Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. The Ethics Statement
2.2. Participants
2.3. Genotyping
2.3.1. Japanese Cohorts
2.3.2. Russian Cohorts
2.3.3. Turkish Cohorts
2.4. Gene Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Case–Control Studies
3.2. Gene Expression Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Pallarés, J.; María López-Gullón, J.; Muriel, X.; Díaz, A.; Izquierdo, M. Physical Fitness Factors to Predict Male Olympic Wrestling Performance. Eur. J. Appl. Physiol. 2011, 111, 1747–1758. [Google Scholar] [CrossRef]
- García Pallarés, J.; López-Gullón, J.M.; Torres-Bonete, M.D.; Izquierdo, M. Physical Fitness Factors to Predict Female Olympic Wrestling Performance and Sex Differences. J. Strength. Cond. Res. 2012, 26, 794–803. [Google Scholar] [CrossRef]
- Naka, T.; Kanno, M.; Shidochi, S.; Sakae, K.; Shima, N. Characteristics of Upper-Limb Pull Power and Power Endurance in Japanese Female Wrestlers. J. Strength. Cond. Res. 2022, 36, e82–e87. [Google Scholar] [CrossRef] [PubMed]
- Cieśliński, I.; Gierczuk, D.; Sadowski, J. Identification of Success Factors in Elite Wrestlers-An Exploratory Study. PLoS ONE 2021, 16, e0247565. [Google Scholar] [CrossRef] [PubMed]
- Nikooie, R.; Cheraghi, M.; Mohamadipour, F. Physiological Determinants of Wrestling Success in Elite Iranian Senior and Junior Greco-Roman Wrestlers. J. Sports Med. Phys. Fit. 2017, 57, 219–226. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Mkaouer, B.; Franchini, E.; Julio, U.; Hachana, Y. Physical and Physiological Attributes of Wrestlers: An Update. J. Strength. Cond. Res. 2017, 31, 1411–1442. [Google Scholar] [CrossRef]
- Kikuchi, N.; Min, S.; Ueda, D.; Igawa, S.; Nakazato, K. Higher Frequency of the ACTN3 R Allele + ACE DD Genotype in Japanese Elite Wrestlers. J. Strength Cond. Res. 2012, 26, 3275–3280. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.G.; North, K.N. A Gene for Speed? The Evolution and Function of Alpha-Actinin-3. Bioessays 2004, 26, 786–795. [Google Scholar] [CrossRef]
- North, K.N.; Yang, N.; Wattanasirichaigoon, D.; Mills, M.; Easteal, S.; Beggs, A.H. A Common Nonsense Mutation Results in Alpha-Actinin-3 Deficiency in the General Population. Nat. Genet. 1999, 21, 353–354. [Google Scholar] [CrossRef]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An Insertion/Deletion Polymorphism in the Angiotensin I-Converting Enzyme Gene Accounting for Half the Variance of Serum Enzyme Levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Higashimori, K.; Zhao, Y.; Higaki, J.; Kamitani, A.; Katsuya, T.; Nakura, J.; Miki, T.; Mikami, H.; Ogihara, T. Association Analysis of a Polymorphism of the Angiotensin Converting Enzyme Gene with Essential Hypertension in the Japanese Population. Biochem. Biophys. Res. Commun. 1993, 191, 399–404. [Google Scholar] [CrossRef]
- Danser, A.H.; Schalekamp, M.A.; Bax, W.A.; van den Brink, A.M.; Saxena, P.R.; Riegger, G.A.; Schunkert, H. Angiotensin-Converting Enzyme in the Human Heart. Eff. Deletion/Inser. Polymorphism. Circ. 1995, 92, 1387–1388. [Google Scholar] [CrossRef]
- Kozuma, A.; Miyamoto-Mikami, E.; Saito, M.; Homma, H.; Deguchi, M.; Matsumoto, S.; Matsumoto, R.; Okamoto, T.; Nakazato, K.; Fuku, N.; et al. Association of the GALNTL6 Polymorphism with Muscle Strength in Japanese Athletes. Biol. Sport. 2025, 42, 161–167. [Google Scholar] [CrossRef]
