated the effects of the process parameters on the flow field’s vector distribution. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

16 pages, 11771 KiB  
Article
Adaptive Ultrasonic Full Matrix Capture Process for the Global Imaging of Complex Components with Curved Surfaces
by Wensong Miao, Ne Liu, Jingqiang Huang and Minghui Lu
Sensors 2024, 24(1), 225; https://doi.org/10.3390/s24010225 - 30 Dec 2023
Cited by 1 | Viewed by 1835
Abstract
This work proposes a new global FD-RTM method to solve the problem of ultrasonic inspection of parts with complex geometric shapes. With this method, the frequency domain reverse time migration (FD-RTM) algorithm is used to adapt to the complex refraction of ultrasonic waves [...] Read more.
This work proposes a new global FD-RTM method to solve the problem of ultrasonic inspection of parts with complex geometric shapes. With this method, the frequency domain reverse time migration (FD-RTM) algorithm is used to adapt to the complex refraction of ultrasonic waves by the surface, while an interface solution algorithm based on tangent fitting is used to solve the interface position with high precision through the full matrix reception data. Based on high-precision interface information, a hybrid extrapolation algorithm and a situation-specific probe movement strategy are used to enable the probe to find the next sampling point according to the direction of the workpiece surface, allowing complex surface topography features to be identified without relying on the workpiece CAD drawing. This makes it possible to achieve the automated inspection of workpieces. To verify the proposed method’s effectiveness, an aluminum alloy model with side-drilled holes (SDH) is used. The geometry of the model consists of multiple convex and concave surfaces. By comparing the local FD-RTM imaging with images synthesized using the entire scan path, it is shown that gFD-RTM improved the imaging performance. Compared with FD-RTM, the average signal-to-noise ratio of gFD-RTM was increased by 20%, and the array performance index (API) was reduced by 70%, indicating effective detection coverage. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

9 pages, 3950 KiB  
Article
A High Refractive Index Plasmonic Micro-Channel Sensor Based on Photonic Crystal Fiber
by Jiangtao Lv, Tong Liang, Qiongchan Gu, Qiang Liu, Yu Ying and Guangyuan Si
Nanomaterials 2022, 12(21), 3764; https://doi.org/10.3390/nano12213764 - 26 Oct 2022
Cited by 6 | Viewed by 2079
Abstract
A new concave shaped high refractive index plasmonic sensor with a micro-channel is proposed in this work, which comprises an analyte channel in the core hole. The sensor is elaborately designed to reduce the interference effect from the metal coating. Furthermore, the impact [...] Read more.
A new concave shaped high refractive index plasmonic sensor with a micro-channel is proposed in this work, which comprises an analyte channel in the core hole. The sensor is elaborately designed to reduce the interference effect from the metal coating. Furthermore, the impact of the proposed structure on the sensitivity is also investigated by engineering the geometric parameters using the finite element method. We select gold as the plasmonic material in this theoretical study because it is widely used to fabricate plasmonic and metamaterial devices due to its chemical stability and compatibility. According to wavelength interrogation technique, simulations results show that this sensor can obtain maximal wavelength sensitivity of 10,050 nm/refractive index unit. In view of the excellent indicators of this device, it has important development potential in chemical and biological research fields. Full article
(This article belongs to the Special Issue Nanophotonics: Plasmons, Lasers and Photonic Crystals)
Show Figures

Figure 1

26 pages, 25732 KiB  
Article
Combining 3D Geological Modeling and 3D Spectral Modeling for Deep Mineral Exploration in the Zhaoxian Gold Deposit, Shandong Province, China
by Bin Li, Yongming Peng, Xianyong Zhao, Xiaoning Liu, Gongwen Wang, Huiwei Jiang, Hao Wang and Zhenliang Yang
Minerals 2022, 12(10), 1272; https://doi.org/10.3390/min12101272 - 9 Oct 2022
Cited by 7 | Viewed by 3497
Abstract
The Jiaodong Peninsula hosts the main large gold deposits and was the first gold production area in China; multisource and multiscale geoscience datasets are available. The area is the biggest drilling mineral-exploration zone in China. This study used three-dimensional (3D) modeling, geology, and [...] Read more.
The Jiaodong Peninsula hosts the main large gold deposits and was the first gold production area in China; multisource and multiscale geoscience datasets are available. The area is the biggest drilling mineral-exploration zone in China. This study used three-dimensional (3D) modeling, geology, and ore body and alteration datasets to extract and synthesize mineralization information and analyze the exploration targeting in the Zhaoxian gold deposit in the northwestern Jiaodong Peninsula. The methodology and results are summarized as follows: The regional Jiaojia fault is the key exploration criterion of the gold deposit. The compression torsion characteristics and concave–convex section zones in the 3D deep environment are the main indicators of mineral exploration using 3D geological and ore-body modeling in the Zhaoxian gold deposit. The hyperspectral detailed measurement, interpretation, and data mining used drill-hole data (>1000 m) to analyze the vectors and trends of the ore body and ore-forming fault and the alteration-zone rocks in the Zhaoxian gold deposit. The short-wave infrared Pos2200 values and illite crystallinity in the alteration zone can be used to identify 3D deep gold mineralization and potential targets for mineral exploration. This research methodology can be globally used for other deep mineral explorations. Full article
(This article belongs to the Special Issue 3D/4D Geological Modeling for Mineral Exploration)
Show Figures

Figure 1

Back to TopTop