Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,007)

Search Parameters:
Keywords = comparative genomics variants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2067 KiB  
Article
Selection Signature Analysis of Whole-Genome Sequences to Identify Genome Differences Between Selected and Unselected Holstein Cattle
by Jiarui Cai, Liu Yang, Yahui Gao, George E. Liu, Yang Da and Li Ma
Animals 2025, 15(15), 2247; https://doi.org/10.3390/ani15152247 - 31 Jul 2025
Abstract
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein [...] Read more.
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein and those under selection provide useful insights that connect selection and complex traits in cattle. Utilizing these unique resources and sequence data, we sought to identify genome changes due to selection. We sequenced 30 unselected and 54 selected Holstein cattle and compared their sequence variants to identify selection signatures. After many years, the two populations showed completely different patterns in their genome-level population structures and linkage disequilibrium. By integrating signals from five different detection methods, we detected consensus selection signatures from at least four methods covering 14,533 SNPs and 155 protein-coding genes. An integrated analysis of selection signatures with gene annotation, pathways, and the cattle QTL database demonstrated that the genomic regions under selection are related to milk productivity, health, and reproductive efficiency. The polygenic nature of these complex traits is evident from hundreds of selection signatures and candidate genes, suggesting that long-term artificial selection has acted on the whole genome rather than a few major genes. In summary, our study identified candidate selection signatures underlying phenotypic differences between unselected and selected Holstein cows and revealed insights into the genetic basis of complex traits in cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1703 KiB  
Article
Towards Personalized Precision Oncology: A Feasibility Study of NGS-Based Variant Analysis of FFPE CRC Samples in a Chilean Public Health System Laboratory
by Eduardo Durán-Jara, Iván Ponce, Marcelo Rojas-Herrera, Jessica Toro, Paulo Covarrubias, Evelin González, Natalia T. Santis-Alay, Mario E. Soto-Marchant, Katherine Marcelain, Bárbara Parra and Jorge Fernández
Curr. Issues Mol. Biol. 2025, 47(8), 599; https://doi.org/10.3390/cimb47080599 - 30 Jul 2025
Viewed by 84
Abstract
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean [...] Read more.
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean public health system, rendering it both costly and time-consuming for patients and clinicians. Using a retrospective cohort of 67 formalin-fixed, paraffin-embedded (FFPE) colorectal cancer (CRC) samples, we aimed to implement the identification, annotation, and prioritization of relevant actionable tumor somatic variants in our laboratory, as part of the public health system. We compared two different library preparation methodologies (amplicon-based and capture-based) and different bioinformatics pipelines for sequencing analysis to assess advantages and disadvantages of each one. We obtained 80.5% concordance between actionable variants detected in our analysis and those obtained in the Cancer Genomics Laboratory from the Universidad de Chile (62 out of 77 variants), a validated laboratory for this methodology. Notably, 98.4% (61 out of 62) of variants detected previously by the validated laboratory were also identified in our analysis. Then, comparing the hybridization capture-based library preparation methodology with the amplicon-based strategy, we found ~94% concordance between identified actionable variants across the 15 shared genes, analyzed by the TumorSecTM bioinformatics pipeline, developed by the Cancer Genomics Laboratory. Our results demonstrate that it is entirely viable to implement an NGS-based analysis of actionable variant identification and prioritization in cancer samples in our laboratory, being part of the Chilean public health system and paving the way to improve the access to such analyses. Considering the economic realities of most Latin American countries, using a small NGS panel, such as TumorSecTM, focused on relevant variants of the Chilean and Latin American population is a cost-effective approach to extensive global NGS panels. Furthermore, the incorporation of automated bioinformatics analysis in this streamlined assay holds the potential of facilitating the implementation of precision medicine in this geographic region, which aims to greatly support personalized treatment of cancer patients in Chile. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 2nd Edition)
Show Figures