- Gabbasov, R.T.; Arkhipova, A.A.; Borisova, A.V.; Hakimullina, A.M.; Kuznetsova, A.V.; Williams, A.G.; Day, S.H.; Ahmetov, I.I. The HIF1A Gene Pro582Ser Polymorphism in Russian Strength Athletes. J. Strength Cond. Res. 2013, 27, 2055–2058. [Google Scholar] [CrossRef]
- Eynon, N.; Ruiz, J.R.; Oliveira, J.; Duarte, J.A.; Birk, R.; Lucia, A. Genes and Elite Athletes: A Roadmap for Future Research. J. Physiol. 2011, 589, 3063–3070. [Google Scholar] [CrossRef] [PubMed]
- Pitsiladis, Y.P.; Tanaka, M.; Eynon, N.; Bouchard, C.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; et al. Athlome Project Consortium: A Concerted Effort to Discover Genomic and Other “Omic” Markers of Athletic Performance. Physiol. Genom. 2016, 48, 183–190. [Google Scholar] [CrossRef]
- Thompson, R.; McNamee, M.J. Consent, Ethics and Genetic Biobanks: The Case of the Athlome Project. BMC Genom. 2017, 18, 830. [Google Scholar] [CrossRef] [PubMed]
- Rodas, G.; Osaba, L.; Arteta, D.; Pruna, R.; Fernández, D.; Lucia, A. Genomic Prediction of Tendinopathy Risk in Elite Team Sports. Int. J. Sports Physiol. Perform. 2020, 15, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Zempo, H.; Miyamoto-Mikami, E.; Kumagai, H.; Larin, A.K.; Sultanov, R.I.; Babalyan, K.A.; Zhelankin, A.V.; Tobina, T.; Shiose, K.; et al. Genome-Wide Association Study Identifies CDKN1A as a Novel Locus Associated with Muscle Fiber Composition. Cells 2022, 11, 3910. [Google Scholar] [CrossRef]
- Al-Khelaifi, F.; Yousri, N.A.; Diboun, I.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Andryushchenko, L.B.; Larin, A.K.; Generozov, E.V.; et al. Genome-Wide Association Study Reveals a Novel Association Between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism. Front. Genet. 2020, 11, 595. [Google Scholar] [CrossRef]
- Mei, T.; Li, Y.; Bao, D.; Yang, X.; Yang, X.; Li, L.; He, Z. Genetic Prediction of Lower Limb Isometric Strength Changes after 12 Weeks of Resistance Training. Biol. Sport 2025, 42, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Youn, B.-Y.; Ko, S.-G.; Kim, J.Y. Genetic Basis of Elite Combat Sports Athletes: A Systematic Review. Biol. Sport 2021, 38, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Ebert, J.R.; Magi, A.; Unt, E.; Prans, E.; Wood, D.J.; Koks, S. Genome-Wide Association Study Identifying Variants Related to Performance and Injury in High-Performance Athletes. Exp. Biol. Med. 2023, 248, 1799–1805. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 21 July 2025).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Bradford, D.; Cole, S.J.; Cooper, H.M. Netrin-1: Diversity in Development. Int. J. Biochem. Cell Biol. 2009, 41, 487–493. [Google Scholar] [CrossRef]
- Kim, D.; Ackerman, S.L. The UNC5C Netrin Receptor Regulates Dorsal Guidance of Mouse Hindbrain Axons. J. Neurosci. 2011, 31, 2167–2179. [Google Scholar] [CrossRef]
- Poliak, S.; Morales, D.; Croteau, L.-P.; Krawchuk, D.; Palmesino, E.; Morton, S.; Cloutier, J.-F.; Charron, F.; Dalva, M.B.; Ackerman, S.L.; et al. Synergistic Integration of Netrin and Ephrin Axon Guidance Signals by Spinal Motor Neurons. Elife 2015, 4, e10841. [Google Scholar] [CrossRef]
- Treccarichi, S.; Failla, P.; Vinci, M.; Musumeci, A.; Gloria, A.; Vasta, A.; Calabrese, G.; Papa, C.; Federico, C.; Saccone, S.; et al. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes 2024, 15, 306. [Google Scholar] [CrossRef] [PubMed]
