Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity
Abstract
1. Introduction
2. Materials and Methods
2.1. Gene Set Retrieval
2.2. Candidate Gene Prioritization Using ToppGene
2.3. Network Analysis Using Cytoscape
2.4. Prediction of Hub Genes Using CytoHubba
2.5. Identification of Common Hub Genes
2.6. Gene Ontology and KEGG Pathway Analysis
3. Results and Discussion
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madabhavi, I.; Sarkar, M.; Kadakol, N. COVID-19: A review. Monaldi Arch. Chest Dis. 2020, 90. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, C.; Xu, X.-f.; Xu, W.; Liu, S.-w. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [Google Scholar] [CrossRef]
- Ojha, P.K.; Kar, S.; Krishna, J.G.; Roy, K.; Leszczynski, J. Therapeutics for COVID-19: From computation to practices—Where we are, where we are heading to. Mol. Divers. 2021, 25, 625–659. [Google Scholar] [CrossRef]
- Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front. Immunol. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Kumar, S.; Karuppanan, K.; Subramaniam, G. Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assessment. J. Med. Virol. 2022, 94, 4780–4791. [Google Scholar] [CrossRef]
- Das, S.; Kumar, S. Exploring the mechanisms of long COVID: Insights from computational analysis of SARS-CoV-2 gene expression and symptom associations. J. Med. Virol. 2023, 95, e29077. [Google Scholar] [CrossRef]
- Bajgain, K.T.; Badal, S.; Bajgain, B.B.; Santana, M.J. Prevalence of comorbidities among individuals with COVID-19: A rapid review of current literature. Am. J. Infect. Control 2021, 49, 238–246. [Google Scholar] [CrossRef]
- Gold, M.S.; Daniel, S.; Sofianne, G.; Xun, Z.; Christine, M.; Ben-Shoshan, M. COVID-19 and comorbidities: A systematic review and meta-analysis. Postgrad. Med. 2020, 132, 749–755. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bastard, P.; Cobat, A.; Casanova, J.L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 2022, 603, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Andreakos, E.; Abel, L.; Vinh, D.C.; Kaja, E.; Drolet, B.A.; Zhang, Q.; O’Farrelly, C.; Novelli, G.; Rodríguez-Gallego, C.; Haerynck, F.; et al. A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 159–164. [Google Scholar] [CrossRef]
- Casanova, J.L.; Abel, L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022, 185, 3086–3103. [Google Scholar] [CrossRef]
- Cobat, A.; Zhang, Q.; Abel, L.; Casanova, J.L.; Fellay, J. Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants. Annu. Rev. Biomed. Data Sci. 2023, 6, 465–486. [Google Scholar] [CrossRef]
- Biancolella, M.; Colona, V.L.; Luzzatto, L.; Watt, J.L.; Mattiuz, G.; Conticello, S.G.; Kaminski, N.; Mehrian-Shai, R.; Ko, A.I.; Gonsalves, G.S.; et al. COVID-19 annual update: A narrative review. Hum. Genom. 2023, 17, 68. [Google Scholar] [CrossRef]
- Davis, A.P.; Wiegers, T.C.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res. 2022, 51, D1257–D1262. [Google Scholar] [CrossRef]
- Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020, 583, 459–468. [Google Scholar] [CrossRef]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef]
- da Rosa, R.L.; Yang, T.S.; Tureta, E.F.; de Oliveira, L.R.S.; Moraes, A.N.S.; Tatara, J.M.; Costa, R.P.; Borges, J.S.; Alves, C.I.; Berger, M.; et al. SARSCOVIDB—A New Platform for the Analysis of the Molecular Impact of SARS-CoV-2 Viral Infection. ACS Omega 2021, 6, 3238–3243. [Google Scholar] [CrossRef]