Figure 1

11 pages, 671 KiB  
Article
Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study
by Ayumu Kozuma, Celal Bulgay, Hirofumi Zempo, Mika Saito, Minoru Deguchi, Hiroki Homma, Shingo Matsumoto, Ryutaro Matsumoto, Anıl Kasakolu, Hasan H. Kazan, Türker Bıyıklı, Seyran Koncagul, Giyasettin Baydaş, Mehmet A. Ergun, Attila Szabo, Ekaterina A. Semenova, Andrey K. Larin, Nikolay A. Kulemin, Edward V. Generozov, Takanobu Okamoto, Koichi Nakazato, Ildus I. Ahmetov and Naoki Kikuchiadd Show full author list remove Hide full author list
Genes 2025, 16(8), 906; https://doi.org/10.3390/genes16080906 - 29 Jul 2025
Viewed by 124
Abstract
Background: In recent years, comprehensive analyses using a genome-wide association study (GWAS) have been conducted to identify genetic factors related to athletic performance. In this study, we investigated the association between genetic variants and elite wrestling status across multiple ethnic groups using a [...] Read more.
Background: In recent years, comprehensive analyses using a genome-wide association study (GWAS) have been conducted to identify genetic factors related to athletic performance. In this study, we investigated the association between genetic variants and elite wrestling status across multiple ethnic groups using a genome-wide genotyping approach. Methods: This study included 168 elite wrestlers (64 Japanese, 67 Turkish, and 36 Russian), all of whom had competed in international tournaments, including the Olympic Games. Control groups consisted of 306 Japanese, 137 Turkish, and 173 Russian individuals without elite athletic backgrounds. We performed a GWAS comparing allele frequencies of single-nucleotide polymorphisms (SNPs) between elite wrestlers and controls in each ethnic cohort. Cross-population analysis comprised (1) identifying SNPs with nominal significance (p < 0.05) in all three groups, then (2) meta-analyzing overlapped SNPs to assess effect consistency and combined significance. Finally, we investigated whether the most significant SNPs were associated with gene expression in skeletal muscle in 23 physically active men. Results: The GWAS identified 328,388 (Japanese), 23,932 (Turkish), and 30,385 (Russian) SNPs reaching nominal significance. Meta-analysis revealed that the ATP2A3 rs6502758 and UNC5C rs265061 polymorphisms were associated (p < 0.0001) with elite wrestling status across all three populations. Both variants are located in intronic regions and influence the expression of their respective genes in skeletal muscle. Conclusions: This is the first study to investigate gene polymorphisms associated with elite wrestling status in a multi-ethnic cohort. ATP2A3 rs6502758 and UNC5C rs265061 polymorphisms may represent important genetic factors associated with achieving an elite status in wrestling, irrespective of ethnicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5467 KiB  
Article
Comparative Genomic Analysis of Lactiplantibacillus plantarum: Insights into Its Genetic Diversity, Metabolic Function, and Antibiotic Resistance
by Ruiqi Li and Chongpeng Bi
Genes 2025, 16(8), 869; https://doi.org/10.3390/genes16080869 - 24 Jul 2025
Viewed by 159
Abstract
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative genomic analysis of 324 L. plantarum strains sourced from various origins and geographical locations. Results: The results revealed that L. plantarum possesses a total of 2403 core genes, of which 12.3% have an unknown function. The phylogenetic analysis revealed a mixed distribution from various origins, suggesting complex transmission pathways. The metabolic analysis demonstrated that L. plantarum strains can produce several beneficial metabolites, including lysine, acetate, and riboflavin. Furthermore, L. plantarum is highly capable of degrading various carbohydrates and proteins, increasing its adaptability. Further, we profiled the antimicrobial peptides (AMPs) in the genomes of L. plantarum. We identified a widely distributed AMP and its variants, presenting in a total of 280 genomes. In our biosafety assessment of L. plantarum, we identified several antibiotic resistance genes, such as Tet(M), ANT(6)-Ia, and mdeA, which may have potential for horizontal gene transfer within the Lactobacillaceae family. Conclusions: This study provides genomic insights into the genetic diversity, metabolic functions, antimicrobial properties, and biosafety of L. plantarum, underscoring its potential applications in biotechnology and environmental adaptation. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2227 KiB  
Article
Divergent Mechanisms of H2AZ.1 and H2AZ.2 in PRC1-Mediated H2A Ubiquitination
by Xiangyu Shen, Chunxu Chen, Amanda E. Jones, Xiaokun Jian, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(15), 1133; https://doi.org/10.3390/cells14151133 - 23 Jul 2025
Viewed by 256
Abstract
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. [...] Read more.
The histone H2A variant H2AZ plays pivotal roles in shaping chromatin architecture and regulating gene expression. We recently identified H2AZ.2 in histone H2A lysine 119 ubiquitination (H2AK119ub)-enriched nucleosomes, but it is not known whether its highly related isoform H2AZ.1 also regulates this modification. In this study, we employed isoform-specific epitope-tagged knock-in mouse embryonic stem cell (ESC) lines to dissect the roles of each isoform in Polycomb Repressive Complex 1 (PRC1)-mediated H2AK119ub. Our results show that H2AZ.1 and H2AZ.2 share highly overlapping genomic binding profiles, both co-localizing extensively with H2AK119ub-enriched loci. The knockdown of either isoform led to reduced H2AK119ub levels; however, the two isoforms appear to function through distinct mechanisms. H2AZ.1 facilitates the recruitment of Ring1B, the catalytic subunit of PRC1, thereby promoting the deposition of H2AK119ub. In contrast, H2AZ.2 does not significantly affect Ring1B recruitment but instead functions as a structural component that stabilizes H2AK119ub-modified nucleosomes. In vitro ubiquitination assays indicate that H2AZ.1-containing nucleosomes serve as more efficient substrates for PRC1-mediated ubiquitination compared to those containing H2AZ.2. Thus, these findings define the distinct mechanisms of the two H2AZ variants in regulated PRC1-mediated H2AK119 ubiquitination and highlight a functional division of labor in epigenetic regulation. Full article
Show Figures

