Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,221)

Search Parameters:
Keywords = compression testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7459 KB  
Article
Strength Characteristics and Micro-Mechanism of Coral Sand Reinforced by EICP Combined with Aluminum Ions
by Rong Chen, Yirou Yang, Dongxue Hao, Zhaoping Wang and Bingxi Fang
J. Mar. Sci. Eng. 2026, 14(3), 286; https://doi.org/10.3390/jmse14030286 (registering DOI) - 31 Jan 2026
Abstract
To overcome the high cost, marine ecological risks of traditional coral sand reinforcement, and the insufficient mechanical performance of standalone Enzyme-Induced Carbonate Precipitation (EICP), this study proposes a novel soil improvement method integrating EICP with aluminum chloride hexahydrate (AlCl3·6H2O). [...] Read more.
To overcome the high cost, marine ecological risks of traditional coral sand reinforcement, and the insufficient mechanical performance of standalone Enzyme-Induced Carbonate Precipitation (EICP), this study proposes a novel soil improvement method integrating EICP with aluminum chloride hexahydrate (AlCl3·6H2O). The objectives are to identify optimal EICP curing parameters, evaluate AlCl3·6H2O’s enhancement effect, and reveal the synergistic micro-mechanism. Through aqueous solution, unconfined compressive strength, permeability, X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and Scanning Electron Microscope (SEM) tests, this study systematically investigated the reaction conditions, mechanical properties, anti-seepage performance, mineral composition, and pore structure. The results demonstrate that EICP achieves the best curing effect under specific conditions: temperature of 30 °C, pH of 8, and cementing solution concentration of 1 mol/L. Under these optimal conditions, the unconfined compressive strength of EICP-solidified coral sand columns reaches 761.6 kPa, and the permeability coefficient is reduced by one order of magnitude compared to unsolidified samples. Notably, AlCl3·6H2O incorporation yields a significant synergistic effect, boosting the UCS to 2389.1 kPa (3.14 times standalone EICP) and further reducing permeability by 26%. Micro-mechanism analysis reveals that AlCl3·6H2O acts both by generating cementitious aggregates that provide nucleation sites for uniform calcite deposition and by accelerating the transformation of metastable aragonite and vaterite to stable calcite, thereby enhancing cementation stability. This study delivers a cost-effective, eco-friendly solution for coral sand reinforcement, providing practical technical support for marine engineering in environments like the South China Sea. By addressing the core limitations of conventional bio-cementation, it opens new avenues for advancing soil improvement science and applications. Full article
Show Figures