- Zhou, N.; Bao, J.; Ning, Y. H2V: A database of human genes and proteins that respond to SARS-CoV-2, SARS-CoV, and MERS-CoV infection. BMC Bioinform. 2021, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.J.; Wu, J.C.; Tsai, R.T.; Pan, W.H.; Hsu, W.L. T-HOD: A literature-based candidate gene database for hypertension, obesity and diabetes. Database 2013, 2013, bas061. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Adab, P.; Haroon, S.; O’Hara, M.E.; Jordan, R.E. Comorbidities and COVID-19. BMJ 2022, 377, o1431. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef]
- Brandão, S.C.S.; Ramos, J.d.O.X.; Dompieri, L.T.; Godoi, E.T.A.M.; Figueiredo, J.L.; Sarinho, E.S.C.; Chelvanambi, S.; Aikawa, M. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev. 2021, 58, 102–110. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Liu, C.; Su, L.; Zhang, D.; Fan, J.; Yang, Y.; Xiao, M.; Xie, J.; Xu, Y.; et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol. Med. 2020, 26, 97. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Copaescu, A.; Smibert, O.; Gibson, A.; Phillips, E.J.; Trubiano, J.A. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J. Allergy Clin. Immunol. 2020, 146, 518–534.e511. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.K.; Vishnupriyan, K.; Damodar, S.; Gujar, S.; Das, M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: Results from meta-analysis and regression. medRxiv 2020. 2020.2008.2015.20175844. [Google Scholar] [CrossRef]
- McLachlan, C.S. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin. Hypertens. 2020, 26, 14. [Google Scholar] [CrossRef]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Rull, A.; Camps, J.; Alonso-Villaverde, C.; Joven, J. Insulin Resistance, Inflammation, and Obesity: Role of Monocyte Chemoattractant Protein-1 (orCCL2) in the Regulation of Metabolism. Mediat. Inflamm. 2010, 2010, 326580. [Google Scholar] [CrossRef]
- Senn, J.J.; Klover, P.J.; Nowak, I.A.; Mooney, R.A. Interleukin-6 Induces Cellular Insulin Resistance in Hepatocytes. Diabetes 2002, 51, 3391–3399. [Google Scholar] [CrossRef]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef]
- Martin, A.P.; Rankin, S.; Pitchford, S.; Charo, I.F.; Furtado, G.C.; Lira, S.A. Increased Expression of CCL2 in Insulin-Producing Cells of Transgenic Mice Promotes Mobilization of Myeloid Cells From the Bone Marrow, Marked Insulitis, and Diabetes. Diabetes 2008, 57, 3025–3033. [Google Scholar] [CrossRef]
- Hundhausen, C.; Roth, A.; Whalen, E.; Chen, J.; Schneider, A.; Long, S.A.; Wei, S.; Rawlings, R.; Kinsman, M.; Evanko, S.P.; et al. Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression. Sci. Transl. Med. 2016, 8, 356ra119. [Google Scholar] [CrossRef]
- Nunes, K.P.; Webb, R.C.; Guisbert, E.; Szasz, T. The Innate Immune System via Toll-Like Receptors (TLRs) in Type 1 Diabetes—Mechanistic Insights. In Major Topics in Type 1 Diabetes; Nunes, K.P., Ed.; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Rogero, M.M.; Calder, P.C. Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients 2018, 10, 432. [Google Scholar] [CrossRef]
- Vázquez-Oliva, G.; Fernández-Real, J.M.; Zamora, A.; Vilaseca, M.; Badimón, L. Lowering of blood pressure leads to decreased circulating interleukin-6 in hypertensive subjects. J. Hum. Hypertens. 2005, 19, 457–462. [Google Scholar] [CrossRef]