Figure 1

21 pages, 3771 KiB  
Article
Integrated Analysis of the 2022 SARS-CoV-2 Omicron Lineage Replacement Dynamics in Connecticut, US
by Nicholas F. G. Chen, Kien Pham, Chrispin Chaguza, Rafael Lopes, Fayette Klaassen, Chaney C. Kalinich, Yale SARS-CoV-2 Genomic Surveillance Initiative, Nicholas Kerantzas, Sameer Pandya, David Ferguson, Wade Schulz, Daniel M. Weinberger, Virginia E. Pitzer, Joshua L. Warren, Nathan D. Grubaugh and Anne M. Hahn
Viruses 2025, 17(7), 1020; https://doi.org/10.3390/v17071020 - 21 Jul 2025
Viewed by 356
Abstract
In 2022, consecutive sweeps of highly transmissible SARS-CoV-2 Omicron-derived lineages (B.1.1.529*) maintained viral transmission despite extensive antigen exposure from both vaccinations and infections. To better understand Omicron variant emergence in the context of the dynamic fitness landscape of 2022, we aimed to explore [...] Read more.
In 2022, consecutive sweeps of highly transmissible SARS-CoV-2 Omicron-derived lineages (B.1.1.529*) maintained viral transmission despite extensive antigen exposure from both vaccinations and infections. To better understand Omicron variant emergence in the context of the dynamic fitness landscape of 2022, we aimed to explore putative drivers behind SARS-CoV-2 lineage replacements. Variant fitness is determined through its ability to either outrun previously dominant lineages or more efficiently circumvent host immune responses to previous infections and vaccinations. By analyzing data collected through our local genomic surveillance program from Connecticut, USA, we compared emerging Omicron lineages’ growth rates, estimated infections, effective reproductive rates, average viral copy numbers, and likelihood for causing infections in recently vaccinated individuals. We find that newly emerging Omicron lineages outcompeted dominant lineages through a combination of enhanced viral shedding or advanced immune escape depending on the population-level exposure state. This analysis integrates individual-level sequencing data with demographic, vaccination, laboratory, and epidemiological data and provides further insights into host–pathogen dynamics beyond public aggregate data. Full article
(This article belongs to the Special Issue Emerging Variants of SARS-CoV-2)
Show Figures

