water-logo

Journal Browser

Journal Browser

Flow Dynamics and Sediment Transport in Rivers and Coasts

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydraulics and Hydrodynamics".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 4050

Special Issue Editors


E-Mail Website
Guest Editor
School of Engineering, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
Interests: fluvial hydraulics; local scour; river ice hydraulics; sediment transport; eco-hydraulics; snow hydrology; numerical simulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
Interests: environmental hydraulics; solute and sediment transport; computational fluid mechanics; river habitat restoration; ecological hydraulic control; applied and computational mathematics

E-Mail Website
Guest Editor
School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China
Interests: river ice; ice dynamics; ice hydrology; experimental study; local scour; ice regime; numerical model
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In natural rivers and coastal regions, flow dynamics and sediment transport are important processes that keep shaping the land surface. Fluvial hydraulics deals with the flow of water, the motion of sediment, and the erosion of channel beds. Flow dynamics becomes more complex, as the velocity, slope, depth, and channel roughness are all subject to changes resulting from erodible beds and sediment transport due to the presence of in-stream infrastructure, vegetation in channel beds/banks, and ice cover on the water surface. As a consequence, it can lead to a variety of challenges for public safety, the operation and maintenance of water infrastructures, transportation and navigation in estuary and coastal regions, and for environmental and aquatic ecosystems.

To date, scientists have conducted a large amount of cutting-edge research on all aspects of sediment transport and fluvial hydraulics in rivers and coasts. Many research papers have been published to help researchers continue to explore this subject in the right direction. The aim of this Special Issue is to showcase renewed contributions that improve the knowledge of this theme, including, but not limited to, channel bed deformation, local scour around infrastructures, fluvial processes in the presence of vegetation, river ice hydraulics, the environmental and ecological impacts of sedimentation, the effect of reservoir sedimentation, coastal erosion, and wave dynamics. Research works regarding tidal power generation, the impact of river ice on the operation of hydropower plants and other water infrastructure, and hydrodynamic and hydrological modeling, are also welcome.

Dr. Jueyi Sui
Dr. Wenxin Huai
Prof. Dr. Jun Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • eco-hydraulics
  • fluvial hydraulics
  • local scour
  • riverbed deformation
  • sediment transport
  • turbulence
  • wave dynamics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 12819 KB  
Article
Morphodynamic Controls on Thermal Plume Dispersion at River Mouths: Insights from Field Data and Numerical Modeling
by Naghmeh Heidari, Murat Aksel, Oral Yagci, Mehmet Yusuf Erbisim, Sevket Cokgor and Manousos Valyrakis
Water 2025, 17(18), 2721; https://doi.org/10.3390/w17182721 - 14 Sep 2025
Abstract
Thermal discharge from power plants causes significant concerns in aquatic environments. The purpose of this study is to evaluate how river mouth morphodynamics, particularly spit development and removal, influence the dispersion of thermal plumes. To achieve this, a case study was carried out [...] Read more.
Thermal discharge from power plants causes significant concerns in aquatic environments. The purpose of this study is to evaluate how river mouth morphodynamics, particularly spit development and removal, influence the dispersion of thermal plumes. To achieve this, a case study was carried out at a coastal power plant in southwest Türkiye, where thermal effluent is conveyed to the sea through a low-flow river. Field measurements combined with numerical modeling were used to analyze plume dynamics under varying spit configurations. Results revealed that the evolution of a spit on one side of the river mouth influences plume dispersion and redirects the mixing zone toward the opposite shoreline. Numerical simulations demonstrated that spit development reduces dispersion efficiency (by over 75%), while the physical removal of the spit significantly improves it, reducing temperature excess from 4–5 °C to 0–1 °C within the mixing zone, meeting safe environmental standards. The findings highlight the pivotal role of morphological changes in governing thermal discharge behavior and emphasize the importance of continuous monitoring and management strategies, such as periodic dredging, to ensure compliance with environmental regulations. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