- Fernandez-Real, J.-M.; Vayreda, M.; Richart, C.; Gutierrez, C.; Broch, M.; Vendrell, J.; Ricart, W. Circulating Interleukin 6 Levels, Blood Pressure, and Insulin Sensitivity in Apparently Healthy Men and Women. J. Clin. Endocrinol. Metab. 2001, 86, 1154–1159. [Google Scholar] [CrossRef]
- Nunes, K.P.; de Oliveira, A.A.; Lima, V.V.; Webb, R.C. Toll-Like Receptor 4 and Blood Pressure: Lessons From Animal Studies. Front. Physiol. 2019, 10, 655. [Google Scholar] [CrossRef]
- Noels, H.; Weber, C.; Koenen, R.R. Chemokines as Therapeutic Targets in Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 583–592. [Google Scholar] [CrossRef]
- Firmal, P.; Shah, V.K.; Chattopadhyay, S. Insight Into TLR4-Mediated Immunomodulation in Normal Pregnancy and Related Disorders. Front. Immunol. 2020, 11, 807. [Google Scholar] [CrossRef]
- Bacchiega, B.C.; Bacchiega, A.B.; Usnayo, M.J.G.; Bedirian, R.; Singh, G.; Pinheiro, G.d.R.C. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J. Am. Heart Assoc. 2017, 6, e005038. [Google Scholar] [CrossRef]
- Zhu, H.; Rhee, J.-W.; Cheng, P.; Waliany, S.; Chang, A.; Witteles, R.M.; Maecker, H.; Davis, M.M.; Nguyen, P.K.; Wu, S.M. Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Curr. Cardiol. Rep. 2020, 22, 32. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Caso, J.R.; Pradillo, J.M.; Hurtado, O.; Lorenzo, P.; Moro, M.A.; Lizasoain, I. Toll-Like Receptor 4 Is Involved in Brain Damage and Inflammation After Experimental Stroke. Circulation 2007, 115, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Shaafi, S.; Sharifipour, E.; Rahmanifar, R.; Hejazi, S.; Andalib, S.; Nikanfar, M.; Baradarn, B.; Mehdizadeh, R. Interleukin-6, a reliable prognostic factor for ischemic stroke. Iran. J. Neurol. 2014, 13, 70–76. [Google Scholar] [PubMed]
- Guo, F.; Xu, D.; Lin, Y.; Wang, G.; Wang, F.; Gao, Q.; Wei, Q.; Lei, S. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway following acute intracerebral hemorrhage. FASEB J. 2020, 34, 1872–1884. [Google Scholar] [CrossRef]
- Shajahan, S.R.; Kumar, S.; Ramli, M.D.C. Unravelling the connection between COVID-19 and Alzheimer’s disease: A comprehensive review. Front. Aging Neurosci. 2023, 15, 1274452. [Google Scholar] [CrossRef]
Term | Overlap | p-Value | Adjusted p-Value | Odds Ratio | Combined Score | Genes |
---|---|---|---|---|---|---|
Cellular response to molecule of bacterial origin (GO:0071219) | 4/84 | 2.89 × 10−10 | 1.48 × 10−6 | 238.0952 | 5229.299 | IL10; IL6; CCL2; TLR4 |
Cellular response to lipopolysaccharide (GO:0071222) | 4/91 | 4.01 × 10−10 | 1.02 × 10−6 | 219.7802 | 4755.435 | IL10; IL6; CCL2; TLR4 |
Response to lipopolysaccharide (GO:0032496) | 4/155 | 3.47 × 10−9 | 5.90 × 10−6 | 129.0323 | 2513.437 | IL10; IL6; CCL2; TLR4 |
Cellular response to lipid (GO:0071396) | 4/178 | 6.07 × 10−9 | 7.74 × 10−6 | 112.3596 | 2125.912 | IL10; IL6; CCL2; TLR4 |
Inflammatory response (GO:0006954) | 4/252 | 2.46 × 10−8 | 2.51 × 10−5 | 79.36508 | 1390.476 | IL10; IL6; CCL2; TLR4 |
Regulation of interleukin-6 production (GO:0032675) | 3/42 | 3.44 × 10−8 | 2.92 × 10−5 | 357.1429 | 6137.679 | IL10; IL6; TLR4 |
Cellular response to oxygen-containing compound (GO:1901701) | 4/274 | 3.45 × 10−8 | 2.51 × 10−5 | 72.9927 | 1254.253 | IL10; IL6; CCL2; TLR4 |
Response to molecule of bacterial origin (GO:0002237) | 3/1 | 4.55 × 10−7 | 2.90 × 10−4 | 153.0612 | 2235.255 | IL10; IL6; TLR4 |