Figure 1

14 pages, 1697 KiB  
Article
Characterisation of Four New Genes in the Ovine KAP19 Family
by Lingrong Bai, Huitong Zhou, Jianning He, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Int. J. Mol. Sci. 2025, 26(14), 6863; https://doi.org/10.3390/ijms26146863 - 17 Jul 2025
Viewed by 130
Abstract
This study identified four new keratin-associated protein genes (KRTAP19-n) in sheep: sKRTAP19-1, sKRTAP19-2, sKRTAP19-4, and sKRTAP19-6. These genes are closely related to the previously identified sheep genes KRTAP19-3 and KRTAP19-5, as well as to human KRTAP19-n [...] Read more.
This study identified four new keratin-associated protein genes (KRTAP19-n) in sheep: sKRTAP19-1, sKRTAP19-2, sKRTAP19-4, and sKRTAP19-6. These genes are closely related to the previously identified sheep genes KRTAP19-3 and KRTAP19-5, as well as to human KRTAP19-n genes. However, no clear orthologous relationships were found, suggesting complex evolutionary dynamics for this gene family. Extensive nucleotide sequence variation was observed across the four genes. sKRTAP19-1 had four variants, defined by four synonymous single-nucleotide polymorphisms (SNPs) and a variable number of “GGCTAC” hexanucleotide repeats. sKRTAP19-2 had five variants involving seven SNPs, three of which were non-synonymous. sKRTAP19-4 had five variants with nine SNPs (three being non-synonymous) and a three-nucleotide deletion. sKRTAP19-6 had eight variants, defined by 13 SNPs and a two-nucleotide consecutive substitution, with four of the SNPs being non-synonymous. One distinct variant each of sKRTAP19-4 and sKRTAP19-6 was found exclusively in Yanchi Tan sheep, with seven unique nucleotide differences compared to other variants. These unique variants were identical to the Romanov sheep genome in the region amplified (excluding the primer binding regions), suggesting a shared ancestral origin. The findings highlight considerable genetic diversity in ovine KRTAP19-n and lay a foundation for future research into their role in regulating wool fibre characteristics. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants—Second Edition)
Show Figures