29 pages, 9843 KB  
Article
Hydrodynamic Performance of Seawater Intake Structures Through Numerical Modelling and Particle Image Velocimetry
by Mahmood Rahmani Firozjaei, Zahra Hajebi, Seyed Taghi Omid Naeeni, Hassan Akbari and Gregorio Iglesias
Water 2025, 17(17), 2607; https://doi.org/10.3390/w17172607 - 3 Sep 2025
Viewed by 868
Abstract
The performance of seawater intake systems affects the reliability and efficiency of desalination plants and water-processing systems. The objective of this work is to gain insights into improving their design by examining the flow patterns around seawater intakes using particle image velocimetry ( [...] Read more.
The performance of seawater intake systems affects the reliability and efficiency of desalination plants and water-processing systems. The objective of this work is to gain insights into improving their design by examining the flow patterns around seawater intakes using particle image velocimetry (PIV), image processing techniques, and numerical modeling. Different wave and current conditions are considered, and intake conditions are classified into categories based on hydrodynamic parameters. Numerical simulations indicate complex flow patterns under simultaneous waves and currents. The results revealed that the velocity of the approach current affects the efficiency of seawater intake, and the impact depends on the cap geometry. Square caps, characterized by sharp edges, create flow contractions and instabilities, whereas circular caps result in smoother flow patterns, enhancing efficiency. Wave action exacerbates these effects, particularly as the Keulegan–Carpenter (KC) number increases, and may compromise the stability of intake structures. Circular caps improve overall stability and performance under waves. These results contribute to better designs of seawater intake structures and, thus, improved efficiency and stability. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

17 pages, 5909 KB  
Article
Experimental Assessment of Scour Around Side-by-Side Double Piers in an S-Shaped Channel with Ice-Jammed Flow
by Zhonglin Li, Zhenhua Zhang, Jueyi Sui and Jun Wang
Water 2025, 17(12), 1768; https://doi.org/10.3390/w17121768 - 12 Jun 2025
Viewed by 513
Abstract
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development [...] Read more.
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development of a scour hole around a bridge pier in a straight channel, where the scour depth increases with the flow Froude number under ice-covered conditions, this study reveals that in an S-shaped channel, scour depth increases with the flow Froude number near the convex bank pier and decreases near the concave bank counterpart. Irrespective of ice conditions, a higher ratio of pier spacing-diameter correlates with augmented scour depth at the convex bank and diminished scour at the concave bank. As the ice-to-flow rate ratio increases, the ice jam thickness in the S-shaped channel also increases, leading to a significant decrease in the flow area and resulting in deeper scour holes around the piers. Equations have been developed to calculate the maximum scour depth around side-by-side double piers positioned in an S-shaped channel with ice-jammed flow. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

25 pages, 4642 KB  
Article
Bed Load Transport in Channels with Vegetated Banks
by Fatemeh Jalilian, Esmaeil Dodangeh, Hossein Afzalimehr, Jueyi Sui and Kamran Ahmadi
Water 2025, 17(12), 1758; https://doi.org/10.3390/w17121758 - 12 Jun 2025
Viewed by 638
Abstract
Estimating bed load in rivers is a critical aspect of river engineering. Numerous methods have been developed to quantify bed load transport, often yielding varying results depending on the bed surface texture and grain size. This study aims to investigate how vegetation on [...] Read more.
Estimating bed load in rivers is a critical aspect of river engineering. Numerous methods have been developed to quantify bed load transport, often yielding varying results depending on the bed surface texture and grain size. This study aims to investigate how vegetation on channel banks and bed material particle size influence bed load transport, bed shear stress, velocity distribution, and the Shields parameter. It also examines the impact of geometric changes in the channel cross-section on bed load transport capacity. To address these objectives, a novel simulation method was developed to analyze the effects of vegetated banks, bed material size, and channel geometry. Field investigations were carried out in two reaches of the Taleghan River in Iran—one with vegetated banks and one without. Complementary flume experiments were conducted at two scales, incorporating vegetation on the sidewalls. Results showed that Shields parameter distribution corresponded with bed load distribution across cross-sections. Increase in flow rate and the Shields parameter led to higher bedload transport rates. Near vegetated banks, flow velocity, shear stress, and bedload transport were significantly reduced, with velocity profiles showing distinct variations compared to non-vegetated sections. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