Positive regulation of nitric-oxide synthase biosynthetic process (GO:0051770) | 2/9 | 1.08 × 10−6 | 6.12 × 10−4 | 1111.111 | 15265.62 | CCL2; TLR4 |
Positive regulation of macromolecule biosynthetic process (GO:0010557) | 3/142 | 1.39 × 10−6 | 7.12 × 10−4 | 105.6338 | 1424.271 | IL6; CCL2; TLR4 |
Term | Overlap | p-Value | Adjusted p-Value | Odds Ratio | Combined Score | Genes |
---|---|---|---|---|---|---|
Integral component of plasma membrane (GO:0005887) | 2/1463 | 0.029045 | 1 | 6.83527 | 24.18936 | IL6; TLR4 |
Endoplasmic reticulum lumen (GO:0005788) | 1/270 | 0.05292 | 1 | 18.51852 | 54.42546 | IL6 |
Perinuclear region of cytoplasm (GO:0048471) | 1/378 | 0.073489 | 1 | 13.22751 | 34.53206 | TLR4 |
Term | Overlap | p-Value | Adjusted p-Value | Odds Ratio | Combined Score | Genes |
---|---|---|---|---|---|---|
Cytokine activity (GO:0005125) | 3/155 | 0.00000182 | 0.00209 | 96.77419 | 1279.258 | IL10; IL6; CCL2 |
Growth factor activity (GO:0008083) | 2/69 | 0.0000701 | 0.040323 | 144.9275 | 1386.386 | IL10; IL6 |
Growth factor receptor binding (GO:0070851) | 2/92 | 0.000125 | 0.047893 | 108.6957 | 977.0179 | IL10; IL6 |
Cytokine receptor binding (GO:0005126) | 2/137 | 0.000277 | 0.0797 | 72.9927 | 597.9256 | IL10; IL6 |
Interleukin-6 receptor binding (GO:0005138) | 1/7 | 0.001399 | 0.322128 | 714.2857 | 4694.11 | IL6 |
CCR chemokine receptor binding (GO:0048020) | 1/38 | 0.007579 | 1 | 131.5789 | 642.4203 | CCL2 |
Chemokine activity (GO:0008009) | 1/46 | 0.009169 | 1 | 108.6957 | 509.9933 | CCL2 |
Chemokine receptor binding (GO:0042379) | 1/49 | 0.009765 | 1 | 102.0408 | 472.3453 | CCL2 |
Phosphotransferase activity, alcohol group as acceptor (GO:0016773) | 1/254 | 0.049844 | 1 | 19.68504 | 59.03268 | CCL2 |
Protein heterodimerization activity (GO:0046982) | 1/265 | 0.051959 | 1 | 18.86792 | 55.79795 | TLR4 |
Kinase activity (GO:0016301) | 1/280 | 0.054839 | 1 | 17.85714 | 51.84569 | CCL2 |
Protein kinase activity (GO:0004672) | 1/513 | 0.098726 | 1 | 9.746589 | 22.56729 | CCL2 |
Gene | Polymorphism | Effect on Function | Association with COVID-19/Comorbidities | Reference |
---|---|---|---|---|
TLR4 | rs4986790 (D299G) | Reduced TLR4 signaling, impaired viral clearance | Increased susceptibility to severe COVID-19 | [15] |
TLR4 | rs4986791 (T399I) | Altered immune response | Severe COVID-19 outcomes | [15] |
IL6 | rs1800795 (−174 G/C) | Increased IL6 expression | Cytokine storm, severe COVID-19 | [12] |
CCL2 | rs1024611 (−2518 A/G) | Enhanced CCL2 expression | Inflammation in COVID-19, T2D, CVD | [16] |
IL10 | rs1800896 (−1082 G/A) | Reduced IL10 production | Immune dysregulation in COVID-19, T1D | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Wee, J.-J.; Kumar, K.J.S. Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity. COVID 2025, 5, 105. https://doi.org/10.3390/covid5070105
Kumar S, Wee J-J, Kumar KJS. Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity. COVID. 2025; 5(7):105. https://doi.org/10.3390/covid5070105
Chicago/Turabian StyleKumar, Suresh, Jia-Jin Wee, and K. J. Senthil Kumar. 2025. "Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity" COVID 5, no. 7: 105. https://doi.org/10.3390/covid5070105
APA StyleKumar, S., Wee, J.-J., & Kumar, K. J. S. (2025). Identification of Common Hub Genes in COVID-19 and Comorbidities: Insights into Shared Molecular Pathways and Disease Severity. COVID, 5(7), 105. https://doi.org/10.3390/covid5070105