Figure 1

12 pages, 2134 KiB  
Article
Genomic Epidemiology of SARS-CoV-2 in Ukraine from May 2022 to March 2024 Reveals Omicron Variant Dynamics
by Anna Iaruchyk, Jason Farlow, Artem Skrypnyk, Serhii Matchyshyn, Alina Kovalchuk, Iryna Demchyshyna, Mykhailo Rosada, Aron Kassahun Aregay and Jarno Habicht
Viruses 2025, 17(7), 1000; https://doi.org/10.3390/v17071000 - 17 Jul 2025
Viewed by 601
Abstract
In Ukraine, SARS-CoV-2 detection and national genomic surveillance have been complicated by full-scale war, limited resources, and varying levels of public health infrastructure impacted across the country. Following the Spring of 2022, only a paucity of data have been reported describing the prevalence [...] Read more.
In Ukraine, SARS-CoV-2 detection and national genomic surveillance have been complicated by full-scale war, limited resources, and varying levels of public health infrastructure impacted across the country. Following the Spring of 2022, only a paucity of data have been reported describing the prevalence and variant dynamics of SARS-CoV-2 in the country. Comparative whole genome analysis has overtaken diagnostics as the new gold standard for detecting and tracing emerging variants while showing utility to rapidly inform diagnostics, vaccine strategies, and health policy. Herein, we provide an updated report characterizing the dynamics and prevalence of SARS-CoV-2 in Ukraine from 1 May 2022 to 31 March 2024. The present study extends previous reports for disease incidence Waves 1–4 in Ukraine with the addition herein of Waves 5, 6, and 7, occurring from August to November 2022 (Wave 5), February to May 2023 (Wave 6), and October 2023 to January 2024 (Wave 7). During the study period, the national Case Fatality Rate (CFR) fluctuated between 0.46% and 1.74%, indicating a consistent yet modest rate when compared to the global average. The epidemiological dynamics of Variants of Concern (VOCs) in Ukraine reflected global patterns over this period, punctuated by the rise of the BA.5 lineage and its subsequent replacement by the Omicron subvariants XBB and JN.1. Our analysis of variant dispersal patterns revealed multiple potential spatiotemporal introductions into Ukraine from Europe, Asia, and North America. Our results highlight the importance of ongoing genomic surveillance to monitor variant dynamics and support global efforts to control and mitigate COVID-19 disease risks as new variants arise. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 1414 KiB  
Article
Comparative Genomics and Draft Genome Assembly of the Elite Tunisian Date Palm Cultivar Deglet Nour: Insights into the Genetic Variations Linked to Fruit Ripening and Quality Traits
by Rahma Zarkouna, Afifa Hachef, Carmine Fruggiero, Gaetano Aufiero, Davide D’Angelo, Hedia Bourguiba, Maha Mezghani-Khemakhem, Nunzio D’Agostino and Salwa Zehdi-Azouzi
Int. J. Mol. Sci. 2025, 26(14), 6844; https://doi.org/10.3390/ijms26146844 - 16 Jul 2025
Viewed by 252
Abstract
The date palm (Phoenix dactylifera L.) is a key crop in the arid regions of North Africa and the Middle East, with substantial socioeconomic value. Although multiple genome assemblies have been generated using next-generation sequencing (NGS) technologies, they primarily focus on Middle [...] Read more.
The date palm (Phoenix dactylifera L.) is a key crop in the arid regions of North Africa and the Middle East, with substantial socioeconomic value. Although multiple genome assemblies have been generated using next-generation sequencing (NGS) technologies, they primarily focus on Middle Eastern cultivars, leaving North African varieties unrepresented. This study aims to address this gap by sequencing and assembling the first genome of a North African date palm using Illumina sequencing technology. We present a draft genome assembly of the elite Tunisian variety Deglet Nour. By comparing it with the Barhee BC4 reference genome, we identify key genetic variants, including single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs), potentially associated with ripening processes and fruit quality. This work expands the genomic resources for date palm research, particularly for North African cultivars, and provides new insights into the nucleotide-level variability of the genes linked to key agronomic traits. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1988 KiB  
Article
Epidemiological Surveillance, Variability, and Evolution of Isolates Belonging to the Spanish Clone of the 4,[5],12:i:- Monophasic Variant of Salmonella enterica Serovar Typhimurium
by Xenia Vázquez, Patricia García, Javier Fernández, Víctor Ladero, Carlos Rodríguez-Lucas, Jürgen J. Heinisch, Rosaura Rodicio and M. Rosario Rodicio
Antibiotics 2025, 14(7), 711; https://doi.org/10.3390/antibiotics14070711 - 16 Jul 2025
Viewed by 268
Abstract
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 [...] Read more.
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 (N = 14) were investigated using microbiological approaches and genome sequence analysis. In addition, they were compared with isolates from the years 2000 to 2003 (N = 21), which were previously characterized but had not yet been sequenced. Results: Phylogenetic analyses indicate that all isolates are closely related (differing by 1 to 103 SNPs) but belong to two clades termed A and B. With few exceptions, clade A comprised isolates of the first period, also including two “older” control strains, LSP 389/97 and LSP 272/98. Clade B only contained isolates from the second period. Isolates from both periods were resistant to antibiotics and biocides, with almost all resistance genes located on large IncC plasmids, additionally carrying pSLT-derived virulence genes. The number of resistance genes was highly variable, resulting in a total of 22 ABR (antibiotic biocide resistance) profiles. The number of antibiotic resistance genes, but not that of biocide resistance genes, was considerably lower in isolates from the second than from the first period (with averages of 5.5 versus 9.6 genes). Importantly, IS26, which resides in multiple copies within these plasmids, appears to be playing a crucial role in the evolution of resistance, and it was also responsible for the monophasic phenotype, which was associated with four different deletions eliminating the fljAB region. Conclusions: the observed reduction in the number of antibiotic resistance genes could correlate with the loss of adaptive advantage originating from the ban on the use of antibiotics as feed additives implemented in the European Union since 2006, facilitated by the intrinsic instability of the IncC plasmids. Two consecutive IS26 transposition events, which can explain both the clonal relationship of the isolates and their variability, may account for the observed fljAB deletions. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Neuropilin-1: A Conserved Entry Receptor for SARS-CoV-2 and a Potential Therapeutic Target
by Vivany Maydel Sierra-Sánchez, Citlali Margarita Blancas-Napoles, Aina Daniela Sánchez-Maldonado, Indira Medina, Rodrigo Romero-Nava, Fengyang Huang, Enrique Hong, Asdrúbal Aguilera-Méndez, Sergio Adrian Ocampo-Ortega and Santiago Villafaña
Biomedicines 2025, 13(7), 1730; https://doi.org/10.3390/biomedicines13071730 - 15 Jul 2025
Viewed by 365
Abstract
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this [...] Read more.
Background/Objectives: Neuropilin-1 (NRP1) is a key co-receptor for SARS-CoV-2, complementing the ACE2 receptor. Several investigations have documented highly conserved sequences in this receptor, supporting the implication of NRP1 as a key mediator in SARS-CoV-2 cellular entry mechanisms. Methods: To investigate this hypothesis, we examined 104,737 SARS-CoV-2 genome fastas from GISAID genomic data, corresponding to isolates collected between 2020 and 2025 in Mexico. Specifically, we focused on the RRAR motif, a known furin-binding site for NRP-1 and the binding site for ACE2 with the spike protein. Our analysis revealed high conservation (>98%) of the RRAR domain compared to a rapidly diminishing ACE2-binding domain. A complementary analysis, using Data from Gene Expression Omnibus (GEO, GSE150316), showed that NRP1 expression in lung tissue remains relatively stable, whereas ACE2 displayed high inter-individual variability and lower abundance compared to NRP1. Based on this evidence, we designed two humans–rats NRP1 siRNAs that were tested in vivo using a melittin-induced lung injury model. Results: The RT-PCR assays confirmed an effective NRP1 knockdown, and the siRNA-treated group showed a significant reduction in the lesions severity. These findings highlight NRP1 as a stable and relevant therapeutic target and suggest the protective potential of siRNA-mediated gene silencing. Conclusions: The evidence presented here supports the rational design of NRP1-directed therapies for multiple circulating SARS-CoV-2 variants in Mexico. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