Figure 1

17 pages, 5014 KB  
Article
Mechanical Properties of Granite Residual Soil Reinforced by Permeable Water-Reactive Polyurethane
by Shuzhong Tan, Jinyong Li, Dingfeng Cao, Tao Xiao and Jiajia Zheng
Polymers 2026, 18(3), 381; https://doi.org/10.3390/polym18030381 - 30 Jan 2026
Abstract
Granite residual soil (GRS) is highly susceptible to water-induced softening, posing significant risks of slope instability and collapse. Conventional impermeable grouting often exacerbates these hazards by blocking groundwater drainage. This study investigates the efficacy of a permeable water-reactive polyurethane (PWPU) in stabilizing GRS, [...] Read more.
Granite residual soil (GRS) is highly susceptible to water-induced softening, posing significant risks of slope instability and collapse. Conventional impermeable grouting often exacerbates these hazards by blocking groundwater drainage. This study investigates the efficacy of a permeable water-reactive polyurethane (PWPU) in stabilizing GRS, aiming to resolve the conflict between mechanical reinforcement and hydraulic conductivity. Uniaxial compression tests were conducted on specimens with varying initial water contents (5%, 10%, and 15%) and PWPU contents (5%, 10%, and 15%). To reveal the multi-scale failure mechanism, synchronous acoustic emission (AE) monitoring and digital image correlation (DIC) were employed, complemented by scanning electron microscopy (SEM) for microstructural characterization. Results indicate that PWPU treatment significantly enhances soil ductility, shifting the failure mode from brittle fracturing to strain-hardening, particularly at higher moisture levels where failure strains exceeded 30%. This enhancement is attributed to the formation of a flexible polymer network that acts as a micro-reinforcement system to restrict particle sliding and dissipate strain energy. An optimal PWPU content of 10% yielded a maximum compressive strength of 4.5 MPa, while failure strain increased linearly with polymer dosage. SEM analysis confirmed the formation of a porous, reticulated polymer network that effectively bonds soil particles while preserving permeability. The synchronous monitoring quantitatively bridged the gap between internal micro-crack evolution and macroscopic strain localization, with AE analysis revealing that tensile cracking accounted for 79.17% to 96.35% of the total failure events. Full article
(This article belongs to the Section Polymer Processing and Engineering)
20 pages, 5394 KB  
Article
Potential Applications of Additive Manufacturing in Intervertebral Disc Replacement Using Gyroid Structures with Several Thermoplastic Polyurethane Filaments
by Leandro Hippel, Jan Mussler, Dirk Velten, Bernd Rolauffs, Hagen Schmal and Michael Seidenstuecker
Biomedicines 2026, 14(2), 323; https://doi.org/10.3390/biomedicines14020323 - 30 Jan 2026
Abstract
Background: Intervertebral disc degeneration is a prevalent condition and a major risk factor for disc herniation. Mechanical overload, aging, injury, and disease contribute to the annulus fibrosus’ structural failure, which allows nucleus pulposus material to escape and reduces the capacity to absorb [...] Read more.
Background: Intervertebral disc degeneration is a prevalent condition and a major risk factor for disc herniation. Mechanical overload, aging, injury, and disease contribute to the annulus fibrosus’ structural failure, which allows nucleus pulposus material to escape and reduces the capacity to absorb shock. This study builds on previous investigations by evaluating additional thermoplastic polyurethane (TPU) filaments as potential materials for additively manufactured intervertebral disc replacements. Materials and Methods: Disc-shaped specimens (Ø50 × 10 mm) were fabricated using fused deposition modeling (FDM). A gyroid infill structure was employed with unit cell sizes ranging from 4 to 10 mm3 and wall thicknesses between 0.5 and 1.0 mm. The outer wall thickness varied from 0.4 to 0.8 mm. Four TPU filaments (Extrudr FlexSemiSoft, GEEE-TECH TPU, SUNLU TPU, and OVERTURE TPU) were tested, resulting in 36 parameter combinations per filament. Printed discs were examined via stereomicroscopy. Tensile testing was conducted according to DIN EN ISO 527-1 using Type 5A specimens. Mechanical performance under physiological loading was assessed through uniaxial compression tests, in which samples were compressed to 50% of their height while force–deformation curves were recorded. Target forces were defined as 4000–7500 N to maintain comparability with prior studies. Results: Across all filaments, a maximum of three parameter combinations per material achieved forces within the target range. Microscopy confirmed the dimensional accuracy of wall thicknesses with minimal deviation. Tensile strength values for GEEE-TECH, SUNLU, and FlexSemiSoft were comparable (10–11 MPa), while OVERTURE showed significantly lower strength (approximately 9 MPa). Tensile modulus values followed a similar trend: 25–30 MPa for three filaments and 17.5 MPa for OVERTURE. Conclusions: All four TPU filaments could be used to fabricate discs that met the mechanical requirements for compression. These results confirm that both the tested TPU materials and gyroid structures are suitable for potential intervertebral disc replacement applications. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