25 pages, 9643 KB  
Article
Numerical Modeling of the Three-Dimensional Wave-Induced Current Field
by Gabriela Gic-Grusza
Water 2025, 17(9), 1336; https://doi.org/10.3390/w17091336 - 29 Apr 2025
Viewed by 507
Abstract
This paper showcases the results of three-dimensional numerical modeling of coastal zone hydrodynamics, based on a recently developed three-dimensional analytical model incorporating a three-dimensional formulation of radiation stress. The study examines the influence of cross-shore and alongshore bathymetric variability on hydrodynamic model results, [...] Read more.
This paper showcases the results of three-dimensional numerical modeling of coastal zone hydrodynamics, based on a recently developed three-dimensional analytical model incorporating a three-dimensional formulation of radiation stress. The study examines the influence of cross-shore and alongshore bathymetric variability on hydrodynamic model results, focusing on internal volumetric current transport, bottom friction, free surface elevation, and velocity distributions. Using coastal zone cases with increasing complexity and wave datasets, we analyze differences between 2D and 3D model solutions, as well as theoretical calculations based on analytical solutions. Results indicate that in idealized, homogeneous bathymetric conditions, 2D and 3D models yield similar outputs. However, increased bathymetric complexity introduces significant variations, particularly in velocity fields and transport dynamics. Alongshore variability further modifies these distributions, emphasizing the role of lateral gradients often neglected in simplified models. The study demonstrates that neglecting alongshore bathymetric heterogeneity can lead to underestimation of key hydrodynamic variables, affecting model accuracy in coastal applications. Two-dimensional current transport fields reveal circulation patterns and possible rip current formations, suggesting that the proposed model framework provides improved insights into real-world coastal hydrodynamics. These findings highlight the necessity of incorporating three-dimensional bathymetric variability in predictive models to enhance accuracy in coastal engineering and environmental management applications. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

20 pages, 12609 KB  
Article
Response of Riverbed Shaping to a Flood Event in the Reach from Alar to Xinquman in the Mainstream of the Tarim River
by Mingcheng Zhao, Yujian Li, Lin Li and Wenhong Dai
Water 2025, 17(7), 1092; https://doi.org/10.3390/w17071092 - 6 Apr 2025
Cited by 1 | Viewed by 747
Abstract
As the largest inland river in China, the Tarim River’s flood events significantly influence its riverbed formation. This paper took the Alar to Xinquman section of the Tarim River as the study area. The study area’s digital elevation model of the river was [...] Read more.
As the largest inland river in China, the Tarim River’s flood events significantly influence its riverbed formation. This paper took the Alar to Xinquman section of the Tarim River as the study area. The study area’s digital elevation model of the river was constructed using historical Google images and Copernicus DEM 30. Six different flood events were selected, corresponding to flood events with varying sediment loads, flood volumes, and peak flow volumes. The MIKE 21 software was used to simulate and investigate the response of the riverbed shape to different flood events. The experimental findings indicate that the sand content constitutes a pivotal factor in the formation of the riverbed during flood events. Flood sediment load goes through stages linked to changes in riverbed erosion and deposition. The combination of high peak flow and bed-forming flow after the peak effectively shapes the central channel’s morphology. The fourth type of flood event had the highest sediment transport coefficient Φ among the six types of floods and caused the most significant scouring effect on the riverbed under low sediment load conditions. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

Back to TopTop