21 pages, 1308 KiB  
Article
Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics
by Alexander Tristancho-Baró, Ana Isabel López-Calleja, Ana Milagro, Mónica Ariza, Víctor Viñeta, Blanca Fortuño, Concepción López, Miriam Latorre-Millán, Laura Clusa, David Badenas-Alzugaray, Rosa Martínez, Carmen Torres and Antonio Rezusta
Antibiotics 2025, 14(7), 703; https://doi.org/10.3390/antibiotics14070703 - 12 Jul 2025
Viewed by 332
Abstract
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims [...] Read more.
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims to investigate the genomic determinants associated with cefiderocol resistance in CPE isolates of human origin. Methods: Comparative genomic analyses were conducted between cefiderocol-susceptible and -resistant CPE isolates recovered from human clinical and epidemiological samples at a tertiary care hospital. Whole-genome sequencing, variant annotation, structural modelling, and pangenome analysis were performed to characterize resistance mechanisms. Results: A total of 59 isolates (29 resistant and 30 susceptible) were analyzed, predominantly comprising Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. The most frequent carbapenemase gene among the resistant isolates was blaNDM, which was also present in a subset of susceptible strains. The resistant isolates exhibited a significantly higher burden of non-synonymous mutations in their siderophore receptor genes, notably within fecR, fecA, fiu, and cirA. Structural modelling predicted deleterious effects for mutations such as fecR:G104S and fecA:A190T. Additionally, porin loss and loop 3 insertions (e.g., GD/TD) in OmpK36, as well as OmpK35 truncations, were more frequent in the resistant isolates, particularly in high-risk clones such as ST395 and ST512. Genes associated with toxin–antitoxin systems (chpB2, pemI) and a hypothetical metalloprotease (group_2577) were uniquely found in the resistant group. Conclusions: Cefiderocol resistance in CPE appears to be multifactorial. NDM-type metallo-β-lactamases and missense mutations in siderophore uptake systems—especially in those encoded by fec, fhu, and cir operons—play a central role. These may be further potentiated by alterations in membrane permeability, such as porin disruption and efflux deregulation. The integration of genomic and structural approaches provides valuable insights into emerging resistance mechanisms and may support the development of diagnostic tools and therapeutic strategies. Full article
Show Figures