21 pages, 3333 KB  
Article
Workability, Strength, and Durability of Wet-Mix Shotcrete Incorporating a Viscosity-Enhancing and Early-Strength Agent
by Jitao Dai, Yuting Xiang, Shengnian Wang, Leilei Gu, Yanzhao Sun, Mingwei Li and Kefei Fan
Buildings 2026, 16(3), 584; https://doi.org/10.3390/buildings16030584 - 30 Jan 2026
Abstract
This study investigates viscosity-enhancing and early-strength wet-mix shotcrete (VE-ESWS) incorporating a self-developed viscosity-enhancing and early-strength agent (VE-ES). Indoor tests combined with on-site spraying were performed to quantify the effects of the water/cement ratio (W/C) and VE-ES dosage on workability, strength, and durability. VE-ES [...] Read more.
This study investigates viscosity-enhancing and early-strength wet-mix shotcrete (VE-ESWS) incorporating a self-developed viscosity-enhancing and early-strength agent (VE-ES). Indoor tests combined with on-site spraying were performed to quantify the effects of the water/cement ratio (W/C) and VE-ES dosage on workability, strength, and durability. VE-ES had little influence on pumpability but substantially enhanced sprayability, reducing rebound rate to below 8%. Compressive and splitting tensile strengths peaked at W/C = 0.43–0.44 and a sand rate of 55%, whereas sand rates of 50% or 60% caused noticeable reductions. Durability (water permeability, freeze–thaw resistance, wet–dry sulfate attack, and carbonation resistance) of VE-ESWS was superior to that of the reference wet-mix shotcrete. Water penetration height could be controlled to about 5 cm when W/C was 0.42–0.43. During freeze–thaw cycling, mass loss rate increased initially and then decreased; slight apparent mass gains at later cycles were attributed to moisture uptake. VE-ES effectively reduced the compressive strength loss of VE-ESWS after sulfate attack, although the mass loss rate increased rather than decreased after 100 wet–dry sulfate attack cycles. The carbonation rate of VE-ESWS decreased with increasing VE-ES dosage. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results corroborated accelerated hydration and pore-structure refinement. Based on combined indices, the recommended values are W/C = 0.42–0.44, and the VE-ES dosage = 7.5 kg/m3 within the studied ranges. This study could provide theoretical and technical support for the application of VE-ESWS in engineering practices. Full article
20 pages, 3685 KB  
Article
Profiled Wet Spinning of Polyurethane Composites for Soft Dry Electrodes in Transcutaneous Stimulation Applications
by Alexander V. Shokurov, Ee Qing Tee, Abigail Vogel, Gabriel Gmünder, Kai Röllin, Olivier Lambercy, Dane Donegan, Paulius Viskaitis and Carlo Menon
Materials 2026, 19(3), 557; https://doi.org/10.3390/ma19030557 - 30 Jan 2026
Abstract
Transcutaneous electrical nerve stimulation techniques (TENS) are rapidly gaining attention for their potential in various clinical applications. One such technique is transcutaneous auricular vagus nerve stimulation (taVNS), and it involves delivering nerve stimulation through the skin of the external ear. However, taVNS relies [...] Read more.
Transcutaneous electrical nerve stimulation techniques (TENS) are rapidly gaining attention for their potential in various clinical applications. One such technique is transcutaneous auricular vagus nerve stimulation (taVNS), and it involves delivering nerve stimulation through the skin of the external ear. However, taVNS relies on electrodes that must conform to the complex anatomy of the ear while maintaining stable electrical performance. Conventional taVNS electrodes, typically rigid metal or adhesive pads, are uncomfortable, difficult to position, prone to drying, and costly to produce. Here, we present and evaluate two complementary fabrication approaches for soft dry electrodes suitable for taVNS, which are compliant with curved anatomical features and can be operated without gel. The first employs wet spinning of a conductive elastomer into fibers, while the second extends this method to create hollow cylindrical geometries. The resulting spongy polymer composite electrodes exhibit tunable geometry, high conductivity, mechanical resilience under strain and compression, and low material impedance confirmed through bench and human testing, even under dry conditions. These properties are critical for in-ear and broader transcutaneous stimulation applications, highlighting the potential of these fabrication methods for next-generation soft bioelectronic interfaces. Full article
15 pages, 3743 KB  
Article
Mechanical and Microstructural Characterization of Trapezoidal Corrugated-Core Al Sandwich Panels Under Quasi-Static Compression
by Alessandra Ceci, Girolamo Costanza and Maria Elisa Tata
Materials 2026, 19(3), 548; https://doi.org/10.3390/ma19030548 - 30 Jan 2026
Abstract
Sandwich panels with trapezoidal (corrugated) cores combine low weight, high specific stiffness, and energy absorption capability. This study analyzes four configurations with different core heights by means of microstructural analyses (optical microscopy, SEM/EDS, XRD) and quasi-static compression tests. The tests yield stress–strain curves [...] Read more.
Sandwich panels with trapezoidal (corrugated) cores combine low weight, high specific stiffness, and energy absorption capability. This study analyzes four configurations with different core heights by means of microstructural analyses (optical microscopy, SEM/EDS, XRD) and quasi-static compression tests. The tests yield stress–strain curves with an initial linear stage, a peak, a plateau, and a densification stage. Peak stresses range from 0.5 MPa for the thickest core (P1) to 6.2 MPa for the thinnest core (P4), while the energy absorbed density (EAD) increases with strain: at ε = 30% it varies from 0.031 to 0.670 J/cm3, and at ε = 50% the thin-core configuration reaches ≈1.113 J/cm3. The face sheets and the core are both manufactured from AA 3000 series (Al–Mn) aluminum alloy; widespread micro-porosity and Fe/Mn-rich phases are observed by SEM/EDS. XRD confirms aluminum with different peak intensities ascribable to the manufacturing texture. Increasing the core height promotes earlier local/global instabilities and reduces the peak stress; the thinnest core displays higher stiffness and peak loads. These findings support the use of trapezoidal corrugation where low weight and progressive strain are required. Full article
Show Figures