- Brini, M.; Carafoli, E. Calcium Pumps in Health and Disease. Physiol. Rev. 2009, 89, 1341–1378. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Van Remmen, H. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) Pump: A Potential Target for Intervention in Aging and Skeletal Muscle Pathologies. Skelet. Muscle 2021, 11, 25. [Google Scholar] [CrossRef] [PubMed]
Japan | Russia | Türkiye | Meta-Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
rs Number | Chr | Gene Name | Effect Allele | OR | p | OR | p | OR | p | OR | p | I2 |
rs4655854 | 1 | - | A | 0.64 | 0.023 | 1.68 | 0.044 | 0.48 | 0.003 | 0.80 | 0.52 | 85 |
rs12479172 | 2 | - | T | 1.60 | 0.025 | 1.96 | 0.011 | 0.63 | 0.032 | 1.24 | 0.53 | 86 |
rs7698692 | 4 | - | A | 1.48 | 0.045 | 2.46 | 0.030 | 0.36 | 0.028 | 1.14 | 0.78 | 81 |
rs12505795 | 4 | T | 1.84 | 0.007 | 2.27 | 0.038 | 0.38 | 0.046 | 1.25 | 0.64 | 79 | |
rs265061 | 4 | UNC5C | T | 1.97 | 0.016 | 2.87 | 0.041 | 2.09 | 0.011 | 2.12 | <0.0001 | 0 |
rs202821 | 5 | - | A | 2.05 | 0.011 | 8.17 | 0.047 | 0.62 | 0.036 | 2.15 | 0.31 | 96 |
rs3789243 | 7 | ABCB1 | A | 0.66 | 0.049 | 1.94 | 0.011 | 0.55 | 0.006 | 0.87 | 0.71 | 87 |
rs11203550 | 8 | - | A | 2.57 | 0.0009 | 0.20 | 0.003 | 2.05 | 0.043 | 1.14 | 0.83 | 88 |
rs4131754 | 8 | - | T | 1.52 | 0.032 | 2.15 | 0.012 | 0.64 | 0.048 | 1.25 | 0.52 | 84 |
rs10893471 | 11 | CNTN5 | A | 0.59 | 0.043 | 0.60 | 0.047 | 1.36 | 0.003 | 0.79 | 0.41 | 74 |
rs9988991 | 12 | GRIN2B | A | 1.77 | 0.025 | 0.56 | 0.028 | 1.45 | 0.042 | 1.13 | 0.71 | 82 |
rs7170004 | 15 | IQCH | A | 2.90 | 0.006 | 0.58 | 0.039 | 1.59 | 0.035 | 1.36 | 0.48 | 87 |
rs2732158 | 15 | SH3GL3 | T | 0.50 | 0.039 | 2.64 | 0.004 | 0.45 | 0.045 | 0.84 | 0.75 | 88 |
rs7187994 | 16 | USP10 | A | 0.58 | 0.003 | 2.15 | 0.032 | 1.85 | 0.013 | 1.28 | 0.59 | 89 |
rs774294 | 16 | USP10 | A | 0.58 | 0.006 | 1.70 | 0.042 | 2.71 | 3.85 × 10−6 | 1.38 | 0.51 | 93 |
rs6502758 | 17 | ATP2A3 | T | 4.02 | 0.001 | 2.14 | 0.025 | 1.89 | 0.013 | 2.31 | <0.0001 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozuma, A.; Bulgay, C.; Zempo, H.; Saito, M.; Deguchi, M.; Homma, H.; Matsumoto, S.; Matsumoto, R.; Kasakolu, A.; Kazan, H.H.; et al. Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study. Genes 2025, 16, 906. https://doi.org/10.3390/genes16080906
Kozuma A, Bulgay C, Zempo H, Saito M, Deguchi M, Homma H, Matsumoto S, Matsumoto R, Kasakolu A, Kazan HH, et al. Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study. Genes. 2025; 16(8):906. https://doi.org/10.3390/genes16080906
Chicago/Turabian StyleKozuma, Ayumu, Celal Bulgay, Hirofumi Zempo, Mika Saito, Minoru Deguchi, Hiroki Homma, Shingo Matsumoto, Ryutaro Matsumoto, Anıl Kasakolu, Hasan H. Kazan, and et al. 2025. "Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study" Genes 16, no. 8: 906. https://doi.org/10.3390/genes16080906
APA StyleKozuma, A., Bulgay, C., Zempo, H., Saito, M., Deguchi, M., Homma, H., Matsumoto, S., Matsumoto, R., Kasakolu, A., Kazan, H. H., Bıyıklı, T., Koncagül, S., Baydaş, G., Ergun, M. A., Szabo, A., Semenova, E. A., Larin, A. K., Kulemin, N. A., Generozov, E. V., ... Kikuchi, N. (2025). Genetic Factors of Elite Wrestling Status: A Multi-Ethnic Comparative Study. Genes, 16(8), 906. https://doi.org/10.3390/genes16080906