Graphical abstract

16 pages, 268 KiB  
Article
Series 2: Development of a Multiplex Amplicon Next Generation Sequencing Assay for Rapid Assessment of Resistance-Associated Mutations in M. tuberculosis Clinical Cases
by Adriana Cabrera, Tracy Lee, Kathleen Kolehmainen, Trevor Hird, Danielle Jorgensen, Calvin Ka-Fung Lo, Hasan Hamze, Alan O’Dwyer, Dan Fornika, Rupinder Kaur KhunKhun, Mabel Rodrigues, Natalie Prystajecky, John Tyson, James E. A. Zlosnik and Inna Sekirov
Trop. Med. Infect. Dis. 2025, 10(7), 194; https://doi.org/10.3390/tropicalmed10070194 - 10 Jul 2025
Viewed by 322
Abstract
Treatment of Mycobacterium tuberculosis requires multi-drug regimens, and resistance to any individual antibiotic can compromise outcomes. For slow-growing organisms like M. tuberculosis, rapid detection of resistance-conferring mutations enables timely initiation of effective therapy. Conversely, confirming wild-type status in resistance-associated genes supports confidence [...] Read more.
Treatment of Mycobacterium tuberculosis requires multi-drug regimens, and resistance to any individual antibiotic can compromise outcomes. For slow-growing organisms like M. tuberculosis, rapid detection of resistance-conferring mutations enables timely initiation of effective therapy. Conversely, confirming wild-type status in resistance-associated genes supports confidence in standard regimens. We developed an amplicon-based next generation sequencing (amplicon tNGS) assay on the Illumina platform targeting eight genes linked to resistance to isoniazid, rifampin, ethambutol, pyrazinamide, and fluoroquinolones. Sequencing results were analyzed using a custom bioinformatics pipeline. Forty-seven samples were used for assay development, and 37 additional samples underwent post-implementation clinical validation. Compared to whole genome sequencing (WGS), amplicon tNGS demonstrated 97.7% sensitivity, 98.9% specificity, and 98.7% overall accuracy for variant detection in targeted regions. Resistance prediction showed 79.3% concordance with WGS; discrepancies were primarily due to mutations outside of target regions. Among post-implementation samples, 27/37 passed quality metrics for all targets, with 95.7% concordance between amplicon tNGS results and final susceptibility results. This assay is now in use in our laboratory and offers significantly faster turnaround than both WGS and phenotypic methods on cultured isolates, enabling more rapid, informed treatment decisions for tuberculosis patients. Full article
(This article belongs to the Special Issue Emerging Trends of Infectious Diseases in Canada)
19 pages, 3069 KiB  
Article
Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity
by Suresh Kumar, Jia-Jin Wee and K. J. Senthil Kumar
COVID 2025, 5(7), 105; https://doi.org/10.3390/covid5070105 - 8 Jul 2025
Viewed by 324
Abstract
Severe COVID-19 disproportionately impacts patients with comorbidities such as type 1 diabetes (T1D), type 2 diabetes (T2D), obesity (OBCD), cardiovascular disease (CVD), hypertension (HTN), and cerebrovascular disease (CeVD), affecting 10–30% of cases. This study elucidates shared molecular mechanisms by identifying common hub genes [...] Read more.
Severe COVID-19 disproportionately impacts patients with comorbidities such as type 1 diabetes (T1D), type 2 diabetes (T2D), obesity (OBCD), cardiovascular disease (CVD), hypertension (HTN), and cerebrovascular disease (CeVD), affecting 10–30% of cases. This study elucidates shared molecular mechanisms by identifying common hub genes and genetic variants across these conditions using an integrative bioinformatics approach. We curated 5463 COVID-19-related genes from DisGeNET, GeneCards, T-HOD, and other databases, comparing them with gene sets for T1D (324 genes), T2D (497), OBCD (835), CVD (1756), HTN (837), and CeVD (1421). Functional similarity analysis via ToppGene, hub gene prediction with cytoHubba, and Cytoscape-based protein–protein interaction networks identified four hub genes—CCL2, IL6, IL10, and TLR4—consistently shared across all conditions (p < 1.0 × 10−5). Enrichr-based gene ontology and KEGG analyses revealed cytokine signaling and inflammation as key drivers of COVID-19 cytokine storms. Polymorphisms like IL6 rs1800795 and TLR4 rs4986790 contribute to immune dysregulation, consistent with previous genomic studies. These genes suggest therapeutic targets, such as tocilizumab for IL6-driven inflammation. While computational, requiring biochemical validation, this study illuminates shared pathways, advancing prospects for precision medicine and multi-omics research in high-risk COVID-19 populations. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