Graphical abstract

24 pages, 6543 KB  
Article
Pressure-Dependent Hysteresis in a Spring–Rod Compact Pneumatic Artificial Muscle Compared with a Commercial McKibben Actuator
by Sándor Csikós, Attila Mészáros and József Sárosi
Actuators 2026, 15(2), 80; https://doi.org/10.3390/act15020080 - 30 Jan 2026
Abstract
This paper introduces a compact pneumatic artificial muscle (CPAM) that integrates a coaxial rod and an internal helical compression spring (stiffness 9750 N/m) into a McKibben-type outer muscle and compares it to a commercial DMSP-20-200N from FESTO Budapest, Hungary, with identical outer geometry [...] Read more.
This paper introduces a compact pneumatic artificial muscle (CPAM) that integrates a coaxial rod and an internal helical compression spring (stiffness 9750 N/m) into a McKibben-type outer muscle and compares it to a commercial DMSP-20-200N from FESTO Budapest, Hungary, with identical outer geometry and materials. Both actuators were mounted in a force-controlled test rig, pre-tensioned, and then cycled quasi-statically between their stretched and maximally contracted states at 13 internal pressures. For each pressure, median loading and unloading force–contraction curves were obtained from five repeats measuring both the cylinder excitation force and a load cell, and hysteresis was quantified by a normalized loop area based on peak force and common contraction range. Under the rated load of 2000 N at 0.6 MPa, the CPAM elongates less (−1.5% vs. −3%) and generates higher forces over most of the contraction range. The normalized hysteresis index of the CPAM is markedly lower at low pressures (≈0.05–0.25 MPa, reductions of about 10–25%), similar near 0.30 MPa, and slightly higher at 0.35–0.60 MPa (≈6–14%). Full article
19 pages, 2117 KB  
Article
Development and Characterization of Oleogels from Avocado Oil and Monoglycerides
by Michael Moreno-Caballero, Jenny Paola Ortega-Barbosa, Liliam Alexandra Palomeque-Forero, María Cristina Lizarazo-Aparicio, Diego Miranda-Lasprilla, Diego Ballesteros-Vivas, Fabián Parada-Alfonso and Elena Ibañez-Ezequiel
Foods 2026, 15(3), 478; https://doi.org/10.3390/foods15030478 - 30 Jan 2026
Abstract
The growing demand for healthier lipid alternatives has driven interest in oleogels as promising substitutes for the conventional saturated and trans fats in foods systems. In this context, this study explores the formulation and characterization of oleogels based on avocado oil (Persea [...] Read more.
The growing demand for healthier lipid alternatives has driven interest in oleogels as promising substitutes for the conventional saturated and trans fats in foods systems. In this context, this study explores the formulation and characterization of oleogels based on avocado oil (Persea americana var. Lorena) and monoglycerides, as an alternative to conventional saturated fats. Hydraulic compression was used to extract the oil, and the formulation was optimized using a Box–Behnken experimental design, evaluating the effects of temperature (70–90 °C), monoglyceride concentration (4–8%), and heating time (15–45 min) on oil retention capacity (ORC) and firmness. Results showed that temperature and concentration significantly influenced ORC and firmness, while heating time had no relevant effect. The optimal formulation achieved 85.95% ORC, 1.09 N firmness, and superior oxidative stability (41.71 h vs. 10.80 h in pure oil, Rancimat test). The obtained oleogel exhibited good mechanical and thermal properties, with an elastic-dominant rheological profile and higher oxidation resistance compared to unmodified avocado oil. These findings indicate that the avocado oleogels structured with monoglycerides have potential applications in the food and cosmetic industries, although further improvements in structural stability are recommended to broaden their range of applications. Full article
Show Figures

Figure 1

21 pages, 5523 KB  
Article
A Study on the Uniaxial Tensile and Compressive Mechanical Testing Methods of Ice Specimens Based on the Digital Image Correlation (DIC) Technique
by Nianming Hu, Mingyong Hu, Jing Wu, Linjie Wu, Zixu Zhu and Xi Zhu
Coatings 2026, 16(2), 171; https://doi.org/10.3390/coatings16020171 - 30 Jan 2026
Abstract
This study introduced the Digital Image Correlation (DIC) technique into the axial tensile and compression tests of ice materials. The surface strain distribution measured by DIC was compared with experimental phenomena to verify the accuracy of DIC measurement technology. Additionally, the strain data [...] Read more.
This study introduced the Digital Image Correlation (DIC) technique into the axial tensile and compression tests of ice materials. The surface strain distribution measured by DIC was compared with experimental phenomena to verify the accuracy of DIC measurement technology. Additionally, the strain data obtained from DIC were used to correct the stress–strain rate curves of ice materials under axial tension and compression, as measured by the universal testing machine. The study found that the constitutive relationship of a type of ice material under tension and compression can be fitted to a bi-linear model. After correction, the bi-linear two-stage moduli of the ice specimens frozen at −30 °C during tensile testing were approximately E¯1 = 687.50 MPa and E¯2 = 1.12 GPa; During compression, the bi-linear two-stage moduli are approximately E¯1 = 1.521 GPa and E¯2 = 7.734 GPa. The above research results are similar to those of previous studies and have a high degree of credibility. The mechanical properties of ice materials were found to be more stable at a freezing temperature of −30 °C compared to −10 °C. When microcracks form in ice materials under load, these cracks may refreeze internally, leading to viscoelastic behavior in the early stages of loading. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