16 pages, 4677 KiB  
Article
Isolation and Biological Characteristics Study of Porcine Reproductive and Respiratory Syndrome Virus GZ2022 Strain
by Xinmei Yang, Bin Yu, Qing Li, Hailong Ma, Zhengjun Yu, Pei Ma, Shengnan Ruan, Xuexiang Yu, Qigai He and Wentao Li
Vet. Sci. 2025, 12(7), 651; https://doi.org/10.3390/vetsci12070651 - 8 Jul 2025
Viewed by 444
Abstract
PRRSV continues to evolve, complicating its epidemiological landscape in China. In this study, we isolated a novel PRRSV strain, GZ2022, from a swine farm in Guizhou Province. Subsequent analyses performed on this isolate included complete genome sequencing, phylogenetic analysis, recombination assessment, and characterization [...] Read more.
PRRSV continues to evolve, complicating its epidemiological landscape in China. In this study, we isolated a novel PRRSV strain, GZ2022, from a swine farm in Guizhou Province. Subsequent analyses performed on this isolate included complete genome sequencing, phylogenetic analysis, recombination assessment, and characterization of its biological properties. Phylogenetic analysis revealed that GZ2022 clusters within Lineage 1 (NADC30-like) and features a 131-amino-acid deletion in NSP2, consistent with NADC30-derived strains. Recombination analysis identified NADC30 as the major parental strain (75% genomic contribution), with a minor recombinant region (25%) derived from the highly pathogenic HuN4 strain. In vitro growth kinetics revealed peak viral titers in Marc-145 cells at 72 h post infection (hpi). Pathogenicity was evaluated in 21-day-old piglets infected with GZ2022, the highly pathogenic PRRSV strain WUH3, or negative controls. Both infected groups exhibited typical PRRS clinical signs (fever, respiratory distress) and histopathological lesions (interstitial pneumonia, pulmonary consolidation). However, GZ2022-infected piglets exhibited attenuated virulence compared to WUH3, with reduced pulmonary hemorrhage and 0% mortality compared to 80% in the WUH3 group. Seroconversion (N-protein antibodies) was observed at 14 dpi (days post inoculation) in GZ2022-infected animals, persisting throughout the 28-day trial. Viral shedding dynamics aligned with moderate pathogenicity. These findings classify GZ2022 as a moderately virulent NADC30-like recombinant strain with partial HuN4-derived genomic regions. The emergence of such strains underscores the need for sustained surveillance of PRRSV genetic diversity and systematic evaluation of the biological properties of novel variants to refine control measures and inform vaccine development. Full article
Show Figures

Graphical abstract

Back to TopTop