27 pages, 16299 KB  
Article
Numerical Simulation of Mechanical Parameters of Oil Shale Rock in Minfeng Subsag
by Yuhao Huo, Qing You and Xiaoqiang Liu
Processes 2026, 14(3), 476; https://doi.org/10.3390/pr14030476 - 29 Jan 2026
Abstract
Rock mechanical parameters can provide fundamental data for the numerical simulation of hydraulic fracturing, aiding in the construction of hydraulic fracturing models. Due to the laminated nature of shale, constructing a hydraulic fracturing model requires obtaining the rock mechanical parameters of each lamina [...] Read more.
Rock mechanical parameters can provide fundamental data for the numerical simulation of hydraulic fracturing, aiding in the construction of hydraulic fracturing models. Due to the laminated nature of shale, constructing a hydraulic fracturing model requires obtaining the rock mechanical parameters of each lamina and the bedding planes. However, acquiring the mechanical parameters of individual shale laminas through physical experiments demands that, after rock mechanics testing, cracks propagate along the centre of the laminae without connecting additional bedding planes, which imposes extremely high requirements on shale samples. Current research on the rock mechanics of the Minfeng subsag shale is relatively limited. Therefore, to obtain the rock mechanical parameters of each lamina and the bedding planes in the Minfeng subsag shale, a numerical simulation approach can be employed. The model, built using PFC2D, is based on prior X-ray diffraction (XRD) analysis, conventional thin-section observation, scanning electron microscopy (SEM), Brazilian splitting tests, and triaxial compression tests. It replicates the processes of the Brazilian splitting and triaxial compression experiments, assigning initial parameters to different bedding planes based on lithology. A trial-and-error method is then used to adjust the parameters until the simulated curves match the physical experimental curves, with errors within 10%. The model parameters for each lamina at this stage are then applied to single-lithology Brazilian splitting, biaxial compression, and three-point bending models for simulation, ultimately obtaining the tensile strength, uniaxial compressive strength, Poisson’s ratio, Young’s modulus, brittleness index, and Mode I fracture toughness for each lamina. Simulation results show that the Minfeng subsag shale exhibits strong heterogeneity, with all obtained rock mechanical parameters spanning a wide range. Calculated brittleness indices for each lamina mostly fall within the “good” and “medium” ranges, with carbonate laminae generally demonstrating better brittleness than felsic laminae. Fracture toughness also clearly divides into two ranges: mixed carbonate shale laminae have overall higher fracture toughness than mixed felsic laminae. Full article
(This article belongs to the Special Issue Advances in Reservoir Simulation and Multiphase Flow in Porous Media)
Show Figures

Figure 1

19 pages, 4469 KB  
Article
Research on the Mechanical Properties and Failure Criteria of Large-Sized Concrete Slabs Under Multi-Axis Stress
by Junjie Wu, Jinyong Fan, Guoying Li, Zhankuan Mi and Zuguo Mo
Buildings 2026, 16(3), 576; https://doi.org/10.3390/buildings16030576 - 29 Jan 2026
Abstract
As a key structural component of rockfill dams, the load-bearing capacity of large-sized concrete slabs under complex multi-axial stresses is directly related to the long-term safe operation of the dams. This study conducted uniaxial and biaxial lateral compression strength tests on C25 concrete [...] Read more.
As a key structural component of rockfill dams, the load-bearing capacity of large-sized concrete slabs under complex multi-axial stresses is directly related to the long-term safe operation of the dams. This study conducted uniaxial and biaxial lateral compression strength tests on C25 concrete slabs with dimensions of 1500 × 1500 × 150 mm using a large-scale bi-directional loading reaction frame test system, systematically revealing the mechanical properties and failure criteria of large-sized concrete slabs. The results indicate that the biaxial compressive strength of the concrete slabs is significantly greater than the uniaxial compressive strength. The stress–strain curves of the concrete slabs and standard specimens exhibit good consistency before failure. Based on uniaxial compressive strength data, the concrete size effect strength reduction formula proposed by Neville was modified, and a compressive strength prediction formula applicable to large-sized concrete members was established. Further integration with code-specified failure criteria led to the development of a biaxial failure envelope for large-sized concrete slabs, which was validated to agree well with measured data. The research findings can provide reliable experimental evidence and theoretical support for the strength reduction, load-bearing capacity assessment, and revisions of relevant design codes for large hydraulic components such as concrete face slabs in rockfill dams. Full article
Show Figures

Figure 1

20 pages, 5710 KB  
Article
Steel Slag-Enhanced Cement-Stabilized Recycled Aggregate Bases: Mechanical Performance and PINN-Based Sulfate Diffusion Prediction
by Guodong Zeng, Hao Li, Yuyuan Deng, Xuancang Wang, Yang Fang and Haoxiang Liu
Materials 2026, 19(3), 546; https://doi.org/10.3390/ma19030546 - 29 Jan 2026
Abstract
The application of cement-stabilized recycled aggregate (CSR) in pavement bases is constrained by the high porosity and low strength of recycled aggregate (RA), whereas sulfate transport and durability mechanisms are less reported. To address this issue, this study incorporated high-strength and potentially reactive [...] Read more.
The application of cement-stabilized recycled aggregate (CSR) in pavement bases is constrained by the high porosity and low strength of recycled aggregate (RA), whereas sulfate transport and durability mechanisms are less reported. To address this issue, this study incorporated high-strength and potentially reactive steel slag aggregate (SSA) into CSR to develop steel slag-enhanced cement-stabilized recycled aggregate (CSRS). The mechanical performance of the mixtures was evaluated through unconfined compressive strength (UCS) and indirect tensile strength (ITS) tests, and their durability was assessed using thermal shrinkage and sulfate resistance tests. In addition, a sulfate prediction model based on a physics-informed neural network (PINN) was developed. The results showed that, compared with CSR, the 7-day and 28-day UCS of CSRS increased by 6.7% and 16.0%, respectively, and the ITS increased by 4.3% and 5.9%. Thermal shrinkage tests indicated that CSR and CSRS, incorporating RA and SSA, exhibited slightly higher thermal shrinkage strain than cement-stabilized natural aggregate (CSN). During sulfate attack, SSA significantly improved the sulfate resistance of CSR, with the sulfate resistance coefficient of CSRS increasing by 18.8% compared to CSR. Furthermore, the PINN model predicted that, in 3%, 5%, and 7% sodium sulfate solutions, the sulfate concentration at a 1 mm depth in CSRS was reduced by 35.6%, 21.8%, and 29.4%, respectively, compared to CSR, with an average relative error below 14%, confirming its reliability. Therefore, these findings demonstrate that the incorporation of SSA markedly enhances the mechanical properties and sulfate resistance of CSR, and that the PINN model provides an effective tool for accurate simulation and prediction of sulfate diffusion. Full article
Show Figures

Figure 1

19 pages, 4479 KB  
Article
Pine Resin as a Natural Polymer Binder in Pine Cone-Reinforced Lightweight Concrete
by Celal Kistak, Araz Muhammed Hassan, Ayse Bicer and Nevin Celik
Polymers 2026, 18(3), 364; https://doi.org/10.3390/polym18030364 - 29 Jan 2026
Abstract
The aim of this study is to investigate the potential applications of pine cones as plant-based waste material in the construction industry. In order to achieve this target, the pine cone particles (PCP) are mixed with cement to create new lightweight concretes. Furthermore, [...] Read more.
The aim of this study is to investigate the potential applications of pine cones as plant-based waste material in the construction industry. In order to achieve this target, the pine cone particles (PCP) are mixed with cement to create new lightweight concretes. Furthermore, pine tree resin (PTR), acting as a natural bio-polymer binder, is incorporated into selected samples to ascertain its potential as a binder. The pine cones are cut into particles of 2–4 cm, 0–2 cm, and ground into a powder. A series of critical tests is conducted on the novel produced samples, including thermal conductivity, specific heat, density, compressive strength, water absorption rate, and drying rate. The experiments show that thermal conductivity, specific heat capacity, and thermal expansion coefficient decrease as the weight ratio and size of PCP increase. The presence of PTR increases porosity, further decreasing thermal conductivity, specific heat, and thermal expansion coefficients for the majority of samples. The compressive strength values decrease with the presence of PTR and PCP. Regarding durability, the water absorption ratios remain below the critical 30% threshold, making the material suitable for internal applications or external facades protected by coating/plaster or as external coverings. Full article
(This article belongs to the Special Issue Application of Polymers in Cementitious Materials)
Show Figures

Figure 1

14 pages, 5099 KB  
Article
A 2-GHz Low-Noise Amplifier Using Fully Distributed Microstrip Matching Networks
by Mehmet Onur Kok and Sahin Gullu
Electronics 2026, 15(3), 588; https://doi.org/10.3390/electronics15030588 - 29 Jan 2026
Abstract
This work describes the design and experimental testing of a low-noise amplifier (LNA) fabricated on a printed circuit board (PCB) and operating near 2 GHz. The amplifier uses a discrete bipolar junction transistor (BJT) together with fully distributed microstrip matching networks without relying [...] Read more.
This work describes the design and experimental testing of a low-noise amplifier (LNA) fabricated on a printed circuit board (PCB) and operating near 2 GHz. The amplifier uses a discrete bipolar junction transistor (BJT) together with fully distributed microstrip matching networks without relying on lumped matching components. The main design goal is to obtain stable operation with low noise figure and moderate gain over a wide frequency range while keeping the circuit tolerant to layout parasitics and fabrication variations. Circuit-level simulations are performed using AWR Microwave Office and are followed by full-wave electromagnetic simulations in Sonnet Software to account for layout-dependent effects. A prototype is fabricated on a 60-mil Rogers RO4003C substrate and characterized through S-parameter, noise-figure, and linearity measurements. Measured results show a gain of approximately 13.84 ± 1 dB over the 1.75–2.25 GHz frequency range, with a minimum noise figure of 1.615 dB at 2 GHz. Stable operation is maintained across the entire band, and the measured 1 dB gain compression point is approximately 0.5 dBm. The results demonstrate that a fully distributed microstrip matching approach provides a practical and reproducible PCB-based LNA solution for sub-6-GHz receiver front-end applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

28 pages, 6736 KB  
Article
Optimizing the Effect of Nanochitosan and Kenaf Fiber on Tensile and Impact Properties of Polylactic Acid (PLA)/Natural Rubber (SMR20) Biocomposites
by Habib Shorekandi, Nima Refahati and Meysam Nouri Niyaraki
Appl. Mech. 2026, 7(1), 12; https://doi.org/10.3390/applmech7010012 - 29 Jan 2026
Abstract
In this study, the influence of nanochitosan and kenaf fibers on the tensile strength, elastic modulus, and impact strength of polylactic acid (PLA)/natural rubber (Standard Malaysian Rubber, grade 20—SMR20) biocomposites was investigated experimentally using Response Surface Methodology (RSM). The independent variables included the [...] Read more.
In this study, the influence of nanochitosan and kenaf fibers on the tensile strength, elastic modulus, and impact strength of polylactic acid (PLA)/natural rubber (Standard Malaysian Rubber, grade 20—SMR20) biocomposites was investigated experimentally using Response Surface Methodology (RSM). The independent variables included the weight percentage of nanochitosan (2, 4, and 6 wt%), kenaf fibers (5, 10, and 15 wt%), and SMR20 natural rubber (10, 20, and 30 wt%). Composite samples were prepared by melt mixing in an internal mixer and subsequently fabricated into test samples using hot compression molding in accordance with relevant standards. Tensile tests were conducted to evaluate tensile strength and elastic modulus, while Charpy impact tests were performed to assess impact strength. The results revealed that increasing nanochitosan content up to 4 wt% enhanced tensile strength, elastic modulus, and impact strength by 39%, 22%, and 27%, respectively; however, further addition (6 wt%) led to a decline in these properties due to nanoparticle agglomeration. Increasing kenaf fiber content to 15 wt% improved tensile strength, elastic modulus, and impact strength by 44%, 26%, and 37%, respectively, demonstrating their effective reinforcing role. The incorporation of SMR20 natural rubber significantly increased impact strength by 59% (at 30 wt%), while causing a reduction of 17% in tensile strength and 20% in elastic modulus, consistent with its elastomeric nature. Furthermore, field emission scanning electron microscopy (FESEM) was employed to examine the dispersion of nanochitosan and kenaf fibers within the PLA/SMR20 matrix, providing insights into the interfacial adhesion and failure mechanisms. The findings highlight the potential of optimizing natural filler and rubber content to tailor the mechanical performance of sustainable PLA-based biocomposites. Full article
(This article belongs to the Topic Advances in Manufacturing and Mechanics of Materials)
Show Figures

Figure 1

Back to TopTop